Merge branch 'develop' of github.com:lolongcovas/freqtrade into feat/freqai
This commit is contained in:
@@ -421,7 +421,7 @@ class FreqaiDataDrawer:
|
||||
)
|
||||
|
||||
# if self.live:
|
||||
self.model_dictionary[dk.model_filename] = model
|
||||
self.model_dictionary[coin] = model
|
||||
self.pair_dict[coin]["model_filename"] = dk.model_filename
|
||||
self.pair_dict[coin]["data_path"] = str(dk.data_path)
|
||||
self.save_drawer_to_disk()
|
||||
@@ -460,8 +460,8 @@ class FreqaiDataDrawer:
|
||||
)
|
||||
|
||||
# try to access model in memory instead of loading object from disk to save time
|
||||
if dk.live and dk.model_filename in self.model_dictionary:
|
||||
model = self.model_dictionary[dk.model_filename]
|
||||
if dk.live and coin in self.model_dictionary:
|
||||
model = self.model_dictionary[coin]
|
||||
elif not dk.keras:
|
||||
model = load(dk.data_path / f"{dk.model_filename}_model.joblib")
|
||||
else:
|
||||
|
@@ -601,6 +601,8 @@ class FreqaiDataKitchen:
|
||||
is an outlier.
|
||||
"""
|
||||
|
||||
from math import cos, sin
|
||||
|
||||
if predict:
|
||||
train_ft_df = self.data_dictionary['train_features']
|
||||
pred_ft_df = self.data_dictionary['prediction_features']
|
||||
@@ -619,23 +621,47 @@ class FreqaiDataKitchen:
|
||||
|
||||
else:
|
||||
|
||||
def normalise_distances(distances):
|
||||
normalised_distances = (distances - distances.min()) / \
|
||||
(distances.max() - distances.min())
|
||||
return normalised_distances
|
||||
|
||||
def rotate_point(origin, point, angle):
|
||||
# rotate a point counterclockwise by a given angle (in radians)
|
||||
# around a given origin
|
||||
x = origin[0] + cos(angle) * (point[0] - origin[0]) - \
|
||||
sin(angle) * (point[1] - origin[1])
|
||||
y = origin[1] + sin(angle) * (point[0] - origin[0]) + \
|
||||
cos(angle) * (point[1] - origin[1])
|
||||
return (x, y)
|
||||
|
||||
MinPts = len(self.data_dictionary['train_features'].columns) * 2
|
||||
# measure pairwise distances to train_features.shape[1]*2 nearest neighbours
|
||||
neighbors = NearestNeighbors(
|
||||
n_neighbors=MinPts, n_jobs=self.thread_count)
|
||||
neighbors_fit = neighbors.fit(self.data_dictionary['train_features'])
|
||||
distances, _ = neighbors_fit.kneighbors(self.data_dictionary['train_features'])
|
||||
distances = np.sort(distances, axis=0)
|
||||
index_ten_pct = int(len(distances[:, 1]) * 0.1)
|
||||
distances = distances[index_ten_pct:, 1]
|
||||
epsilon = distances[-1]
|
||||
distances = np.sort(distances, axis=0).mean(axis=1)
|
||||
|
||||
normalised_distances = normalise_distances(distances)
|
||||
x_range = np.linspace(0, 1, len(distances))
|
||||
line = np.linspace(normalised_distances[0],
|
||||
normalised_distances[-1], len(normalised_distances))
|
||||
deflection = np.abs(normalised_distances - line)
|
||||
max_deflection_loc = np.where(deflection == deflection.max())[0][0]
|
||||
origin = x_range[max_deflection_loc], line[max_deflection_loc]
|
||||
point = x_range[max_deflection_loc], normalised_distances[max_deflection_loc]
|
||||
rot_angle = np.pi / 4
|
||||
elbow_loc = rotate_point(origin, point, rot_angle)
|
||||
|
||||
epsilon = elbow_loc[1] * (distances[-1] - distances[0]) + distances[0]
|
||||
|
||||
clustering = DBSCAN(eps=epsilon, min_samples=MinPts,
|
||||
n_jobs=int(self.thread_count)).fit(
|
||||
self.data_dictionary['train_features']
|
||||
)
|
||||
|
||||
logger.info(f'DBSCAN found eps of {epsilon}.')
|
||||
logger.info(f'DBSCAN found eps of {epsilon:.2f}.')
|
||||
|
||||
self.data['DBSCAN_eps'] = epsilon
|
||||
self.data['DBSCAN_min_samples'] = MinPts
|
||||
@@ -806,7 +832,7 @@ class FreqaiDataKitchen:
|
||||
|
||||
if (len(do_predict) - do_predict.sum()) > 0:
|
||||
logger.info(
|
||||
f"DI tossed {len(do_predict) - do_predict.sum():.2f} predictions for "
|
||||
f"DI tossed {len(do_predict) - do_predict.sum()} predictions for "
|
||||
"being too far from training data"
|
||||
)
|
||||
|
||||
@@ -981,13 +1007,6 @@ class FreqaiDataKitchen:
|
||||
data_load_timerange.stopts = int(time)
|
||||
retrain = True
|
||||
|
||||
# logger.info(
|
||||
# f"downloading data for "
|
||||
# f"{(data_load_timerange.stopts-data_load_timerange.startts)/SECONDS_IN_DAY:.2f} "
|
||||
# " days. "
|
||||
# f"Extension of {additional_seconds/SECONDS_IN_DAY:.2f} days"
|
||||
# )
|
||||
|
||||
return retrain, trained_timerange, data_load_timerange
|
||||
|
||||
def set_new_model_names(self, pair: str, trained_timerange: TimeRange):
|
||||
|
@@ -82,12 +82,15 @@ class IFreqaiModel(ABC):
|
||||
if self.ft_params.get("inlier_metric_window", 0):
|
||||
self.CONV_WIDTH = self.ft_params.get("inlier_metric_window", 0) * 2
|
||||
self.pair_it = 0
|
||||
self.pair_it_train = 0
|
||||
self.total_pairs = len(self.config.get("exchange", {}).get("pair_whitelist"))
|
||||
self.last_trade_database_summary: DataFrame = {}
|
||||
self.current_trade_database_summary: DataFrame = {}
|
||||
self.analysis_lock = Lock()
|
||||
self.inference_time: float = 0
|
||||
self.train_time: float = 0
|
||||
self.begin_time: float = 0
|
||||
self.begin_time_train: float = 0
|
||||
self.base_tf_seconds = timeframe_to_seconds(self.config['timeframe'])
|
||||
|
||||
def assert_config(self, config: Dict[str, Any]) -> None:
|
||||
@@ -130,11 +133,20 @@ class IFreqaiModel(ABC):
|
||||
dk = self.start_backtesting(dataframe, metadata, self.dk)
|
||||
|
||||
dataframe = dk.remove_features_from_df(dk.return_dataframe)
|
||||
del dk
|
||||
self.clean_up()
|
||||
if self.live:
|
||||
self.inference_timer('stop')
|
||||
return dataframe
|
||||
|
||||
def clean_up(self):
|
||||
"""
|
||||
Objects that should be handled by GC already between coins, but
|
||||
are explicitly shown here to help demonstrate the non-persistence of these
|
||||
objects.
|
||||
"""
|
||||
self.model = None
|
||||
self.dk = None
|
||||
|
||||
@threaded
|
||||
def start_scanning(self, strategy: IStrategy) -> None:
|
||||
"""
|
||||
@@ -161,9 +173,11 @@ class IFreqaiModel(ABC):
|
||||
dk.set_paths(pair, new_trained_timerange.stopts)
|
||||
|
||||
if retrain:
|
||||
self.train_timer('start')
|
||||
self.train_model_in_series(
|
||||
new_trained_timerange, pair, strategy, dk, data_load_timerange
|
||||
)
|
||||
self.train_timer('stop')
|
||||
|
||||
self.dd.save_historic_predictions_to_disk()
|
||||
|
||||
@@ -490,8 +504,7 @@ class IFreqaiModel(ABC):
|
||||
data_load_timerange: TimeRange,
|
||||
):
|
||||
"""
|
||||
Retrieve data and train model in single threaded mode (only used if model directory is empty
|
||||
upon startup for dry/live )
|
||||
Retrieve data and train model.
|
||||
:param new_trained_timerange: TimeRange = the timerange to train the model on
|
||||
:param metadata: dict = strategy provided metadata
|
||||
:param strategy: IStrategy = user defined strategy object
|
||||
@@ -622,6 +635,24 @@ class IFreqaiModel(ABC):
|
||||
self.inference_time = 0
|
||||
return
|
||||
|
||||
def train_timer(self, do='start'):
|
||||
"""
|
||||
Timer designed to track the cumulative time spent training the full pairlist in
|
||||
FreqAI.
|
||||
"""
|
||||
if do == 'start':
|
||||
self.pair_it_train += 1
|
||||
self.begin_time_train = time.time()
|
||||
elif do == 'stop':
|
||||
end = time.time()
|
||||
self.train_time += (end - self.begin_time_train)
|
||||
if self.pair_it_train == self.total_pairs:
|
||||
logger.info(
|
||||
f'Total time spent training pairlist {self.train_time:.2f} seconds')
|
||||
self.pair_it_train = 0
|
||||
self.train_time = 0
|
||||
return
|
||||
|
||||
# Following methods which are overridden by user made prediction models.
|
||||
# See freqai/prediction_models/CatboostPredictionModel.py for an example.
|
||||
|
||||
|
Reference in New Issue
Block a user