diff --git a/freqtrade/constants.py b/freqtrade/constants.py index 5fdd45916..f34232bb1 100644 --- a/freqtrade/constants.py +++ b/freqtrade/constants.py @@ -24,7 +24,7 @@ AVAILABLE_PAIRLISTS = ['StaticPairList', 'VolumePairList'] DRY_RUN_WALLET = 999.9 MATH_CLOSE_PREC = 1e-14 # Precision used for float comparisons -TICKER_INTERVALS = [ +TIMEFRAMES = [ '1m', '3m', '5m', '15m', '30m', '1h', '2h', '4h', '6h', '8h', '12h', '1d', '3d', '1w', @@ -57,7 +57,7 @@ CONF_SCHEMA = { 'type': 'object', 'properties': { 'max_open_trades': {'type': 'integer', 'minimum': -1}, - 'ticker_interval': {'type': 'string', 'enum': TICKER_INTERVALS}, + 'ticker_interval': {'type': 'string', 'enum': TIMEFRAMES}, 'stake_currency': {'type': 'string', 'enum': ['BTC', 'XBT', 'ETH', 'USDT', 'EUR', 'USD']}, 'stake_amount': { "type": ["number", "string"], diff --git a/freqtrade/data/btanalysis.py b/freqtrade/data/btanalysis.py index 2f7a234ce..379c80060 100644 --- a/freqtrade/data/btanalysis.py +++ b/freqtrade/data/btanalysis.py @@ -178,9 +178,9 @@ def create_cum_profit(df: pd.DataFrame, trades: pd.DataFrame, col_name: str, :return: Returns df with one additional column, col_name, containing the cumulative profit. """ from freqtrade.exchange import timeframe_to_minutes - ticker_minutes = timeframe_to_minutes(timeframe) - # Resample to ticker_interval to make sure trades match candles - _trades_sum = trades.resample(f'{ticker_minutes}min', on='close_time')[['profitperc']].sum() + timeframe_minutes = timeframe_to_minutes(timeframe) + # Resample to timeframe to make sure trades match candles + _trades_sum = trades.resample(f'{timeframe_minutes}min', on='close_time')[['profitperc']].sum() df.loc[:, col_name] = _trades_sum.cumsum() # Set first value to 0 df.loc[df.iloc[0].name, col_name] = 0 diff --git a/freqtrade/optimize/backtesting.py b/freqtrade/optimize/backtesting.py index 79478076b..2c2d116a4 100644 --- a/freqtrade/optimize/backtesting.py +++ b/freqtrade/optimize/backtesting.py @@ -121,7 +121,7 @@ class Backtesting: min_date.isoformat(), max_date.isoformat(), (max_date - min_date).days ) # Adjust startts forward if not enough data is available - timerange.adjust_start_if_necessary(timeframe_to_seconds(self.ticker_interval), + timerange.adjust_start_if_necessary(timeframe_to_seconds(self.timeframe), self.required_startup, min_date) return data, timerange