Merge branch 'develop' into BASE64
This commit is contained in:
commit
1c48902e64
@ -5,7 +5,11 @@
|
||||
"fiat_display_currency": "USD",
|
||||
"ticker_interval" : "5m",
|
||||
"dry_run": false,
|
||||
"unfilledtimeout": 600,
|
||||
"trailing_stop": false,
|
||||
"unfilledtimeout": {
|
||||
"buy": 10,
|
||||
"sell": 30
|
||||
},
|
||||
"bid_strategy": {
|
||||
"ask_last_balance": 0.0
|
||||
},
|
||||
|
@ -5,6 +5,8 @@
|
||||
"fiat_display_currency": "USD",
|
||||
"dry_run": false,
|
||||
"ticker_interval": "5m",
|
||||
"trailing_stop": false,
|
||||
"trailing_stop_positive": 0.005,
|
||||
"minimal_roi": {
|
||||
"40": 0.0,
|
||||
"30": 0.01,
|
||||
@ -12,7 +14,10 @@
|
||||
"0": 0.04
|
||||
},
|
||||
"stoploss": -0.10,
|
||||
"unfilledtimeout": 600,
|
||||
"unfilledtimeout": {
|
||||
"buy": 10,
|
||||
"sell": 30
|
||||
},
|
||||
"bid_strategy": {
|
||||
"ask_last_balance": 0.0
|
||||
},
|
||||
|
@ -70,6 +70,34 @@ Where `-s TestStrategy` refers to the class name within the strategy file `test_
|
||||
python3 ./freqtrade/main.py backtesting --export trades
|
||||
```
|
||||
|
||||
The exported trades can be read using the following code for manual analysis, or can be used by the plotting script `plot_dataframe.py` in the scripts folder.
|
||||
|
||||
``` python
|
||||
import json
|
||||
from pathlib import Path
|
||||
import pandas as pd
|
||||
|
||||
filename=Path('user_data/backtest_data/backtest-result.json')
|
||||
|
||||
with filename.open() as file:
|
||||
data = json.load(file)
|
||||
|
||||
columns = ["pair", "profit", "opents", "closets", "index", "duration",
|
||||
"open_rate", "close_rate", "open_at_end"]
|
||||
df = pd.DataFrame(data, columns=columns)
|
||||
|
||||
df['opents'] = pd.to_datetime(df['opents'],
|
||||
unit='s',
|
||||
utc=True,
|
||||
infer_datetime_format=True
|
||||
)
|
||||
df['closets'] = pd.to_datetime(df['closets'],
|
||||
unit='s',
|
||||
utc=True,
|
||||
infer_datetime_format=True
|
||||
)
|
||||
```
|
||||
|
||||
#### Exporting trades to file specifying a custom filename
|
||||
|
||||
```bash
|
||||
|
@ -1,12 +1,15 @@
|
||||
# Configure the bot
|
||||
|
||||
This page explains how to configure your `config.json` file.
|
||||
|
||||
## Table of Contents
|
||||
|
||||
- [Bot commands](#bot-commands)
|
||||
- [Backtesting commands](#backtesting-commands)
|
||||
- [Hyperopt commands](#hyperopt-commands)
|
||||
|
||||
## Setup config.json
|
||||
|
||||
We recommend to copy and use the `config.json.example` as a template
|
||||
for your bot configuration.
|
||||
|
||||
@ -22,7 +25,10 @@ The table below will list all configuration parameters.
|
||||
| `dry_run` | true | Yes | Define if the bot must be in Dry-run or production mode.
|
||||
| `minimal_roi` | See below | No | Set the threshold in percent the bot will use to sell a trade. More information below. If set, this parameter will override `minimal_roi` from your strategy file.
|
||||
| `stoploss` | -0.10 | No | Value of the stoploss in percent used by the bot. More information below. If set, this parameter will override `stoploss` from your strategy file.
|
||||
| `unfilledtimeout` | 0 | No | How long (in minutes) the bot will wait for an unfilled order to complete, after which the order will be cancelled.
|
||||
| `trailing_stoploss` | false | No | Enables trailing stop-loss (based on `stoploss` in either configuration or strategy file).
|
||||
| `trailing_stoploss_positve` | 0 | No | Changes stop-loss once profit has been reached.
|
||||
| `unfilledtimeout.buy` | 10 | Yes | How long (in minutes) the bot will wait for an unfilled buy order to complete, after which the order will be cancelled.
|
||||
| `unfilledtimeout.sell` | 10 | Yes | How long (in minutes) the bot will wait for an unfilled sell order to complete, after which the order will be cancelled.
|
||||
| `bid_strategy.ask_last_balance` | 0.0 | Yes | Set the bidding price. More information below.
|
||||
| `exchange.name` | bittrex | Yes | Name of the exchange class to use. [List below](#user-content-what-values-for-exchangename).
|
||||
| `exchange.key` | key | No | API key to use for the exchange. Only required when you are in production mode.
|
||||
@ -41,10 +47,10 @@ The table below will list all configuration parameters.
|
||||
| `strategy_path` | null | No | Adds an additional strategy lookup path (must be a folder).
|
||||
| `internals.process_throttle_secs` | 5 | Yes | Set the process throttle. Value in second.
|
||||
|
||||
The definition of each config parameters is in
|
||||
[misc.py](https://github.com/freqtrade/freqtrade/blob/develop/freqtrade/misc.py#L205).
|
||||
The definition of each config parameters is in [misc.py](https://github.com/freqtrade/freqtrade/blob/develop/freqtrade/misc.py#L205).
|
||||
|
||||
### Understand stake_amount
|
||||
|
||||
`stake_amount` is an amount of crypto-currency your bot will use for each trade.
|
||||
The minimal value is 0.0005. If there is not enough crypto-currency in
|
||||
the account an exception is generated.
|
||||
@ -52,9 +58,11 @@ To allow the bot to trade all the avaliable `stake_currency` in your account set
|
||||
In this case a trade amount is calclulated as `currency_balanse / (max_open_trades - current_open_trades)`.
|
||||
|
||||
### Understand minimal_roi
|
||||
|
||||
`minimal_roi` is a JSON object where the key is a duration
|
||||
in minutes and the value is the minimum ROI in percent.
|
||||
See the example below:
|
||||
|
||||
```
|
||||
"minimal_roi": {
|
||||
"40": 0.0, # Sell after 40 minutes if the profit is not negative
|
||||
@ -69,6 +77,7 @@ value. This parameter is optional. If you use it, it will take over the
|
||||
`minimal_roi` value from the strategy file.
|
||||
|
||||
### Understand stoploss
|
||||
|
||||
`stoploss` is loss in percentage that should trigger a sale.
|
||||
For example value `-0.10` will cause immediate sell if the
|
||||
profit dips below -10% for a given trade. This parameter is optional.
|
||||
@ -77,56 +86,70 @@ Most of the strategy files already include the optimal `stoploss`
|
||||
value. This parameter is optional. If you use it, it will take over the
|
||||
`stoploss` value from the strategy file.
|
||||
|
||||
### Understand trailing stoploss
|
||||
|
||||
Go to the [trailing stoploss Documentation](stoploss.md) for details on trailing stoploss.
|
||||
|
||||
### Understand initial_state
|
||||
|
||||
`initial_state` is an optional field that defines the initial application state.
|
||||
Possible values are `running` or `stopped`. (default=`running`)
|
||||
If the value is `stopped` the bot has to be started with `/start` first.
|
||||
|
||||
### Understand process_throttle_secs
|
||||
|
||||
`process_throttle_secs` is an optional field that defines in seconds how long the bot should wait
|
||||
before asking the strategy if we should buy or a sell an asset. After each wait period, the strategy is asked again for
|
||||
every opened trade wether or not we should sell, and for all the remaining pairs (either the dynamic list of pairs or
|
||||
the static list of pairs) if we should buy.
|
||||
|
||||
### Understand ask_last_balance
|
||||
|
||||
`ask_last_balance` sets the bidding price. Value `0.0` will use `ask` price, `1.0` will
|
||||
use the `last` price and values between those interpolate between ask and last
|
||||
price. Using `ask` price will guarantee quick success in bid, but bot will also
|
||||
end up paying more then would probably have been necessary.
|
||||
|
||||
### What values for exchange.name?
|
||||
|
||||
Freqtrade is based on [CCXT library](https://github.com/ccxt/ccxt) that supports 115 cryptocurrency
|
||||
exchange markets and trading APIs. The complete up-to-date list can be found in the
|
||||
[CCXT repo homepage](https://github.com/ccxt/ccxt/tree/master/python). However, the bot was tested
|
||||
with only Bittrex and Binance.
|
||||
|
||||
The bot was tested with the following exchanges:
|
||||
|
||||
- [Bittrex](https://bittrex.com/): "bittrex"
|
||||
- [Binance](https://www.binance.com/): "binance"
|
||||
|
||||
Feel free to test other exchanges and submit your PR to improve the bot.
|
||||
|
||||
### What values for fiat_display_currency?
|
||||
|
||||
`fiat_display_currency` set the base currency to use for the conversion from coin to fiat in Telegram.
|
||||
The valid values are: "AUD", "BRL", "CAD", "CHF", "CLP", "CNY", "CZK", "DKK", "EUR", "GBP", "HKD", "HUF", "IDR", "ILS", "INR", "JPY", "KRW", "MXN", "MYR", "NOK", "NZD", "PHP", "PKR", "PLN", "RUB", "SEK", "SGD", "THB", "TRY", "TWD", "ZAR", "USD".
|
||||
In addition to central bank currencies, a range of cryto currencies are supported.
|
||||
The valid values are: "BTC", "ETH", "XRP", "LTC", "BCH", "USDT".
|
||||
|
||||
## Switch to dry-run mode
|
||||
|
||||
We recommend starting the bot in dry-run mode to see how your bot will
|
||||
behave and how is the performance of your strategy. In Dry-run mode the
|
||||
bot does not engage your money. It only runs a live simulation without
|
||||
creating trades.
|
||||
|
||||
### To switch your bot in Dry-run mode:
|
||||
|
||||
1. Edit your `config.json` file
|
||||
2. Switch dry-run to true and specify db_url for a persistent db
|
||||
|
||||
```json
|
||||
"dry_run": true,
|
||||
"db_url": "sqlite///tradesv3.dryrun.sqlite",
|
||||
```
|
||||
|
||||
3. Remove your Exchange API key (change them by fake api credentials)
|
||||
|
||||
```json
|
||||
"exchange": {
|
||||
"name": "bittrex",
|
||||
@ -140,19 +163,23 @@ Once you will be happy with your bot performance, you can switch it to
|
||||
production mode.
|
||||
|
||||
## Switch to production mode
|
||||
|
||||
In production mode, the bot will engage your money. Be careful a wrong
|
||||
strategy can lose all your money. Be aware of what you are doing when
|
||||
you run it in production mode.
|
||||
|
||||
### To switch your bot in production mode:
|
||||
|
||||
1. Edit your `config.json` file
|
||||
|
||||
2. Switch dry-run to false and don't forget to adapt your database URL if set
|
||||
|
||||
```json
|
||||
"dry_run": false,
|
||||
```
|
||||
|
||||
3. Insert your Exchange API key (change them by fake api keys)
|
||||
|
||||
```json
|
||||
"exchange": {
|
||||
"name": "bittrex",
|
||||
@ -160,10 +187,10 @@ you run it in production mode.
|
||||
"secret": "08a9dc6db3d7b53e1acebd9275677f4b0a04f1a5",
|
||||
...
|
||||
}
|
||||
|
||||
```
|
||||
If you have not your Bittrex API key yet,
|
||||
[see our tutorial](https://github.com/freqtrade/freqtrade/blob/develop/docs/pre-requisite.md).
|
||||
If you have not your Bittrex API key yet, [see our tutorial](https://github.com/freqtrade/freqtrade/blob/develop/docs/pre-requisite.md).
|
||||
|
||||
## Next step
|
||||
Now you have configured your config.json, the next step is to
|
||||
[start your bot](https://github.com/freqtrade/freqtrade/blob/develop/docs/bot-usage.md).
|
||||
|
||||
Now you have configured your config.json, the next step is to [start your bot](https://github.com/freqtrade/freqtrade/blob/develop/docs/bot-usage.md).
|
||||
|
298
docs/hyperopt.md
298
docs/hyperopt.md
@ -1,155 +1,114 @@
|
||||
# Hyperopt
|
||||
This page explains how to tune your strategy by finding the optimal
|
||||
parameters with Hyperopt.
|
||||
parameters, a process called hyperparameter optimization. The bot uses several
|
||||
algorithms included in the `scikit-optimize` package to accomplish this. The
|
||||
search will burn all your CPU cores, make your laptop sound like a fighter jet
|
||||
and still take a long time.
|
||||
|
||||
## Table of Contents
|
||||
- [Prepare your Hyperopt](#prepare-hyperopt)
|
||||
- [1. Configure your Guards and Triggers](#1-configure-your-guards-and-triggers)
|
||||
- [2. Update the hyperopt config file](#2-update-the-hyperopt-config-file)
|
||||
- [Advanced Hyperopt notions](#advanced-notions)
|
||||
- [Understand the Guards and Triggers](#understand-the-guards-and-triggers)
|
||||
- [Configure your Guards and Triggers](#configure-your-guards-and-triggers)
|
||||
- [Solving a Mystery](#solving-a-mystery)
|
||||
- [Adding New Indicators](#adding-new-indicators)
|
||||
- [Execute Hyperopt](#execute-hyperopt)
|
||||
- [Understand the hyperopts result](#understand-the-backtesting-result)
|
||||
|
||||
## Prepare Hyperopt
|
||||
Before we start digging in Hyperopt, we recommend you to take a look at
|
||||
your strategy file located into [user_data/strategies/](https://github.com/freqtrade/freqtrade/blob/develop/user_data/strategies/test_strategy.py)
|
||||
## Prepare Hyperopting
|
||||
We recommend you start by taking a look at `hyperopt.py` file located in [freqtrade/optimize](https://github.com/freqtrade/freqtrade/blob/develop/freqtrade/optimize/hyperopt.py)
|
||||
|
||||
### 1. Configure your Guards and Triggers
|
||||
There are two places you need to change in your strategy file to add a
|
||||
new buy strategy for testing:
|
||||
- Inside [populate_buy_trend()](https://github.com/freqtrade/freqtrade/blob/develop/user_data/strategies/test_strategy.py#L278-L294).
|
||||
- Inside [hyperopt_space()](https://github.com/freqtrade/freqtrade/blob/develop/user_data/strategies/test_strategy.py#L244-L297) known as `SPACE`.
|
||||
### Configure your Guards and Triggers
|
||||
There are two places you need to change to add a new buy strategy for testing:
|
||||
- Inside [populate_buy_trend()](https://github.com/freqtrade/freqtrade/blob/develop/freqtrade/optimize/hyperopt.py#L278-L294).
|
||||
- Inside [hyperopt_space()](https://github.com/freqtrade/freqtrade/blob/develop/freqtrade/optimize/hyperopt.py#L218-L229)
|
||||
and the associated methods `indicator_space`, `roi_space`, `stoploss_space`.
|
||||
|
||||
There you have two different type of indicators: 1. `guards` and 2.
|
||||
`triggers`.
|
||||
1. Guards are conditions like "never buy if ADX < 10", or never buy if
|
||||
current price is over EMA10.
|
||||
There you have two different type of indicators: 1. `guards` and 2. `triggers`.
|
||||
1. Guards are conditions like "never buy if ADX < 10", or "never buy if
|
||||
current price is over EMA10".
|
||||
2. Triggers are ones that actually trigger buy in specific moment, like
|
||||
"buy when EMA5 crosses over EMA10" or buy when close price touches lower
|
||||
bollinger band.
|
||||
"buy when EMA5 crosses over EMA10" or "buy when close price touches lower
|
||||
bollinger band".
|
||||
|
||||
HyperOpt will, for each eval round, pick just ONE trigger, and possibly
|
||||
multiple guards. So that the constructed strategy will be something like
|
||||
Hyperoptimization will, for each eval round, pick one trigger and possibly
|
||||
multiple guards. The constructed strategy will be something like
|
||||
"*buy exactly when close price touches lower bollinger band, BUT only if
|
||||
ADX > 10*".
|
||||
|
||||
|
||||
If you have updated the buy strategy, means change the content of
|
||||
If you have updated the buy strategy, ie. changed the contents of
|
||||
`populate_buy_trend()` method you have to update the `guards` and
|
||||
`triggers` hyperopts must used.
|
||||
`triggers` hyperopts must use.
|
||||
|
||||
As for an example if your `populate_buy_trend()` method is:
|
||||
```python
|
||||
def populate_buy_trend(dataframe: DataFrame) -> DataFrame:
|
||||
dataframe.loc[
|
||||
(dataframe['rsi'] < 35) &
|
||||
(dataframe['adx'] > 65),
|
||||
'buy'] = 1
|
||||
## Solving a Mystery
|
||||
|
||||
return dataframe
|
||||
```
|
||||
Let's say you are curious: should you use MACD crossings or lower Bollinger
|
||||
Bands to trigger your buys. And you also wonder should you use RSI or ADX to
|
||||
help with those buy decisions. If you decide to use RSI or ADX, which values
|
||||
should I use for them? So let's use hyperparameter optimization to solve this
|
||||
mystery.
|
||||
|
||||
Your hyperopt file must contain `guards` to find the right value for
|
||||
`(dataframe['adx'] > 65)` & and `(dataframe['plus_di'] > 0.5)`. That
|
||||
means you will need to enable/disable triggers.
|
||||
|
||||
In our case the `SPACE` and `populate_buy_trend` in your strategy file
|
||||
will look like:
|
||||
```python
|
||||
space = {
|
||||
'rsi': hp.choice('rsi', [
|
||||
{'enabled': False},
|
||||
{'enabled': True, 'value': hp.quniform('rsi-value', 20, 40, 1)}
|
||||
]),
|
||||
'adx': hp.choice('adx', [
|
||||
{'enabled': False},
|
||||
{'enabled': True, 'value': hp.quniform('adx-value', 15, 50, 1)}
|
||||
]),
|
||||
'trigger': hp.choice('trigger', [
|
||||
{'type': 'lower_bb'},
|
||||
{'type': 'faststoch10'},
|
||||
{'type': 'ao_cross_zero'},
|
||||
{'type': 'ema5_cross_ema10'},
|
||||
{'type': 'macd_cross_signal'},
|
||||
{'type': 'sar_reversal'},
|
||||
{'type': 'stochf_cross'},
|
||||
{'type': 'ht_sine'},
|
||||
]),
|
||||
}
|
||||
|
||||
...
|
||||
|
||||
def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:
|
||||
conditions = []
|
||||
# GUARDS AND TRENDS
|
||||
if params['adx']['enabled']:
|
||||
conditions.append(dataframe['adx'] > params['adx']['value'])
|
||||
if params['rsi']['enabled']:
|
||||
conditions.append(dataframe['rsi'] < params['rsi']['value'])
|
||||
|
||||
# TRIGGERS
|
||||
triggers = {
|
||||
'lower_bb': dataframe['tema'] <= dataframe['blower'],
|
||||
'faststoch10': (crossed_above(dataframe['fastd'], 10.0)),
|
||||
'ao_cross_zero': (crossed_above(dataframe['ao'], 0.0)),
|
||||
'ema5_cross_ema10': (crossed_above(dataframe['ema5'], dataframe['ema10'])),
|
||||
'macd_cross_signal': (crossed_above(dataframe['macd'], dataframe['macdsignal'])),
|
||||
'sar_reversal': (crossed_above(dataframe['close'], dataframe['sar'])),
|
||||
'stochf_cross': (crossed_above(dataframe['fastk'], dataframe['fastd'])),
|
||||
'ht_sine': (crossed_above(dataframe['htleadsine'], dataframe['htsine'])),
|
||||
}
|
||||
...
|
||||
```
|
||||
|
||||
|
||||
### 2. Update the hyperopt config file
|
||||
Hyperopt is using a dedicated config file. Currently hyperopt
|
||||
cannot use your config file. It is also made on purpose to allow you
|
||||
testing your strategy with different configurations.
|
||||
|
||||
The Hyperopt configuration is located in
|
||||
[user_data/hyperopt_conf.py](https://github.com/freqtrade/freqtrade/blob/develop/user_data/hyperopt_conf.py).
|
||||
|
||||
|
||||
## Advanced notions
|
||||
### Understand the Guards and Triggers
|
||||
When you need to add the new guards and triggers to be hyperopt
|
||||
parameters, you do this by adding them into the [hyperopt_space()](https://github.com/freqtrade/freqtrade/blob/develop/user_data/strategies/test_strategy.py#L244-L297).
|
||||
|
||||
If it's a trigger, you add one line to the 'trigger' choice group and that's it.
|
||||
|
||||
If it's a guard, you will add a line like this:
|
||||
```
|
||||
'rsi': hp.choice('rsi', [
|
||||
{'enabled': False},
|
||||
{'enabled': True, 'value': hp.quniform('rsi-value', 20, 40, 1)}
|
||||
]),
|
||||
```
|
||||
This says, "*one of the guards is RSI, it can have two values, enabled or
|
||||
disabled. If it is enabled, try different values for it between 20 and 40*".
|
||||
|
||||
So, the part of the strategy builder using the above setting looks like
|
||||
this:
|
||||
We will start by defining a search space:
|
||||
|
||||
```
|
||||
if params['rsi']['enabled']:
|
||||
conditions.append(dataframe['rsi'] < params['rsi']['value'])
|
||||
def indicator_space() -> List[Dimension]:
|
||||
"""
|
||||
Define your Hyperopt space for searching strategy parameters
|
||||
"""
|
||||
return [
|
||||
Integer(20, 40, name='adx-value'),
|
||||
Integer(20, 40, name='rsi-value'),
|
||||
Categorical([True, False], name='adx-enabled'),
|
||||
Categorical([True, False], name='rsi-enabled'),
|
||||
Categorical(['bb_lower', 'macd_cross_signal'], name='trigger')
|
||||
]
|
||||
```
|
||||
|
||||
It checks if Hyperopt wants the RSI guard to be enabled for this
|
||||
round `params['rsi']['enabled']` and if it is, then it will add a
|
||||
condition that says RSI must be smaller than the value hyperopt picked
|
||||
for this evaluation, which is given in the `params['rsi']['value']`.
|
||||
Above definition says: I have five parameters I want you to randomly combine
|
||||
to find the best combination. Two of them are integer values (`adx-value`
|
||||
and `rsi-value`) and I want you test in the range of values 20 to 40.
|
||||
Then we have three category variables. First two are either `True` or `False`.
|
||||
We use these to either enable or disable the ADX and RSI guards. The last
|
||||
one we call `trigger` and use it to decide which buy trigger we want to use.
|
||||
|
||||
That's it. Now you can add new parts of strategies to Hyperopt and it
|
||||
will try all the combinations with all different values in the search
|
||||
for best working algo.
|
||||
So let's write the buy strategy using these values:
|
||||
|
||||
```
|
||||
def populate_buy_trend(dataframe: DataFrame) -> DataFrame:
|
||||
conditions = []
|
||||
# GUARDS AND TRENDS
|
||||
if 'adx-enabled' in params and params['adx-enabled']:
|
||||
conditions.append(dataframe['adx'] > params['adx-value'])
|
||||
if 'rsi-enabled' in params and params['rsi-enabled']:
|
||||
conditions.append(dataframe['rsi'] < params['rsi-value'])
|
||||
|
||||
### Add a new Indicators
|
||||
If you want to test an indicator that isn't used by the bot currently,
|
||||
you need to add it to the `populate_indicators()` method in `hyperopt.py`.
|
||||
# TRIGGERS
|
||||
if params['trigger'] == 'bb_lower':
|
||||
conditions.append(dataframe['close'] < dataframe['bb_lowerband'])
|
||||
if params['trigger'] == 'macd_cross_signal':
|
||||
conditions.append(qtpylib.crossed_above(
|
||||
dataframe['macd'], dataframe['macdsignal']
|
||||
))
|
||||
|
||||
dataframe.loc[
|
||||
reduce(lambda x, y: x & y, conditions),
|
||||
'buy'] = 1
|
||||
|
||||
return dataframe
|
||||
|
||||
return populate_buy_trend
|
||||
```
|
||||
|
||||
Hyperopting will now call this `populate_buy_trend` as many times you ask it (`epochs`)
|
||||
with different value combinations. It will then use the given historical data and make
|
||||
buys based on the buy signals generated with the above function and based on the results
|
||||
it will end with telling you which paramter combination produced the best profits.
|
||||
|
||||
The search for best parameters starts with a few random combinations and then uses a
|
||||
regressor algorithm (currently ExtraTreesRegressor) to quickly find a parameter combination
|
||||
that minimizes the value of the objective function `calculate_loss` in `hyperopt.py`.
|
||||
|
||||
The above setup expects to find ADX, RSI and Bollinger Bands in the populated indicators.
|
||||
When you want to test an indicator that isn't used by the bot currently, remember to
|
||||
add it to the `populate_indicators()` method in `hyperopt.py`.
|
||||
|
||||
## Execute Hyperopt
|
||||
Once you have updated your hyperopt configuration you can run it.
|
||||
@ -164,12 +123,12 @@ python3 ./freqtrade/main.py -c config.json hyperopt -e 5000
|
||||
The `-e` flag will set how many evaluations hyperopt will do. We recommend
|
||||
running at least several thousand evaluations.
|
||||
|
||||
### Execute hyperopt with different ticker-data source
|
||||
### Execute Hyperopt with Different Ticker-Data Source
|
||||
If you would like to hyperopt parameters using an alternate ticker data that
|
||||
you have on-disk, use the `--datadir PATH` option. Default hyperopt will
|
||||
use data from directory `user_data/data`.
|
||||
|
||||
### Running hyperopt with smaller testset
|
||||
### Running Hyperopt with Smaller Testset
|
||||
Use the `--timeperiod` argument to change how much of the testset
|
||||
you want to use. The last N ticks/timeframes will be used.
|
||||
Example:
|
||||
@ -178,7 +137,7 @@ Example:
|
||||
python3 ./freqtrade/main.py hyperopt --timeperiod -200
|
||||
```
|
||||
|
||||
### Running hyperopt with smaller search space
|
||||
### Running Hyperopt with Smaller Search Space
|
||||
Use the `--spaces` argument to limit the search space used by hyperopt.
|
||||
Letting Hyperopt optimize everything is a huuuuge search space. Often it
|
||||
might make more sense to start by just searching for initial buy algorithm.
|
||||
@ -193,87 +152,44 @@ Legal values are:
|
||||
- `stoploss`: search for the best stoploss value
|
||||
- space-separated list of any of the above values for example `--spaces roi stoploss`
|
||||
|
||||
## Understand the hyperopts result
|
||||
Once Hyperopt is completed you can use the result to adding new buy
|
||||
signal. Given following result from hyperopt:
|
||||
```
|
||||
Best parameters:
|
||||
{
|
||||
"adx": {
|
||||
"enabled": true,
|
||||
"value": 15.0
|
||||
},
|
||||
"fastd": {
|
||||
"enabled": true,
|
||||
"value": 40.0
|
||||
},
|
||||
"green_candle": {
|
||||
"enabled": true
|
||||
},
|
||||
"mfi": {
|
||||
"enabled": false
|
||||
},
|
||||
"over_sar": {
|
||||
"enabled": false
|
||||
},
|
||||
"rsi": {
|
||||
"enabled": true,
|
||||
"value": 37.0
|
||||
},
|
||||
"trigger": {
|
||||
"type": "lower_bb"
|
||||
},
|
||||
"uptrend_long_ema": {
|
||||
"enabled": true
|
||||
},
|
||||
"uptrend_short_ema": {
|
||||
"enabled": false
|
||||
},
|
||||
"uptrend_sma": {
|
||||
"enabled": false
|
||||
}
|
||||
}
|
||||
## Understand the Hyperopts Result
|
||||
Once Hyperopt is completed you can use the result to create a new strategy.
|
||||
Given the following result from hyperopt:
|
||||
|
||||
Best Result:
|
||||
2197 trades. Avg profit 1.84%. Total profit 0.79367541 BTC. Avg duration 241.0 mins.
|
||||
```
|
||||
Best result:
|
||||
135 trades. Avg profit 0.57%. Total profit 0.03871918 BTC (0.7722Σ%). Avg duration 180.4 mins.
|
||||
with values:
|
||||
{'adx-value': 44, 'rsi-value': 29, 'adx-enabled': False, 'rsi-enabled': True, 'trigger': 'bb_lower'}
|
||||
```
|
||||
|
||||
You should understand this result like:
|
||||
- You should **consider** the guard "adx" (`"adx"` is `"enabled": true`)
|
||||
and the best value is `15.0` (`"value": 15.0,`)
|
||||
- You should **consider** the guard "fastd" (`"fastd"` is `"enabled":
|
||||
true`) and the best value is `40.0` (`"value": 40.0,`)
|
||||
- You should **consider** to enable the guard "green_candle"
|
||||
(`"green_candle"` is `"enabled": true`) but this guards as no
|
||||
customizable value.
|
||||
- You should **ignore** the guard "mfi" (`"mfi"` is `"enabled": false`)
|
||||
- and so on...
|
||||
- The buy trigger that worked best was `bb_lower`.
|
||||
- You should not use ADX because `adx-enabled: False`)
|
||||
- You should **consider** using the RSI indicator (`rsi-enabled: True` and the best value is `29.0` (`rsi-value: 29.0`)
|
||||
|
||||
You have to look inside your strategy file into `buy_strategy_generator()`
|
||||
method, what those values match to.
|
||||
|
||||
So for example you had `adx:` with the `value: 15.0` so we would look
|
||||
at `adx`-block, that translates to the following code block:
|
||||
So for example you had `rsi-value: 29.0` so we would look
|
||||
at `rsi`-block, that translates to the following code block:
|
||||
```
|
||||
(dataframe['adx'] > 15.0)
|
||||
(dataframe['rsi'] < 29.0)
|
||||
```
|
||||
|
||||
Translating your whole hyperopt result to as the new buy-signal
|
||||
would be the following:
|
||||
Translating your whole hyperopt result as the new buy-signal
|
||||
would then look like:
|
||||
```
|
||||
def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:
|
||||
dataframe.loc[
|
||||
(
|
||||
(dataframe['adx'] > 15.0) & # adx-value
|
||||
(dataframe['fastd'] < 40.0) & # fastd-value
|
||||
(dataframe['close'] > dataframe['open']) & # green_candle
|
||||
(dataframe['rsi'] < 37.0) & # rsi-value
|
||||
(dataframe['ema50'] > dataframe['ema100']) # uptrend_long_ema
|
||||
(dataframe['rsi'] < 29.0) & # rsi-value
|
||||
dataframe['close'] < dataframe['bb_lowerband'] # trigger
|
||||
),
|
||||
'buy'] = 1
|
||||
return dataframe
|
||||
```
|
||||
|
||||
## Next step
|
||||
## Next Step
|
||||
Now you have a perfect bot and want to control it from Telegram. Your
|
||||
next step is to learn the [Telegram usage](https://github.com/freqtrade/freqtrade/blob/develop/docs/telegram-usage.md).
|
||||
|
@ -1,4 +1,5 @@
|
||||
# freqtrade documentation
|
||||
|
||||
Welcome to freqtrade documentation. Please feel free to contribute to
|
||||
this documentation if you see it became outdated by sending us a
|
||||
Pull-request. Do not hesitate to reach us on
|
||||
@ -6,6 +7,7 @@ Pull-request. Do not hesitate to reach us on
|
||||
if you do not find the answer to your questions.
|
||||
|
||||
## Table of Contents
|
||||
|
||||
- [Pre-requisite](https://github.com/freqtrade/freqtrade/blob/develop/docs/pre-requisite.md)
|
||||
- [Setup your Bittrex account](https://github.com/freqtrade/freqtrade/blob/develop/docs/pre-requisite.md#setup-your-bittrex-account)
|
||||
- [Setup your Telegram bot](https://github.com/freqtrade/freqtrade/blob/develop/docs/pre-requisite.md#setup-your-telegram-bot)
|
||||
|
48
docs/stoploss.md
Normal file
48
docs/stoploss.md
Normal file
@ -0,0 +1,48 @@
|
||||
# Stop Loss support
|
||||
|
||||
At this stage the bot contains the following stoploss support modes:
|
||||
|
||||
1. static stop loss, defined in either the strategy or configuration
|
||||
2. trailing stop loss, defined in the configuration
|
||||
3. trailing stop loss, custom positive loss, defined in configuration
|
||||
|
||||
## Static Stop Loss
|
||||
|
||||
This is very simple, basically you define a stop loss of x in your strategy file or alternative in the configuration, which
|
||||
will overwrite the strategy definition. This will basically try to sell your asset, the second the loss exceeds the defined loss.
|
||||
|
||||
## Trail Stop Loss
|
||||
|
||||
The initial value for this stop loss, is defined in your strategy or configuration. Just as you would define your Stop Loss normally.
|
||||
To enable this Feauture all you have to do is to define the configuration element:
|
||||
|
||||
``` json
|
||||
"trailing_stop" : True
|
||||
```
|
||||
|
||||
This will now activate an algorithm, which automatically moves your stop loss up every time the price of your asset increases.
|
||||
|
||||
For example, simplified math,
|
||||
|
||||
* you buy an asset at a price of 100$
|
||||
* your stop loss is defined at 2%
|
||||
* which means your stop loss, gets triggered once your asset dropped below 98$
|
||||
* assuming your asset now increases to 102$
|
||||
* your stop loss, will now be 2% of 102$ or 99.96$
|
||||
* now your asset drops in value to 101$, your stop loss, will still be 99.96$
|
||||
|
||||
basically what this means is that your stop loss will be adjusted to be always be 2% of the highest observed price
|
||||
|
||||
### Custom positive loss
|
||||
|
||||
Due to demand, it is possible to have a default stop loss, when you are in the red with your buy, but once your buy turns positive,
|
||||
the system will utilize a new stop loss, which can be a different value. For example your default stop loss is 5%, but once you are in the
|
||||
black, it will be changed to be only a 1% stop loss
|
||||
|
||||
This can be configured in the main configuration file and requires `"trailing_stop": true` to be set to true.
|
||||
|
||||
``` json
|
||||
"trailing_stop_positive": 0.01,
|
||||
```
|
||||
|
||||
The 0.01 would translate to a 1% stop loss, once you hit profit.
|
@ -1,5 +1,5 @@
|
||||
""" FreqTrade bot """
|
||||
__version__ = '0.17.0'
|
||||
__version__ = '0.17.1'
|
||||
|
||||
|
||||
class DependencyException(BaseException):
|
||||
|
@ -7,8 +7,8 @@ To launch Freqtrade as a module
|
||||
"""
|
||||
|
||||
import sys
|
||||
from freqtrade import main
|
||||
|
||||
from freqtrade import main
|
||||
|
||||
if __name__ == '__main__':
|
||||
main.set_loggers()
|
||||
|
@ -12,8 +12,7 @@ from pandas import DataFrame, to_datetime
|
||||
from freqtrade import constants
|
||||
from freqtrade.exchange import Exchange
|
||||
from freqtrade.persistence import Trade
|
||||
from freqtrade.strategy.resolver import StrategyResolver, IStrategy
|
||||
|
||||
from freqtrade.strategy.resolver import IStrategy, StrategyResolver
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@ -180,7 +179,7 @@ class Analyze(object):
|
||||
:return: True if trade should be sold, False otherwise
|
||||
"""
|
||||
current_profit = trade.calc_profit_percent(rate)
|
||||
if self.stop_loss_reached(current_profit=current_profit):
|
||||
if self.stop_loss_reached(current_rate=rate, trade=trade, current_time=date):
|
||||
return True
|
||||
|
||||
experimental = self.config.get('experimental', {})
|
||||
@ -204,12 +203,46 @@ class Analyze(object):
|
||||
|
||||
return False
|
||||
|
||||
def stop_loss_reached(self, current_profit: float) -> bool:
|
||||
"""Based on current profit of the trade and configured stoploss, decides to sell or not"""
|
||||
def stop_loss_reached(self, current_rate: float, trade: Trade, current_time: datetime) -> bool:
|
||||
"""
|
||||
Based on current profit of the trade and configured (trailing) stoploss,
|
||||
decides to sell or not
|
||||
"""
|
||||
|
||||
current_profit = trade.calc_profit_percent(current_rate)
|
||||
trailing_stop = self.config.get('trailing_stop', False)
|
||||
|
||||
trade.adjust_stop_loss(trade.open_rate, self.strategy.stoploss, initial=True)
|
||||
|
||||
# evaluate if the stoploss was hit
|
||||
if self.strategy.stoploss is not None and trade.stop_loss >= current_rate:
|
||||
|
||||
if trailing_stop:
|
||||
logger.debug(
|
||||
f"HIT STOP: current price at {current_rate:.6f}, "
|
||||
f"stop loss is {trade.stop_loss:.6f}, "
|
||||
f"initial stop loss was at {trade.initial_stop_loss:.6f}, "
|
||||
f"trade opened at {trade.open_rate:.6f}")
|
||||
logger.debug(f"trailing stop saved {trade.stop_loss - trade.initial_stop_loss:.6f}")
|
||||
|
||||
if self.strategy.stoploss is not None and current_profit < self.strategy.stoploss:
|
||||
logger.debug('Stop loss hit.')
|
||||
return True
|
||||
|
||||
# update the stop loss afterwards, after all by definition it's supposed to be hanging
|
||||
if trailing_stop:
|
||||
|
||||
# check if we have a special stop loss for positive condition
|
||||
# and if profit is positive
|
||||
stop_loss_value = self.strategy.stoploss
|
||||
if 'trailing_stop_positive' in self.config and current_profit > 0:
|
||||
|
||||
# Ignore mypy error check in configuration that this is a float
|
||||
stop_loss_value = self.config.get('trailing_stop_positive') # type: ignore
|
||||
logger.debug(f"using positive stop loss mode: {stop_loss_value} "
|
||||
f"since we have profit {current_profit}")
|
||||
|
||||
trade.adjust_stop_loss(current_rate, stop_loss_value)
|
||||
|
||||
return False
|
||||
|
||||
def min_roi_reached(self, trade: Trade, current_profit: float, current_time: datetime) -> bool:
|
||||
|
@ -2,12 +2,13 @@
|
||||
This module contains the argument manager class
|
||||
"""
|
||||
|
||||
import os
|
||||
import argparse
|
||||
import logging
|
||||
import os
|
||||
import re
|
||||
from typing import List, NamedTuple, Optional
|
||||
|
||||
import arrow
|
||||
from typing import List, Optional, NamedTuple
|
||||
|
||||
from freqtrade import __version__, constants
|
||||
|
||||
@ -334,3 +335,10 @@ class Arguments(object):
|
||||
nargs='+',
|
||||
dest='timeframes',
|
||||
)
|
||||
|
||||
self.parser.add_argument(
|
||||
'--erase',
|
||||
help='Clean all existing data for the selected exchange/pairs/timeframes',
|
||||
dest='erase',
|
||||
action='store_true'
|
||||
)
|
||||
|
@ -1,18 +1,18 @@
|
||||
"""
|
||||
This module contains the configuration class
|
||||
"""
|
||||
import os
|
||||
import json
|
||||
import logging
|
||||
import os
|
||||
from argparse import Namespace
|
||||
from typing import Optional, Dict, Any
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
import ccxt
|
||||
from jsonschema import Draft4Validator, validate
|
||||
from jsonschema.exceptions import ValidationError, best_match
|
||||
import ccxt
|
||||
|
||||
from freqtrade import OperationalException, constants
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@ -62,8 +62,8 @@ class Configuration(object):
|
||||
conf = json.load(file)
|
||||
except FileNotFoundError:
|
||||
raise OperationalException(
|
||||
'Config file "{}" not found!'
|
||||
' Please create a config file or check whether it exists.'.format(path))
|
||||
f'Config file "{path}" not found!'
|
||||
' Please create a config file or check whether it exists.')
|
||||
|
||||
if 'internals' not in conf:
|
||||
conf['internals'] = {}
|
||||
@ -109,7 +109,7 @@ class Configuration(object):
|
||||
config['db_url'] = constants.DEFAULT_DB_PROD_URL
|
||||
logger.info('Dry run is disabled')
|
||||
|
||||
logger.info('Using DB: "{}"'.format(config['db_url']))
|
||||
logger.info(f'Using DB: "{config["db_url"]}"')
|
||||
|
||||
# Check if the exchange set by the user is supported
|
||||
self.check_exchange(config)
|
||||
|
@ -61,7 +61,15 @@ CONF_SCHEMA = {
|
||||
'minProperties': 1
|
||||
},
|
||||
'stoploss': {'type': 'number', 'maximum': 0, 'exclusiveMaximum': True},
|
||||
'unfilledtimeout': {'type': 'integer', 'minimum': 0},
|
||||
'trailing_stop': {'type': 'boolean'},
|
||||
'trailing_stop_positive': {'type': 'number', 'minimum': 0, 'maximum': 1},
|
||||
'unfilledtimeout': {
|
||||
'type': 'object',
|
||||
'properties': {
|
||||
'buy': {'type': 'number', 'minimum': 3},
|
||||
'sell': {'type': 'number', 'minimum': 10}
|
||||
}
|
||||
},
|
||||
'bid_strategy': {
|
||||
'type': 'object',
|
||||
'properties': {
|
||||
|
@ -7,10 +7,12 @@ import logging
|
||||
import time
|
||||
from typing import Dict, List
|
||||
|
||||
from coinmarketcap import Market
|
||||
from requests.exceptions import RequestException
|
||||
from coinmarketcap import Market
|
||||
|
||||
from freqtrade.constants import SUPPORTED_FIAT
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
|
@ -7,16 +7,14 @@ import logging
|
||||
import time
|
||||
import traceback
|
||||
from datetime import datetime
|
||||
from typing import Dict, List, Optional, Any, Callable
|
||||
from typing import Any, Callable, Dict, List, Optional
|
||||
|
||||
import arrow
|
||||
import requests
|
||||
from cachetools import TTLCache, cached
|
||||
|
||||
from freqtrade import (
|
||||
DependencyException, OperationalException, TemporaryError, persistence, __version__,
|
||||
)
|
||||
from freqtrade import constants
|
||||
from freqtrade import (DependencyException, OperationalException,
|
||||
TemporaryError, __version__, constants, persistence)
|
||||
from freqtrade.analyze import Analyze
|
||||
from freqtrade.exchange import Exchange
|
||||
from freqtrade.fiat_convert import CryptoToFiatConverter
|
||||
@ -160,7 +158,7 @@ class FreqtradeBot(object):
|
||||
|
||||
if 'unfilledtimeout' in self.config:
|
||||
# Check and handle any timed out open orders
|
||||
self.check_handle_timedout(self.config['unfilledtimeout'])
|
||||
self.check_handle_timedout()
|
||||
Trade.session.flush()
|
||||
|
||||
except TemporaryError as error:
|
||||
@ -277,11 +275,14 @@ class FreqtradeBot(object):
|
||||
return None
|
||||
|
||||
min_stake_amounts = []
|
||||
if 'cost' in market['limits'] and 'min' in market['limits']['cost']:
|
||||
min_stake_amounts.append(market['limits']['cost']['min'])
|
||||
limits = market['limits']
|
||||
if ('cost' in limits and 'min' in limits['cost']
|
||||
and limits['cost']['min'] is not None):
|
||||
min_stake_amounts.append(limits['cost']['min'])
|
||||
|
||||
if 'amount' in market['limits'] and 'min' in market['limits']['amount']:
|
||||
min_stake_amounts.append(market['limits']['amount']['min'] * price)
|
||||
if ('amount' in limits and 'min' in limits['amount']
|
||||
and limits['amount']['min'] is not None):
|
||||
min_stake_amounts.append(limits['amount']['min'] * price)
|
||||
|
||||
if not min_stake_amounts:
|
||||
return None
|
||||
@ -492,13 +493,16 @@ with limit `{buy_limit:.8f} ({stake_amount:.6f} \
|
||||
logger.info('Found no sell signals for whitelisted currencies. Trying again..')
|
||||
return False
|
||||
|
||||
def check_handle_timedout(self, timeoutvalue: int) -> None:
|
||||
def check_handle_timedout(self) -> None:
|
||||
"""
|
||||
Check if any orders are timed out and cancel if neccessary
|
||||
:param timeoutvalue: Number of minutes until order is considered timed out
|
||||
:return: None
|
||||
"""
|
||||
timeoutthreashold = arrow.utcnow().shift(minutes=-timeoutvalue).datetime
|
||||
buy_timeout = self.config['unfilledtimeout']['buy']
|
||||
sell_timeout = self.config['unfilledtimeout']['sell']
|
||||
buy_timeoutthreashold = arrow.utcnow().shift(minutes=-buy_timeout).datetime
|
||||
sell_timeoutthreashold = arrow.utcnow().shift(minutes=-sell_timeout).datetime
|
||||
|
||||
for trade in Trade.query.filter(Trade.open_order_id.isnot(None)).all():
|
||||
try:
|
||||
@ -521,10 +525,12 @@ with limit `{buy_limit:.8f} ({stake_amount:.6f} \
|
||||
if int(order['remaining']) == 0:
|
||||
continue
|
||||
|
||||
if order['side'] == 'buy' and ordertime < timeoutthreashold:
|
||||
self.handle_timedout_limit_buy(trade, order)
|
||||
elif order['side'] == 'sell' and ordertime < timeoutthreashold:
|
||||
self.handle_timedout_limit_sell(trade, order)
|
||||
# Check if trade is still actually open
|
||||
if order['status'] == 'open':
|
||||
if order['side'] == 'buy' and ordertime < buy_timeoutthreashold:
|
||||
self.handle_timedout_limit_buy(trade, order)
|
||||
elif order['side'] == 'sell' and ordertime < sell_timeoutthreashold:
|
||||
self.handle_timedout_limit_sell(trade, order)
|
||||
|
||||
# FIX: 20180110, why is cancel.order unconditionally here, whereas
|
||||
# it is conditionally called in the
|
||||
@ -620,12 +626,8 @@ with limit `{buy_limit:.8f} ({stake_amount:.6f} \
|
||||
# Because telegram._forcesell does not have the configuration
|
||||
# Ignore the FIAT value and does not show the stake_currency as well
|
||||
else:
|
||||
message += '` ({gain}: {profit_percent:.2f}%, {profit_coin:.8f})`'.format(
|
||||
gain="profit" if fmt_exp_profit > 0 else "loss",
|
||||
profit_percent=fmt_exp_profit,
|
||||
profit_coin=profit_trade
|
||||
)
|
||||
|
||||
gain = "profit" if fmt_exp_profit > 0 else "loss"
|
||||
message += f'` ({gain}: {fmt_exp_profit:.2f}%, {profit_trade:.8f})`'
|
||||
# Send the message
|
||||
self.rpc.send_msg(message)
|
||||
Trade.session.flush()
|
||||
|
@ -1,4 +1,4 @@
|
||||
from math import exp, pi, sqrt, cos
|
||||
from math import cos, exp, pi, sqrt
|
||||
|
||||
import numpy as np
|
||||
import talib as ta
|
||||
|
@ -74,10 +74,7 @@ def reconfigure(freqtrade: FreqtradeBot, args: Namespace) -> FreqtradeBot:
|
||||
# Create new instance
|
||||
freqtrade = FreqtradeBot(Configuration(args).get_config())
|
||||
freqtrade.rpc.send_msg(
|
||||
'*Status:* `Config reloaded ...`'.format(
|
||||
freqtrade.state.name.lower()
|
||||
)
|
||||
)
|
||||
'*Status:* `Config reloaded {freqtrade.state.name.lower()}...`')
|
||||
return freqtrade
|
||||
|
||||
|
||||
|
@ -2,10 +2,10 @@
|
||||
Various tool function for Freqtrade and scripts
|
||||
"""
|
||||
|
||||
import gzip
|
||||
import json
|
||||
import logging
|
||||
import re
|
||||
import gzip
|
||||
from datetime import datetime
|
||||
from typing import Dict
|
||||
|
||||
|
@ -54,11 +54,8 @@ def load_tickerdata_file(
|
||||
:return dict OR empty if unsuccesful
|
||||
"""
|
||||
path = make_testdata_path(datadir)
|
||||
pair_file_string = pair.replace('/', '_')
|
||||
file = os.path.join(path, '{pair}-{ticker_interval}.json'.format(
|
||||
pair=pair_file_string,
|
||||
ticker_interval=ticker_interval,
|
||||
))
|
||||
pair_s = pair.replace('/', '_')
|
||||
file = os.path.join(path, f'{pair_s}-{ticker_interval}.json')
|
||||
gzipfile = file + '.gz'
|
||||
|
||||
# If the file does not exist we download it when None is returned.
|
||||
|
@ -7,18 +7,18 @@ import logging
|
||||
import operator
|
||||
from argparse import Namespace
|
||||
from datetime import datetime
|
||||
from typing import Dict, Tuple, Any, List, Optional, NamedTuple
|
||||
from typing import Any, Dict, List, NamedTuple, Optional, Tuple
|
||||
|
||||
import arrow
|
||||
from pandas import DataFrame
|
||||
from tabulate import tabulate
|
||||
|
||||
import freqtrade.optimize as optimize
|
||||
from freqtrade import constants, DependencyException
|
||||
from freqtrade.exchange import Exchange
|
||||
from freqtrade import DependencyException, constants
|
||||
from freqtrade.analyze import Analyze
|
||||
from freqtrade.arguments import Arguments
|
||||
from freqtrade.configuration import Configuration
|
||||
from freqtrade.exchange import Exchange
|
||||
from freqtrade.misc import file_dump_json
|
||||
from freqtrade.persistence import Trade
|
||||
|
||||
@ -38,6 +38,8 @@ class BacktestResult(NamedTuple):
|
||||
close_index: int
|
||||
trade_duration: float
|
||||
open_at_end: bool
|
||||
open_rate: float
|
||||
close_rate: float
|
||||
|
||||
|
||||
class Backtesting(object):
|
||||
@ -116,11 +118,10 @@ class Backtesting(object):
|
||||
|
||||
def _store_backtest_result(self, recordfilename: Optional[str], results: DataFrame) -> None:
|
||||
|
||||
records = [(trade_entry.pair, trade_entry.profit_percent,
|
||||
trade_entry.open_time.timestamp(),
|
||||
trade_entry.close_time.timestamp(),
|
||||
trade_entry.open_index - 1, trade_entry.trade_duration)
|
||||
for index, trade_entry in results.iterrows()]
|
||||
records = [(t.pair, t.profit_percent, t.open_time.timestamp(),
|
||||
t.close_time.timestamp(), t.open_index - 1, t.trade_duration,
|
||||
t.open_rate, t.close_rate, t.open_at_end)
|
||||
for index, t in results.iterrows()]
|
||||
|
||||
if records:
|
||||
logger.info('Dumping backtest results to %s', recordfilename)
|
||||
@ -159,7 +160,9 @@ class Backtesting(object):
|
||||
trade_duration=(sell_row.date - buy_row.date).seconds // 60,
|
||||
open_index=buy_row.Index,
|
||||
close_index=sell_row.Index,
|
||||
open_at_end=False
|
||||
open_at_end=False,
|
||||
open_rate=buy_row.close,
|
||||
close_rate=sell_row.close
|
||||
)
|
||||
if partial_ticker:
|
||||
# no sell condition found - trade stil open at end of backtest period
|
||||
@ -172,7 +175,9 @@ class Backtesting(object):
|
||||
trade_duration=(sell_row.date - buy_row.date).seconds // 60,
|
||||
open_index=buy_row.Index,
|
||||
close_index=sell_row.Index,
|
||||
open_at_end=True
|
||||
open_at_end=True,
|
||||
open_rate=buy_row.close,
|
||||
close_rate=sell_row.close
|
||||
)
|
||||
logger.debug('Force_selling still open trade %s with %s perc - %s', btr.pair,
|
||||
btr.profit_percent, btr.profit_abs)
|
||||
|
@ -4,22 +4,21 @@
|
||||
This module contains the hyperopt logic
|
||||
"""
|
||||
|
||||
import json
|
||||
import logging
|
||||
import multiprocessing
|
||||
import os
|
||||
import pickle
|
||||
import signal
|
||||
import sys
|
||||
from argparse import Namespace
|
||||
from functools import reduce
|
||||
from math import exp
|
||||
from operator import itemgetter
|
||||
from typing import Dict, Any, Callable, Optional
|
||||
from typing import Any, Callable, Dict, List
|
||||
|
||||
import numpy
|
||||
import talib.abstract as ta
|
||||
from hyperopt import STATUS_FAIL, STATUS_OK, Trials, fmin, hp, space_eval, tpe
|
||||
from pandas import DataFrame
|
||||
from sklearn.externals.joblib import Parallel, delayed, dump, load
|
||||
from skopt import Optimizer
|
||||
from skopt.space import Categorical, Dimension, Integer, Real
|
||||
|
||||
import freqtrade.vendor.qtpylib.indicators as qtpylib
|
||||
from freqtrade.arguments import Arguments
|
||||
@ -29,6 +28,9 @@ from freqtrade.optimize.backtesting import Backtesting
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
MAX_LOSS = 100000 # just a big enough number to be bad result in loss optimization
|
||||
TICKERDATA_PICKLE = os.path.join('user_data', 'hyperopt_tickerdata.pkl')
|
||||
|
||||
|
||||
class Hyperopt(Backtesting):
|
||||
"""
|
||||
@ -44,7 +46,6 @@ class Hyperopt(Backtesting):
|
||||
# to the number of days
|
||||
self.target_trades = 600
|
||||
self.total_tries = config.get('epochs', 0)
|
||||
self.current_tries = 0
|
||||
self.current_best_loss = 100
|
||||
|
||||
# max average trade duration in minutes
|
||||
@ -56,130 +57,38 @@ class Hyperopt(Backtesting):
|
||||
# check that the reported Σ% values do not exceed this!
|
||||
self.expected_max_profit = 3.0
|
||||
|
||||
# Configuration and data used by hyperopt
|
||||
self.processed: Optional[Dict[str, Any]] = None
|
||||
# Previous evaluations
|
||||
self.trials_file = os.path.join('user_data', 'hyperopt_results.pickle')
|
||||
self.trials: List = []
|
||||
|
||||
# Hyperopt Trials
|
||||
self.trials_file = os.path.join('user_data', 'hyperopt_trials.pickle')
|
||||
self.trials = Trials()
|
||||
def get_args(self, params):
|
||||
dimensions = self.hyperopt_space()
|
||||
# Ensure the number of dimensions match
|
||||
# the number of parameters in the list x.
|
||||
if len(params) != len(dimensions):
|
||||
raise ValueError('Mismatch in number of search-space dimensions. '
|
||||
f'len(dimensions)=={len(dimensions)} and len(x)=={len(params)}')
|
||||
|
||||
# Create a dict where the keys are the names of the dimensions
|
||||
# and the values are taken from the list of parameters x.
|
||||
arg_dict = {dim.name: value for dim, value in zip(dimensions, params)}
|
||||
return arg_dict
|
||||
|
||||
@staticmethod
|
||||
def populate_indicators(dataframe: DataFrame) -> DataFrame:
|
||||
"""
|
||||
Adds several different TA indicators to the given DataFrame
|
||||
"""
|
||||
dataframe['adx'] = ta.ADX(dataframe)
|
||||
dataframe['ao'] = qtpylib.awesome_oscillator(dataframe)
|
||||
dataframe['cci'] = ta.CCI(dataframe)
|
||||
macd = ta.MACD(dataframe)
|
||||
dataframe['macd'] = macd['macd']
|
||||
dataframe['macdsignal'] = macd['macdsignal']
|
||||
dataframe['macdhist'] = macd['macdhist']
|
||||
dataframe['mfi'] = ta.MFI(dataframe)
|
||||
dataframe['minus_dm'] = ta.MINUS_DM(dataframe)
|
||||
dataframe['minus_di'] = ta.MINUS_DI(dataframe)
|
||||
dataframe['plus_dm'] = ta.PLUS_DM(dataframe)
|
||||
dataframe['plus_di'] = ta.PLUS_DI(dataframe)
|
||||
dataframe['roc'] = ta.ROC(dataframe)
|
||||
dataframe['rsi'] = ta.RSI(dataframe)
|
||||
# Inverse Fisher transform on RSI, values [-1.0, 1.0] (https://goo.gl/2JGGoy)
|
||||
rsi = 0.1 * (dataframe['rsi'] - 50)
|
||||
dataframe['fisher_rsi'] = (numpy.exp(2 * rsi) - 1) / (numpy.exp(2 * rsi) + 1)
|
||||
# Inverse Fisher transform on RSI normalized, value [0.0, 100.0] (https://goo.gl/2JGGoy)
|
||||
dataframe['fisher_rsi_norma'] = 50 * (dataframe['fisher_rsi'] + 1)
|
||||
# Stoch
|
||||
stoch = ta.STOCH(dataframe)
|
||||
dataframe['slowd'] = stoch['slowd']
|
||||
dataframe['slowk'] = stoch['slowk']
|
||||
# Stoch fast
|
||||
stoch_fast = ta.STOCHF(dataframe)
|
||||
dataframe['fastd'] = stoch_fast['fastd']
|
||||
dataframe['fastk'] = stoch_fast['fastk']
|
||||
# Stoch RSI
|
||||
stoch_rsi = ta.STOCHRSI(dataframe)
|
||||
dataframe['fastd_rsi'] = stoch_rsi['fastd']
|
||||
dataframe['fastk_rsi'] = stoch_rsi['fastk']
|
||||
dataframe['minus_di'] = ta.MINUS_DI(dataframe)
|
||||
# Bollinger bands
|
||||
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
|
||||
dataframe['bb_lowerband'] = bollinger['lower']
|
||||
dataframe['bb_middleband'] = bollinger['mid']
|
||||
dataframe['bb_upperband'] = bollinger['upper']
|
||||
# EMA - Exponential Moving Average
|
||||
dataframe['ema3'] = ta.EMA(dataframe, timeperiod=3)
|
||||
dataframe['ema5'] = ta.EMA(dataframe, timeperiod=5)
|
||||
dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10)
|
||||
dataframe['ema50'] = ta.EMA(dataframe, timeperiod=50)
|
||||
dataframe['ema100'] = ta.EMA(dataframe, timeperiod=100)
|
||||
# SAR Parabolic
|
||||
dataframe['sar'] = ta.SAR(dataframe)
|
||||
# SMA - Simple Moving Average
|
||||
dataframe['sma'] = ta.SMA(dataframe, timeperiod=40)
|
||||
# TEMA - Triple Exponential Moving Average
|
||||
dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9)
|
||||
# Hilbert Transform Indicator - SineWave
|
||||
hilbert = ta.HT_SINE(dataframe)
|
||||
dataframe['htsine'] = hilbert['sine']
|
||||
dataframe['htleadsine'] = hilbert['leadsine']
|
||||
|
||||
# Pattern Recognition - Bullish candlestick patterns
|
||||
# ------------------------------------
|
||||
"""
|
||||
# Hammer: values [0, 100]
|
||||
dataframe['CDLHAMMER'] = ta.CDLHAMMER(dataframe)
|
||||
# Inverted Hammer: values [0, 100]
|
||||
dataframe['CDLINVERTEDHAMMER'] = ta.CDLINVERTEDHAMMER(dataframe)
|
||||
# Dragonfly Doji: values [0, 100]
|
||||
dataframe['CDLDRAGONFLYDOJI'] = ta.CDLDRAGONFLYDOJI(dataframe)
|
||||
# Piercing Line: values [0, 100]
|
||||
dataframe['CDLPIERCING'] = ta.CDLPIERCING(dataframe) # values [0, 100]
|
||||
# Morningstar: values [0, 100]
|
||||
dataframe['CDLMORNINGSTAR'] = ta.CDLMORNINGSTAR(dataframe) # values [0, 100]
|
||||
# Three White Soldiers: values [0, 100]
|
||||
dataframe['CDL3WHITESOLDIERS'] = ta.CDL3WHITESOLDIERS(dataframe) # values [0, 100]
|
||||
"""
|
||||
|
||||
# Pattern Recognition - Bearish candlestick patterns
|
||||
# ------------------------------------
|
||||
"""
|
||||
# Hanging Man: values [0, 100]
|
||||
dataframe['CDLHANGINGMAN'] = ta.CDLHANGINGMAN(dataframe)
|
||||
# Shooting Star: values [0, 100]
|
||||
dataframe['CDLSHOOTINGSTAR'] = ta.CDLSHOOTINGSTAR(dataframe)
|
||||
# Gravestone Doji: values [0, 100]
|
||||
dataframe['CDLGRAVESTONEDOJI'] = ta.CDLGRAVESTONEDOJI(dataframe)
|
||||
# Dark Cloud Cover: values [0, 100]
|
||||
dataframe['CDLDARKCLOUDCOVER'] = ta.CDLDARKCLOUDCOVER(dataframe)
|
||||
# Evening Doji Star: values [0, 100]
|
||||
dataframe['CDLEVENINGDOJISTAR'] = ta.CDLEVENINGDOJISTAR(dataframe)
|
||||
# Evening Star: values [0, 100]
|
||||
dataframe['CDLEVENINGSTAR'] = ta.CDLEVENINGSTAR(dataframe)
|
||||
"""
|
||||
|
||||
# Pattern Recognition - Bullish/Bearish candlestick patterns
|
||||
# ------------------------------------
|
||||
"""
|
||||
# Three Line Strike: values [0, -100, 100]
|
||||
dataframe['CDL3LINESTRIKE'] = ta.CDL3LINESTRIKE(dataframe)
|
||||
# Spinning Top: values [0, -100, 100]
|
||||
dataframe['CDLSPINNINGTOP'] = ta.CDLSPINNINGTOP(dataframe) # values [0, -100, 100]
|
||||
# Engulfing: values [0, -100, 100]
|
||||
dataframe['CDLENGULFING'] = ta.CDLENGULFING(dataframe) # values [0, -100, 100]
|
||||
# Harami: values [0, -100, 100]
|
||||
dataframe['CDLHARAMI'] = ta.CDLHARAMI(dataframe) # values [0, -100, 100]
|
||||
# Three Outside Up/Down: values [0, -100, 100]
|
||||
dataframe['CDL3OUTSIDE'] = ta.CDL3OUTSIDE(dataframe) # values [0, -100, 100]
|
||||
# Three Inside Up/Down: values [0, -100, 100]
|
||||
dataframe['CDL3INSIDE'] = ta.CDL3INSIDE(dataframe) # values [0, -100, 100]
|
||||
"""
|
||||
|
||||
# Chart type
|
||||
# ------------------------------------
|
||||
# Heikinashi stategy
|
||||
heikinashi = qtpylib.heikinashi(dataframe)
|
||||
dataframe['ha_open'] = heikinashi['open']
|
||||
dataframe['ha_close'] = heikinashi['close']
|
||||
dataframe['ha_high'] = heikinashi['high']
|
||||
dataframe['ha_low'] = heikinashi['low']
|
||||
|
||||
return dataframe
|
||||
|
||||
@ -187,15 +96,16 @@ class Hyperopt(Backtesting):
|
||||
"""
|
||||
Save hyperopt trials to file
|
||||
"""
|
||||
logger.info('Saving Trials to \'%s\'', self.trials_file)
|
||||
pickle.dump(self.trials, open(self.trials_file, 'wb'))
|
||||
if self.trials:
|
||||
logger.info('Saving %d evaluations to \'%s\'', len(self.trials), self.trials_file)
|
||||
dump(self.trials, self.trials_file)
|
||||
|
||||
def read_trials(self) -> Trials:
|
||||
def read_trials(self) -> List:
|
||||
"""
|
||||
Read hyperopt trials file
|
||||
"""
|
||||
logger.info('Reading Trials from \'%s\'', self.trials_file)
|
||||
trials = pickle.load(open(self.trials_file, 'rb'))
|
||||
trials = load(self.trials_file)
|
||||
os.remove(self.trials_file)
|
||||
return trials
|
||||
|
||||
@ -203,22 +113,27 @@ class Hyperopt(Backtesting):
|
||||
"""
|
||||
Display Best hyperopt result
|
||||
"""
|
||||
vals = json.dumps(self.trials.best_trial['misc']['vals'], indent=4)
|
||||
results = self.trials.best_trial['result']['result']
|
||||
logger.info('Best result:\n%s\nwith values:\n%s', results, vals)
|
||||
results = sorted(self.trials, key=itemgetter('loss'))
|
||||
best_result = results[0]
|
||||
logger.info(
|
||||
'Best result:\n%s\nwith values:\n%s',
|
||||
best_result['result'],
|
||||
best_result['params']
|
||||
)
|
||||
if 'roi_t1' in best_result['params']:
|
||||
logger.info('ROI table:\n%s', self.generate_roi_table(best_result['params']))
|
||||
|
||||
def log_results(self, results) -> None:
|
||||
"""
|
||||
Log results if it is better than any previous evaluation
|
||||
"""
|
||||
if results['loss'] < self.current_best_loss:
|
||||
current = results['current_tries']
|
||||
total = results['total_tries']
|
||||
res = results['result']
|
||||
loss = results['loss']
|
||||
self.current_best_loss = results['loss']
|
||||
log_msg = '\n{:5d}/{}: {}. Loss {:.5f}'.format(
|
||||
results['current_tries'],
|
||||
results['total_tries'],
|
||||
results['result'],
|
||||
results['loss']
|
||||
)
|
||||
log_msg = f'\n{current:5d}/{total}: {res}. Loss {loss:.5f}'
|
||||
print(log_msg)
|
||||
else:
|
||||
print('.', end='')
|
||||
@ -231,7 +146,8 @@ class Hyperopt(Backtesting):
|
||||
trade_loss = 1 - 0.25 * exp(-(trade_count - self.target_trades) ** 2 / 10 ** 5.8)
|
||||
profit_loss = max(0, 1 - total_profit / self.expected_max_profit)
|
||||
duration_loss = 0.4 * min(trade_duration / self.max_accepted_trade_duration, 1)
|
||||
return trade_loss + profit_loss + duration_loss
|
||||
result = trade_loss + profit_loss + duration_loss
|
||||
return result
|
||||
|
||||
@staticmethod
|
||||
def generate_roi_table(params: Dict) -> Dict[int, float]:
|
||||
@ -247,87 +163,44 @@ class Hyperopt(Backtesting):
|
||||
return roi_table
|
||||
|
||||
@staticmethod
|
||||
def roi_space() -> Dict[str, Any]:
|
||||
def roi_space() -> List[Dimension]:
|
||||
"""
|
||||
Values to search for each ROI steps
|
||||
"""
|
||||
return {
|
||||
'roi_t1': hp.quniform('roi_t1', 10, 120, 20),
|
||||
'roi_t2': hp.quniform('roi_t2', 10, 60, 15),
|
||||
'roi_t3': hp.quniform('roi_t3', 10, 40, 10),
|
||||
'roi_p1': hp.quniform('roi_p1', 0.01, 0.04, 0.01),
|
||||
'roi_p2': hp.quniform('roi_p2', 0.01, 0.07, 0.01),
|
||||
'roi_p3': hp.quniform('roi_p3', 0.01, 0.20, 0.01),
|
||||
}
|
||||
return [
|
||||
Integer(10, 120, name='roi_t1'),
|
||||
Integer(10, 60, name='roi_t2'),
|
||||
Integer(10, 40, name='roi_t3'),
|
||||
Real(0.01, 0.04, name='roi_p1'),
|
||||
Real(0.01, 0.07, name='roi_p2'),
|
||||
Real(0.01, 0.20, name='roi_p3'),
|
||||
]
|
||||
|
||||
@staticmethod
|
||||
def stoploss_space() -> Dict[str, Any]:
|
||||
def stoploss_space() -> List[Dimension]:
|
||||
"""
|
||||
Stoploss Value to search
|
||||
Stoploss search space
|
||||
"""
|
||||
return {
|
||||
'stoploss': hp.quniform('stoploss', -0.5, -0.02, 0.02),
|
||||
}
|
||||
return [
|
||||
Real(-0.5, -0.02, name='stoploss'),
|
||||
]
|
||||
|
||||
@staticmethod
|
||||
def indicator_space() -> Dict[str, Any]:
|
||||
def indicator_space() -> List[Dimension]:
|
||||
"""
|
||||
Define your Hyperopt space for searching strategy parameters
|
||||
"""
|
||||
return {
|
||||
'macd_below_zero': hp.choice('macd_below_zero', [
|
||||
{'enabled': False},
|
||||
{'enabled': True}
|
||||
]),
|
||||
'mfi': hp.choice('mfi', [
|
||||
{'enabled': False},
|
||||
{'enabled': True, 'value': hp.quniform('mfi-value', 10, 25, 5)}
|
||||
]),
|
||||
'fastd': hp.choice('fastd', [
|
||||
{'enabled': False},
|
||||
{'enabled': True, 'value': hp.quniform('fastd-value', 15, 45, 5)}
|
||||
]),
|
||||
'adx': hp.choice('adx', [
|
||||
{'enabled': False},
|
||||
{'enabled': True, 'value': hp.quniform('adx-value', 20, 50, 5)}
|
||||
]),
|
||||
'rsi': hp.choice('rsi', [
|
||||
{'enabled': False},
|
||||
{'enabled': True, 'value': hp.quniform('rsi-value', 20, 40, 5)}
|
||||
]),
|
||||
'uptrend_long_ema': hp.choice('uptrend_long_ema', [
|
||||
{'enabled': False},
|
||||
{'enabled': True}
|
||||
]),
|
||||
'uptrend_short_ema': hp.choice('uptrend_short_ema', [
|
||||
{'enabled': False},
|
||||
{'enabled': True}
|
||||
]),
|
||||
'over_sar': hp.choice('over_sar', [
|
||||
{'enabled': False},
|
||||
{'enabled': True}
|
||||
]),
|
||||
'green_candle': hp.choice('green_candle', [
|
||||
{'enabled': False},
|
||||
{'enabled': True}
|
||||
]),
|
||||
'uptrend_sma': hp.choice('uptrend_sma', [
|
||||
{'enabled': False},
|
||||
{'enabled': True}
|
||||
]),
|
||||
'trigger': hp.choice('trigger', [
|
||||
{'type': 'lower_bb'},
|
||||
{'type': 'lower_bb_tema'},
|
||||
{'type': 'faststoch10'},
|
||||
{'type': 'ao_cross_zero'},
|
||||
{'type': 'ema3_cross_ema10'},
|
||||
{'type': 'macd_cross_signal'},
|
||||
{'type': 'sar_reversal'},
|
||||
{'type': 'ht_sine'},
|
||||
{'type': 'heiken_reversal_bull'},
|
||||
{'type': 'di_cross'},
|
||||
]),
|
||||
}
|
||||
return [
|
||||
Integer(10, 25, name='mfi-value'),
|
||||
Integer(15, 45, name='fastd-value'),
|
||||
Integer(20, 50, name='adx-value'),
|
||||
Integer(20, 40, name='rsi-value'),
|
||||
Categorical([True, False], name='mfi-enabled'),
|
||||
Categorical([True, False], name='fastd-enabled'),
|
||||
Categorical([True, False], name='adx-enabled'),
|
||||
Categorical([True, False], name='rsi-enabled'),
|
||||
Categorical(['bb_lower', 'macd_cross_signal', 'sar_reversal'], name='trigger')
|
||||
]
|
||||
|
||||
def has_space(self, space: str) -> bool:
|
||||
"""
|
||||
@ -337,17 +210,17 @@ class Hyperopt(Backtesting):
|
||||
return True
|
||||
return False
|
||||
|
||||
def hyperopt_space(self) -> Dict[str, Any]:
|
||||
def hyperopt_space(self) -> List[Dimension]:
|
||||
"""
|
||||
Return the space to use during Hyperopt
|
||||
"""
|
||||
spaces: Dict = {}
|
||||
spaces: List[Dimension] = []
|
||||
if self.has_space('buy'):
|
||||
spaces = {**spaces, **Hyperopt.indicator_space()}
|
||||
spaces += Hyperopt.indicator_space()
|
||||
if self.has_space('roi'):
|
||||
spaces = {**spaces, **Hyperopt.roi_space()}
|
||||
spaces += Hyperopt.roi_space()
|
||||
if self.has_space('stoploss'):
|
||||
spaces = {**spaces, **Hyperopt.stoploss_space()}
|
||||
spaces += Hyperopt.stoploss_space()
|
||||
return spaces
|
||||
|
||||
@staticmethod
|
||||
@ -361,63 +234,26 @@ class Hyperopt(Backtesting):
|
||||
"""
|
||||
conditions = []
|
||||
# GUARDS AND TRENDS
|
||||
if 'uptrend_long_ema' in params and params['uptrend_long_ema']['enabled']:
|
||||
conditions.append(dataframe['ema50'] > dataframe['ema100'])
|
||||
if 'macd_below_zero' in params and params['macd_below_zero']['enabled']:
|
||||
conditions.append(dataframe['macd'] < 0)
|
||||
if 'uptrend_short_ema' in params and params['uptrend_short_ema']['enabled']:
|
||||
conditions.append(dataframe['ema5'] > dataframe['ema10'])
|
||||
if 'mfi' in params and params['mfi']['enabled']:
|
||||
conditions.append(dataframe['mfi'] < params['mfi']['value'])
|
||||
if 'fastd' in params and params['fastd']['enabled']:
|
||||
conditions.append(dataframe['fastd'] < params['fastd']['value'])
|
||||
if 'adx' in params and params['adx']['enabled']:
|
||||
conditions.append(dataframe['adx'] > params['adx']['value'])
|
||||
if 'rsi' in params and params['rsi']['enabled']:
|
||||
conditions.append(dataframe['rsi'] < params['rsi']['value'])
|
||||
if 'over_sar' in params and params['over_sar']['enabled']:
|
||||
conditions.append(dataframe['close'] > dataframe['sar'])
|
||||
if 'green_candle' in params and params['green_candle']['enabled']:
|
||||
conditions.append(dataframe['close'] > dataframe['open'])
|
||||
if 'uptrend_sma' in params and params['uptrend_sma']['enabled']:
|
||||
prevsma = dataframe['sma'].shift(1)
|
||||
conditions.append(dataframe['sma'] > prevsma)
|
||||
if 'mfi-enabled' in params and params['mfi-enabled']:
|
||||
conditions.append(dataframe['mfi'] < params['mfi-value'])
|
||||
if 'fastd-enabled' in params and params['fastd-enabled']:
|
||||
conditions.append(dataframe['fastd'] < params['fastd-value'])
|
||||
if 'adx-enabled' in params and params['adx-enabled']:
|
||||
conditions.append(dataframe['adx'] > params['adx-value'])
|
||||
if 'rsi-enabled' in params and params['rsi-enabled']:
|
||||
conditions.append(dataframe['rsi'] < params['rsi-value'])
|
||||
|
||||
# TRIGGERS
|
||||
triggers = {
|
||||
'lower_bb': (
|
||||
dataframe['close'] < dataframe['bb_lowerband']
|
||||
),
|
||||
'lower_bb_tema': (
|
||||
dataframe['tema'] < dataframe['bb_lowerband']
|
||||
),
|
||||
'faststoch10': (qtpylib.crossed_above(
|
||||
dataframe['fastd'], 10.0
|
||||
)),
|
||||
'ao_cross_zero': (qtpylib.crossed_above(
|
||||
dataframe['ao'], 0.0
|
||||
)),
|
||||
'ema3_cross_ema10': (qtpylib.crossed_above(
|
||||
dataframe['ema3'], dataframe['ema10']
|
||||
)),
|
||||
'macd_cross_signal': (qtpylib.crossed_above(
|
||||
if params['trigger'] == 'bb_lower':
|
||||
conditions.append(dataframe['close'] < dataframe['bb_lowerband'])
|
||||
if params['trigger'] == 'macd_cross_signal':
|
||||
conditions.append(qtpylib.crossed_above(
|
||||
dataframe['macd'], dataframe['macdsignal']
|
||||
)),
|
||||
'sar_reversal': (qtpylib.crossed_above(
|
||||
))
|
||||
if params['trigger'] == 'sar_reversal':
|
||||
conditions.append(qtpylib.crossed_above(
|
||||
dataframe['close'], dataframe['sar']
|
||||
)),
|
||||
'ht_sine': (qtpylib.crossed_above(
|
||||
dataframe['htleadsine'], dataframe['htsine']
|
||||
)),
|
||||
'heiken_reversal_bull': (
|
||||
(qtpylib.crossed_above(dataframe['ha_close'], dataframe['ha_open'])) &
|
||||
(dataframe['ha_low'] == dataframe['ha_open'])
|
||||
),
|
||||
'di_cross': (qtpylib.crossed_above(
|
||||
dataframe['plus_di'], dataframe['minus_di']
|
||||
)),
|
||||
}
|
||||
conditions.append(triggers.get(params['trigger']['type']))
|
||||
))
|
||||
|
||||
dataframe.loc[
|
||||
reduce(lambda x, y: x & y, conditions),
|
||||
@ -427,7 +263,9 @@ class Hyperopt(Backtesting):
|
||||
|
||||
return populate_buy_trend
|
||||
|
||||
def generate_optimizer(self, params: Dict) -> Dict:
|
||||
def generate_optimizer(self, _params) -> Dict:
|
||||
params = self.get_args(_params)
|
||||
|
||||
if self.has_space('roi'):
|
||||
self.analyze.strategy.minimal_roi = self.generate_roi_table(params)
|
||||
|
||||
@ -437,10 +275,11 @@ class Hyperopt(Backtesting):
|
||||
if self.has_space('stoploss'):
|
||||
self.analyze.strategy.stoploss = params['stoploss']
|
||||
|
||||
processed = load(TICKERDATA_PICKLE)
|
||||
results = self.backtest(
|
||||
{
|
||||
'stake_amount': self.config['stake_amount'],
|
||||
'processed': self.processed,
|
||||
'processed': processed,
|
||||
'realistic': self.config.get('realistic_simulation', False),
|
||||
}
|
||||
)
|
||||
@ -450,30 +289,18 @@ class Hyperopt(Backtesting):
|
||||
trade_count = len(results.index)
|
||||
trade_duration = results.trade_duration.mean()
|
||||
|
||||
if trade_count == 0 or trade_duration > self.max_accepted_trade_duration:
|
||||
print('.', end='')
|
||||
sys.stdout.flush()
|
||||
if trade_count == 0:
|
||||
return {
|
||||
'status': STATUS_FAIL,
|
||||
'loss': float('inf')
|
||||
'loss': MAX_LOSS,
|
||||
'params': params,
|
||||
'result': result_explanation,
|
||||
}
|
||||
|
||||
loss = self.calculate_loss(total_profit, trade_count, trade_duration)
|
||||
|
||||
self.current_tries += 1
|
||||
|
||||
self.log_results(
|
||||
{
|
||||
'loss': loss,
|
||||
'current_tries': self.current_tries,
|
||||
'total_tries': self.total_tries,
|
||||
'result': result_explanation,
|
||||
}
|
||||
)
|
||||
|
||||
return {
|
||||
'loss': loss,
|
||||
'status': STATUS_OK,
|
||||
'params': params,
|
||||
'result': result_explanation,
|
||||
}
|
||||
|
||||
@ -481,15 +308,37 @@ class Hyperopt(Backtesting):
|
||||
"""
|
||||
Return the format result in a string
|
||||
"""
|
||||
return ('{:6d} trades. Avg profit {: 5.2f}%. '
|
||||
'Total profit {: 11.8f} {} ({:.4f}Σ%). Avg duration {:5.1f} mins.').format(
|
||||
len(results.index),
|
||||
results.profit_percent.mean() * 100.0,
|
||||
results.profit_abs.sum(),
|
||||
self.config['stake_currency'],
|
||||
results.profit_percent.sum(),
|
||||
results.trade_duration.mean(),
|
||||
)
|
||||
trades = len(results.index)
|
||||
avg_profit = results.profit_percent.mean() * 100.0
|
||||
total_profit = results.profit_abs.sum()
|
||||
stake_cur = self.config['stake_currency']
|
||||
profit = results.profit_percent.sum()
|
||||
duration = results.trade_duration.mean()
|
||||
|
||||
return (f'{trades:6d} trades. Avg profit {avg_profit: 5.2f}%. '
|
||||
f'Total profit {total_profit: 11.8f} {stake_cur} '
|
||||
f'({profit:.4f}Σ%). Avg duration {duration:5.1f} mins.')
|
||||
|
||||
def get_optimizer(self, cpu_count) -> Optimizer:
|
||||
return Optimizer(
|
||||
self.hyperopt_space(),
|
||||
base_estimator="ET",
|
||||
acq_optimizer="auto",
|
||||
n_initial_points=30,
|
||||
acq_optimizer_kwargs={'n_jobs': cpu_count}
|
||||
)
|
||||
|
||||
def run_optimizer_parallel(self, parallel, asked) -> List:
|
||||
return parallel(delayed(self.generate_optimizer)(v) for v in asked)
|
||||
|
||||
def load_previous_results(self):
|
||||
""" read trials file if we have one """
|
||||
if os.path.exists(self.trials_file) and os.path.getsize(self.trials_file) > 0:
|
||||
self.trials = self.read_trials()
|
||||
logger.info(
|
||||
'Loaded %d previous evaluations from disk.',
|
||||
len(self.trials)
|
||||
)
|
||||
|
||||
def start(self) -> None:
|
||||
timerange = Arguments.parse_timerange(None if self.config.get(
|
||||
@ -503,67 +352,35 @@ class Hyperopt(Backtesting):
|
||||
|
||||
if self.has_space('buy'):
|
||||
self.analyze.populate_indicators = Hyperopt.populate_indicators # type: ignore
|
||||
self.processed = self.tickerdata_to_dataframe(data)
|
||||
dump(self.tickerdata_to_dataframe(data), TICKERDATA_PICKLE)
|
||||
self.exchange = None # type: ignore
|
||||
self.load_previous_results()
|
||||
|
||||
logger.info('Preparing Trials..')
|
||||
signal.signal(signal.SIGINT, self.signal_handler)
|
||||
# read trials file if we have one
|
||||
if os.path.exists(self.trials_file) and os.path.getsize(self.trials_file) > 0:
|
||||
self.trials = self.read_trials()
|
||||
|
||||
self.current_tries = len(self.trials.results)
|
||||
self.total_tries += self.current_tries
|
||||
logger.info(
|
||||
'Continuing with trials. Current: %d, Total: %d',
|
||||
self.current_tries,
|
||||
self.total_tries
|
||||
)
|
||||
cpus = multiprocessing.cpu_count()
|
||||
logger.info(f'Found {cpus} CPU cores. Let\'s make them scream!')
|
||||
|
||||
opt = self.get_optimizer(cpus)
|
||||
EVALS = max(self.total_tries//cpus, 1)
|
||||
try:
|
||||
best_parameters = fmin(
|
||||
fn=self.generate_optimizer,
|
||||
space=self.hyperopt_space(),
|
||||
algo=tpe.suggest,
|
||||
max_evals=self.total_tries,
|
||||
trials=self.trials
|
||||
)
|
||||
with Parallel(n_jobs=cpus) as parallel:
|
||||
for i in range(EVALS):
|
||||
asked = opt.ask(n_points=cpus)
|
||||
f_val = self.run_optimizer_parallel(parallel, asked)
|
||||
opt.tell(asked, [i['loss'] for i in f_val])
|
||||
|
||||
results = sorted(self.trials.results, key=itemgetter('loss'))
|
||||
best_result = results[0]['result']
|
||||
|
||||
except ValueError:
|
||||
best_parameters = {}
|
||||
best_result = 'Sorry, Hyperopt was not able to find good parameters. Please ' \
|
||||
'try with more epochs (param: -e).'
|
||||
|
||||
# Improve best parameter logging display
|
||||
if best_parameters:
|
||||
best_parameters = space_eval(
|
||||
self.hyperopt_space(),
|
||||
best_parameters
|
||||
)
|
||||
|
||||
logger.info('Best parameters:\n%s', json.dumps(best_parameters, indent=4))
|
||||
if 'roi_t1' in best_parameters:
|
||||
logger.info('ROI table:\n%s', self.generate_roi_table(best_parameters))
|
||||
|
||||
logger.info('Best Result:\n%s', best_result)
|
||||
|
||||
# Store trials result to file to resume next time
|
||||
self.save_trials()
|
||||
|
||||
def signal_handler(self, sig, frame) -> None:
|
||||
"""
|
||||
Hyperopt SIGINT handler
|
||||
"""
|
||||
logger.info(
|
||||
'Hyperopt received %s',
|
||||
signal.Signals(sig).name
|
||||
)
|
||||
self.trials += f_val
|
||||
for j in range(cpus):
|
||||
self.log_results({
|
||||
'loss': f_val[j]['loss'],
|
||||
'current_tries': i * cpus + j,
|
||||
'total_tries': self.total_tries,
|
||||
'result': f_val[j]['result'],
|
||||
})
|
||||
except KeyboardInterrupt:
|
||||
print('User interrupted..')
|
||||
|
||||
self.save_trials()
|
||||
self.log_trials_result()
|
||||
sys.exit(0)
|
||||
|
||||
|
||||
def start(args: Namespace) -> None:
|
||||
|
@ -5,12 +5,11 @@ This module contains the class to persist trades into SQLite
|
||||
import logging
|
||||
from datetime import datetime
|
||||
from decimal import Decimal, getcontext
|
||||
from typing import Dict, Optional, Any
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
import arrow
|
||||
from sqlalchemy import (Boolean, Column, DateTime, Float, Integer, String,
|
||||
create_engine)
|
||||
from sqlalchemy import inspect
|
||||
create_engine, inspect)
|
||||
from sqlalchemy.exc import NoSuchModuleError
|
||||
from sqlalchemy.ext.declarative import declarative_base
|
||||
from sqlalchemy.orm.scoping import scoped_session
|
||||
@ -22,6 +21,7 @@ from freqtrade import OperationalException
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
_DECL_BASE: Any = declarative_base()
|
||||
_SQL_DOCS_URL = 'http://docs.sqlalchemy.org/en/latest/core/engines.html#database-urls'
|
||||
|
||||
|
||||
def init(config: Dict) -> None:
|
||||
@ -46,10 +46,8 @@ def init(config: Dict) -> None:
|
||||
try:
|
||||
engine = create_engine(db_url, **kwargs)
|
||||
except NoSuchModuleError:
|
||||
error = 'Given value for db_url: \'{}\' is no valid database URL! (See {}).'.format(
|
||||
db_url, 'http://docs.sqlalchemy.org/en/latest/core/engines.html#database-urls'
|
||||
)
|
||||
raise OperationalException(error)
|
||||
raise OperationalException(f'Given value for db_url: \'{db_url}\' '
|
||||
f'is no valid database URL! (See {_SQL_DOCS_URL})')
|
||||
|
||||
session = scoped_session(sessionmaker(bind=engine, autoflush=True, autocommit=True))
|
||||
Trade.session = session()
|
||||
@ -66,6 +64,10 @@ def has_column(columns, searchname: str) -> bool:
|
||||
return len(list(filter(lambda x: x["name"] == searchname, columns))) == 1
|
||||
|
||||
|
||||
def get_column_def(columns, column: str, default: str) -> str:
|
||||
return default if not has_column(columns, column) else column
|
||||
|
||||
|
||||
def check_migrate(engine) -> None:
|
||||
"""
|
||||
Checks if migration is necessary and migrates if necessary
|
||||
@ -73,18 +75,32 @@ def check_migrate(engine) -> None:
|
||||
inspector = inspect(engine)
|
||||
|
||||
cols = inspector.get_columns('trades')
|
||||
tabs = inspector.get_table_names()
|
||||
table_back_name = 'trades_bak'
|
||||
for i, table_back_name in enumerate(tabs):
|
||||
table_back_name = f'trades_bak{i}'
|
||||
logger.info(f'trying {table_back_name}')
|
||||
|
||||
# Check for latest column
|
||||
if not has_column(cols, 'max_rate'):
|
||||
open_rate_requested = get_column_def(cols, 'open_rate_requested', 'null')
|
||||
close_rate_requested = get_column_def(cols, 'close_rate_requested', 'null')
|
||||
stop_loss = get_column_def(cols, 'stop_loss', '0.0')
|
||||
initial_stop_loss = get_column_def(cols, 'initial_stop_loss', '0.0')
|
||||
max_rate = get_column_def(cols, 'max_rate', '0.0')
|
||||
|
||||
if not has_column(cols, 'fee_open'):
|
||||
# Schema migration necessary
|
||||
engine.execute("alter table trades rename to trades_bak")
|
||||
engine.execute(f"alter table trades rename to {table_back_name}")
|
||||
# let SQLAlchemy create the schema as required
|
||||
_DECL_BASE.metadata.create_all(engine)
|
||||
|
||||
# Copy data back - following the correct schema
|
||||
engine.execute("""insert into trades
|
||||
engine.execute(f"""insert into trades
|
||||
(id, exchange, pair, is_open, fee_open, fee_close, open_rate,
|
||||
open_rate_requested, close_rate, close_rate_requested, close_profit,
|
||||
stake_amount, amount, open_date, close_date, open_order_id)
|
||||
stake_amount, amount, open_date, close_date, open_order_id,
|
||||
stop_loss, initial_stop_loss, max_rate
|
||||
)
|
||||
select id, lower(exchange),
|
||||
case
|
||||
when instr(pair, '_') != 0 then
|
||||
@ -94,21 +110,18 @@ def check_migrate(engine) -> None:
|
||||
end
|
||||
pair,
|
||||
is_open, fee fee_open, fee fee_close,
|
||||
open_rate, null open_rate_requested, close_rate,
|
||||
null close_rate_requested, close_profit,
|
||||
stake_amount, amount, open_date, close_date, open_order_id
|
||||
from trades_bak
|
||||
open_rate, {open_rate_requested} open_rate_requested, close_rate,
|
||||
{close_rate_requested} close_rate_requested, close_profit,
|
||||
stake_amount, amount, open_date, close_date, open_order_id,
|
||||
{stop_loss} stop_loss, {initial_stop_loss} initial_stop_loss,
|
||||
{max_rate} max_rate
|
||||
from {table_back_name}
|
||||
""")
|
||||
|
||||
# Reread columns - the above recreated the table!
|
||||
inspector = inspect(engine)
|
||||
cols = inspector.get_columns('trades')
|
||||
|
||||
if not has_column(cols, 'open_rate_requested'):
|
||||
engine.execute("alter table trades add open_rate_requested float")
|
||||
if not has_column(cols, 'close_rate_requested'):
|
||||
engine.execute("alter table trades add close_rate_requested float")
|
||||
|
||||
|
||||
def cleanup() -> None:
|
||||
"""
|
||||
@ -151,15 +164,57 @@ class Trade(_DECL_BASE):
|
||||
open_date = Column(DateTime, nullable=False, default=datetime.utcnow)
|
||||
close_date = Column(DateTime)
|
||||
open_order_id = Column(String)
|
||||
# absolute value of the stop loss
|
||||
stop_loss = Column(Float, nullable=True, default=0.0)
|
||||
# absolute value of the initial stop loss
|
||||
initial_stop_loss = Column(Float, nullable=True, default=0.0)
|
||||
# absolute value of the highest reached price
|
||||
max_rate = Column(Float, nullable=True, default=0.0)
|
||||
|
||||
def __repr__(self):
|
||||
return 'Trade(id={}, pair={}, amount={:.8f}, open_rate={:.8f}, open_since={})'.format(
|
||||
self.id,
|
||||
self.pair,
|
||||
self.amount,
|
||||
self.open_rate,
|
||||
arrow.get(self.open_date).humanize() if self.is_open else 'closed'
|
||||
)
|
||||
open_since = arrow.get(self.open_date).humanize() if self.is_open else 'closed'
|
||||
|
||||
return (f'Trade(id={self.id}, pair={self.pair}, amount={self.amount:.8f}, '
|
||||
f'open_rate={self.open_rate:.8f}, open_since={open_since})')
|
||||
|
||||
def adjust_stop_loss(self, current_price: float, stoploss: float, initial: bool = False):
|
||||
"""this adjusts the stop loss to it's most recently observed setting"""
|
||||
|
||||
if initial and not (self.stop_loss is None or self.stop_loss == 0):
|
||||
# Don't modify if called with initial and nothing to do
|
||||
return
|
||||
|
||||
new_loss = float(current_price * (1 - abs(stoploss)))
|
||||
|
||||
# keeping track of the highest observed rate for this trade
|
||||
if self.max_rate is None:
|
||||
self.max_rate = current_price
|
||||
else:
|
||||
if current_price > self.max_rate:
|
||||
self.max_rate = current_price
|
||||
|
||||
# no stop loss assigned yet
|
||||
if not self.stop_loss:
|
||||
logger.debug("assigning new stop loss")
|
||||
self.stop_loss = new_loss
|
||||
self.initial_stop_loss = new_loss
|
||||
|
||||
# evaluate if the stop loss needs to be updated
|
||||
else:
|
||||
if new_loss > self.stop_loss: # stop losses only walk up, never down!
|
||||
self.stop_loss = new_loss
|
||||
logger.debug("adjusted stop loss")
|
||||
else:
|
||||
logger.debug("keeping current stop loss")
|
||||
|
||||
logger.debug(
|
||||
f"{self.pair} - current price {current_price:.8f}, "
|
||||
f"bought at {self.open_rate:.8f} and calculated "
|
||||
f"stop loss is at: {self.initial_stop_loss:.8f} initial "
|
||||
f"stop at {self.stop_loss:.8f}. "
|
||||
f"trailing stop loss saved us: "
|
||||
f"{float(self.stop_loss) - float(self.initial_stop_loss):.8f} "
|
||||
f"and max observed rate was {self.max_rate:.8f}")
|
||||
|
||||
def update(self, order: Dict) -> None:
|
||||
"""
|
||||
@ -167,6 +222,7 @@ class Trade(_DECL_BASE):
|
||||
:param order: order retrieved by exchange.get_order()
|
||||
:return: None
|
||||
"""
|
||||
order_type = order['type']
|
||||
# Ignore open and cancelled orders
|
||||
if order['status'] == 'open' or order['price'] is None:
|
||||
return
|
||||
@ -174,16 +230,16 @@ class Trade(_DECL_BASE):
|
||||
logger.info('Updating trade (id=%d) ...', self.id)
|
||||
|
||||
getcontext().prec = 8 # Bittrex do not go above 8 decimal
|
||||
if order['type'] == 'limit' and order['side'] == 'buy':
|
||||
if order_type == 'limit' and order['side'] == 'buy':
|
||||
# Update open rate and actual amount
|
||||
self.open_rate = Decimal(order['price'])
|
||||
self.amount = Decimal(order['amount'])
|
||||
logger.info('LIMIT_BUY has been fulfilled for %s.', self)
|
||||
self.open_order_id = None
|
||||
elif order['type'] == 'limit' and order['side'] == 'sell':
|
||||
elif order_type == 'limit' and order['side'] == 'sell':
|
||||
self.close(order['price'])
|
||||
else:
|
||||
raise ValueError('Unknown order type: {}'.format(order['type']))
|
||||
raise ValueError(f'Unknown order type: {order_type}')
|
||||
cleanup()
|
||||
|
||||
def close(self, rate: float) -> None:
|
||||
@ -254,7 +310,8 @@ class Trade(_DECL_BASE):
|
||||
rate=(rate or self.close_rate),
|
||||
fee=(fee or self.fee_close)
|
||||
)
|
||||
return float("{0:.8f}".format(close_trade_price - open_trade_price))
|
||||
profit = close_trade_price - open_trade_price
|
||||
return float(f"{profit:.8f}")
|
||||
|
||||
def calc_profit_percent(
|
||||
self,
|
||||
@ -274,5 +331,5 @@ class Trade(_DECL_BASE):
|
||||
rate=(rate or self.close_rate),
|
||||
fee=(fee or self.fee_close)
|
||||
)
|
||||
|
||||
return float("{0:.8f}".format((close_trade_price / open_trade_price) - 1))
|
||||
profit_percent = (close_trade_price / open_trade_price) - 1
|
||||
return float(f"{profit_percent:.8f}")
|
||||
|
@ -3,9 +3,9 @@ This module contains class to define a RPC communications
|
||||
"""
|
||||
import logging
|
||||
from abc import abstractmethod
|
||||
from datetime import datetime, timedelta, date
|
||||
from datetime import date, datetime, timedelta
|
||||
from decimal import Decimal
|
||||
from typing import Dict, Tuple, Any, List
|
||||
from typing import Any, Dict, List, Tuple
|
||||
|
||||
import arrow
|
||||
import sqlalchemy as sql
|
||||
@ -74,34 +74,32 @@ class RPC(object):
|
||||
# calculate profit and send message to user
|
||||
current_rate = self._freqtrade.exchange.get_ticker(trade.pair, False)['bid']
|
||||
current_profit = trade.calc_profit_percent(current_rate)
|
||||
fmt_close_profit = '{:.2f}%'.format(
|
||||
round(trade.close_profit * 100, 2)
|
||||
) if trade.close_profit else None
|
||||
message = "*Trade ID:* `{trade_id}`\n" \
|
||||
"*Current Pair:* [{pair}]({market_url})\n" \
|
||||
"*Open Since:* `{date}`\n" \
|
||||
"*Amount:* `{amount}`\n" \
|
||||
"*Open Rate:* `{open_rate:.8f}`\n" \
|
||||
"*Close Rate:* `{close_rate}`\n" \
|
||||
"*Current Rate:* `{current_rate:.8f}`\n" \
|
||||
"*Close Profit:* `{close_profit}`\n" \
|
||||
"*Current Profit:* `{current_profit:.2f}%`\n" \
|
||||
"*Open Order:* `{open_order}`"\
|
||||
.format(
|
||||
trade_id=trade.id,
|
||||
pair=trade.pair,
|
||||
market_url=self._freqtrade.exchange.get_pair_detail_url(trade.pair),
|
||||
date=arrow.get(trade.open_date).humanize(),
|
||||
open_rate=trade.open_rate,
|
||||
close_rate=trade.close_rate,
|
||||
current_rate=current_rate,
|
||||
amount=round(trade.amount, 8),
|
||||
close_profit=fmt_close_profit,
|
||||
current_profit=round(current_profit * 100, 2),
|
||||
open_order='({} {} rem={:.8f})'.format(
|
||||
order['type'], order['side'], order['remaining']
|
||||
) if order else None,
|
||||
)
|
||||
fmt_close_profit = (f'{round(trade.close_profit * 100, 2):.2f}%'
|
||||
if trade.close_profit else None)
|
||||
market_url = self._freqtrade.exchange.get_pair_detail_url(trade.pair)
|
||||
trade_date = arrow.get(trade.open_date).humanize()
|
||||
open_rate = trade.open_rate
|
||||
close_rate = trade.close_rate
|
||||
amount = round(trade.amount, 8)
|
||||
current_profit = round(current_profit * 100, 2)
|
||||
open_order = ''
|
||||
if order:
|
||||
order_type = order['type']
|
||||
order_side = order['side']
|
||||
order_rem = order['remaining']
|
||||
open_order = f'({order_type} {order_side} rem={order_rem:.8f})'
|
||||
|
||||
message = f"*Trade ID:* `{trade.id}`\n" \
|
||||
f"*Current Pair:* [{trade.pair}]({market_url})\n" \
|
||||
f"*Open Since:* `{trade_date}`\n" \
|
||||
f"*Amount:* `{amount}`\n" \
|
||||
f"*Open Rate:* `{open_rate:.8f}`\n" \
|
||||
f"*Close Rate:* `{close_rate}`\n" \
|
||||
f"*Current Rate:* `{current_rate:.8f}`\n" \
|
||||
f"*Close Profit:* `{fmt_close_profit}`\n" \
|
||||
f"*Current Profit:* `{current_profit:.2f}%`\n" \
|
||||
f"*Open Order:* `{open_order}`"\
|
||||
|
||||
result.append(message)
|
||||
return result
|
||||
|
||||
@ -116,11 +114,12 @@ class RPC(object):
|
||||
for trade in trades:
|
||||
# calculate profit and send message to user
|
||||
current_rate = self._freqtrade.exchange.get_ticker(trade.pair, False)['bid']
|
||||
trade_perc = (100 * trade.calc_profit_percent(current_rate))
|
||||
trades_list.append([
|
||||
trade.id,
|
||||
trade.pair,
|
||||
shorten_date(arrow.get(trade.open_date).humanize(only_distance=True)),
|
||||
'{:.2f}%'.format(100 * trade.calc_profit_percent(current_rate))
|
||||
f'{trade_perc:.2f}%'
|
||||
])
|
||||
|
||||
columns = ['ID', 'Pair', 'Since', 'Profit']
|
||||
@ -148,7 +147,7 @@ class RPC(object):
|
||||
.all()
|
||||
curdayprofit = sum(trade.calc_profit() for trade in trades)
|
||||
profit_days[profitday] = {
|
||||
'amount': format(curdayprofit, '.8f'),
|
||||
'amount': f'{curdayprofit:.8f}',
|
||||
'trades': len(trades)
|
||||
}
|
||||
|
||||
|
@ -153,7 +153,7 @@ class Telegram(RPC):
|
||||
try:
|
||||
df_statuses = self._rpc_status_table()
|
||||
message = tabulate(df_statuses, headers='keys', tablefmt='simple')
|
||||
self._send_msg("<pre>{}</pre>".format(message), parse_mode=ParseMode.HTML)
|
||||
self._send_msg(f"<pre>{message}</pre>", parse_mode=ParseMode.HTML)
|
||||
except RPCException as e:
|
||||
self._send_msg(str(e), bot=bot)
|
||||
|
||||
@ -166,6 +166,8 @@ class Telegram(RPC):
|
||||
:param update: message update
|
||||
:return: None
|
||||
"""
|
||||
stake_cur = self._config['stake_currency']
|
||||
fiat_disp_cur = self._config['fiat_display_currency']
|
||||
try:
|
||||
timescale = int(update.message.text.replace('/daily', '').strip())
|
||||
except (TypeError, ValueError):
|
||||
@ -173,18 +175,17 @@ class Telegram(RPC):
|
||||
try:
|
||||
stats = self._rpc_daily_profit(
|
||||
timescale,
|
||||
self._config['stake_currency'],
|
||||
self._config['fiat_display_currency']
|
||||
stake_cur,
|
||||
fiat_disp_cur
|
||||
)
|
||||
stats = tabulate(stats,
|
||||
headers=[
|
||||
'Day',
|
||||
'Profit {}'.format(self._config['stake_currency']),
|
||||
'Profit {}'.format(self._config['fiat_display_currency'])
|
||||
f'Profit {stake_cur}',
|
||||
f'Profit {fiat_disp_cur}'
|
||||
],
|
||||
tablefmt='simple')
|
||||
message = '<b>Daily Profit over the last {} days</b>:\n<pre>{}</pre>'\
|
||||
.format(timescale, stats)
|
||||
message = f'<b>Daily Profit over the last {timescale} days</b>:\n<pre>{stats}</pre>'
|
||||
self._send_msg(message, bot=bot, parse_mode=ParseMode.HTML)
|
||||
except RPCException as e:
|
||||
self._send_msg(str(e), bot=bot)
|
||||
@ -198,39 +199,38 @@ class Telegram(RPC):
|
||||
:param update: message update
|
||||
:return: None
|
||||
"""
|
||||
stake_cur = self._config['stake_currency']
|
||||
fiat_disp_cur = self._config['fiat_display_currency']
|
||||
|
||||
try:
|
||||
stats = self._rpc_trade_statistics(
|
||||
self._config['stake_currency'],
|
||||
self._config['fiat_display_currency'])
|
||||
|
||||
stake_cur,
|
||||
fiat_disp_cur)
|
||||
profit_closed_coin = stats['profit_closed_coin']
|
||||
profit_closed_percent = stats['profit_closed_percent']
|
||||
profit_closed_fiat = stats['profit_closed_fiat']
|
||||
profit_all_coin = stats['profit_all_coin']
|
||||
profit_all_percent = stats['profit_all_percent']
|
||||
profit_all_fiat = stats['profit_all_fiat']
|
||||
trade_count = stats['trade_count']
|
||||
first_trade_date = stats['first_trade_date']
|
||||
latest_trade_date = stats['latest_trade_date']
|
||||
avg_duration = stats['avg_duration']
|
||||
best_pair = stats['best_pair']
|
||||
best_rate = stats['best_rate']
|
||||
# Message to display
|
||||
markdown_msg = "*ROI:* Close trades\n" \
|
||||
"∙ `{profit_closed_coin:.8f} {coin} ({profit_closed_percent:.2f}%)`\n" \
|
||||
"∙ `{profit_closed_fiat:.3f} {fiat}`\n" \
|
||||
"*ROI:* All trades\n" \
|
||||
"∙ `{profit_all_coin:.8f} {coin} ({profit_all_percent:.2f}%)`\n" \
|
||||
"∙ `{profit_all_fiat:.3f} {fiat}`\n" \
|
||||
"*Total Trade Count:* `{trade_count}`\n" \
|
||||
"*First Trade opened:* `{first_trade_date}`\n" \
|
||||
"*Latest Trade opened:* `{latest_trade_date}`\n" \
|
||||
"*Avg. Duration:* `{avg_duration}`\n" \
|
||||
"*Best Performing:* `{best_pair}: {best_rate:.2f}%`"\
|
||||
.format(
|
||||
coin=self._config['stake_currency'],
|
||||
fiat=self._config['fiat_display_currency'],
|
||||
profit_closed_coin=stats['profit_closed_coin'],
|
||||
profit_closed_percent=stats['profit_closed_percent'],
|
||||
profit_closed_fiat=stats['profit_closed_fiat'],
|
||||
profit_all_coin=stats['profit_all_coin'],
|
||||
profit_all_percent=stats['profit_all_percent'],
|
||||
profit_all_fiat=stats['profit_all_fiat'],
|
||||
trade_count=stats['trade_count'],
|
||||
first_trade_date=stats['first_trade_date'],
|
||||
latest_trade_date=stats['latest_trade_date'],
|
||||
avg_duration=stats['avg_duration'],
|
||||
best_pair=stats['best_pair'],
|
||||
best_rate=stats['best_rate']
|
||||
)
|
||||
f"∙ `{profit_closed_coin:.8f} {stake_cur} "\
|
||||
f"({profit_closed_percent:.2f}%)`\n" \
|
||||
f"∙ `{profit_closed_fiat:.3f} {fiat_disp_cur}`\n" \
|
||||
f"*ROI:* All trades\n" \
|
||||
f"∙ `{profit_all_coin:.8f} {stake_cur} ({profit_all_percent:.2f}%)`\n" \
|
||||
f"∙ `{profit_all_fiat:.3f} {fiat_disp_cur}`\n" \
|
||||
f"*Total Trade Count:* `{trade_count}`\n" \
|
||||
f"*First Trade opened:* `{first_trade_date}`\n" \
|
||||
f"*Latest Trade opened:* `{latest_trade_date}`\n" \
|
||||
f"*Avg. Duration:* `{avg_duration}`\n" \
|
||||
f"*Best Performing:* `{best_pair}: {best_rate:.2f}%`"
|
||||
self._send_msg(markdown_msg, bot=bot)
|
||||
except RPCException as e:
|
||||
self._send_msg(str(e), bot=bot)
|
||||
|
@ -2,8 +2,8 @@
|
||||
IStrategy interface
|
||||
This module defines the interface to apply for strategies
|
||||
"""
|
||||
from typing import Dict
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Dict
|
||||
|
||||
from pandas import DataFrame
|
||||
|
||||
|
@ -8,7 +8,7 @@ import inspect
|
||||
import logging
|
||||
from base64 import urlsafe_b64decode
|
||||
from collections import OrderedDict
|
||||
from typing import Optional, Dict, Type
|
||||
from typing import Dict, Optional, Type
|
||||
|
||||
from freqtrade import constants
|
||||
from freqtrade.strategy import import_strategy
|
||||
@ -17,6 +17,7 @@ import tempfile
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@ -82,8 +83,8 @@ class StrategyResolver(object):
|
||||
# Add extra strategy directory on top of search paths
|
||||
abs_paths.insert(0, extra_dir)
|
||||
|
||||
if ":" in strategy_name and "http" not in strategy_name:
|
||||
print("loading none http based strategy: {}".format(strategy_name))
|
||||
if ":" in strategy_name:
|
||||
logger.debug(("loading base64 endocded strategy".)
|
||||
strat = strategy_name.split(":")
|
||||
|
||||
if len(strat) == 2:
|
||||
|
@ -2,8 +2,8 @@
|
||||
import json
|
||||
import logging
|
||||
from datetime import datetime
|
||||
from typing import Dict, Optional
|
||||
from functools import reduce
|
||||
from typing import Dict, Optional
|
||||
from unittest.mock import MagicMock
|
||||
|
||||
import arrow
|
||||
@ -11,8 +11,8 @@ import pytest
|
||||
from jsonschema import validate
|
||||
from telegram import Chat, Message, Update
|
||||
|
||||
from freqtrade.analyze import Analyze
|
||||
from freqtrade import constants
|
||||
from freqtrade.analyze import Analyze
|
||||
from freqtrade.exchange import Exchange
|
||||
from freqtrade.freqtradebot import FreqtradeBot
|
||||
|
||||
@ -100,7 +100,10 @@ def default_conf():
|
||||
"0": 0.04
|
||||
},
|
||||
"stoploss": -0.10,
|
||||
"unfilledtimeout": 600,
|
||||
"unfilledtimeout": {
|
||||
"buy": 10,
|
||||
"sell": 30
|
||||
},
|
||||
"bid_strategy": {
|
||||
"ask_last_balance": 0.0
|
||||
},
|
||||
|
@ -2,16 +2,32 @@
|
||||
# pragma pylint: disable=protected-access
|
||||
import logging
|
||||
from copy import deepcopy
|
||||
from random import randint
|
||||
from datetime import datetime
|
||||
from random import randint
|
||||
from unittest.mock import MagicMock, PropertyMock
|
||||
|
||||
import ccxt
|
||||
import pytest
|
||||
|
||||
from freqtrade import OperationalException, DependencyException, TemporaryError
|
||||
from freqtrade.exchange import Exchange, API_RETRY_COUNT
|
||||
from freqtrade.tests.conftest import log_has, get_patched_exchange
|
||||
from freqtrade import DependencyException, OperationalException, TemporaryError
|
||||
from freqtrade.exchange import API_RETRY_COUNT, Exchange
|
||||
from freqtrade.tests.conftest import get_patched_exchange, log_has
|
||||
|
||||
|
||||
def ccxt_exceptionhandlers(mocker, default_conf, api_mock, fun, mock_ccxt_fun, **kwargs):
|
||||
"""Function to test ccxt exception handling """
|
||||
|
||||
with pytest.raises(TemporaryError):
|
||||
api_mock.__dict__[mock_ccxt_fun] = MagicMock(side_effect=ccxt.NetworkError)
|
||||
exchange = get_patched_exchange(mocker, default_conf, api_mock)
|
||||
getattr(exchange, fun)(**kwargs)
|
||||
assert api_mock.__dict__[mock_ccxt_fun].call_count == API_RETRY_COUNT + 1
|
||||
|
||||
with pytest.raises(OperationalException):
|
||||
api_mock.__dict__[mock_ccxt_fun] = MagicMock(side_effect=ccxt.BaseError)
|
||||
exchange = get_patched_exchange(mocker, default_conf, api_mock)
|
||||
getattr(exchange, fun)(**kwargs)
|
||||
assert api_mock.__dict__[mock_ccxt_fun].call_count == 1
|
||||
|
||||
|
||||
def test_init(default_conf, mocker, caplog):
|
||||
@ -20,7 +36,7 @@ def test_init(default_conf, mocker, caplog):
|
||||
assert log_has('Instance is running with dry_run enabled', caplog.record_tuples)
|
||||
|
||||
|
||||
def test_init_exception(default_conf):
|
||||
def test_init_exception(default_conf, mocker):
|
||||
default_conf['exchange']['name'] = 'wrong_exchange_name'
|
||||
|
||||
with pytest.raises(
|
||||
@ -28,6 +44,13 @@ def test_init_exception(default_conf):
|
||||
match='Exchange {} is not supported'.format(default_conf['exchange']['name'])):
|
||||
Exchange(default_conf)
|
||||
|
||||
default_conf['exchange']['name'] = 'binance'
|
||||
with pytest.raises(
|
||||
OperationalException,
|
||||
match='Exchange {} is not supported'.format(default_conf['exchange']['name'])):
|
||||
mocker.patch("ccxt.binance", MagicMock(side_effect=AttributeError))
|
||||
Exchange(default_conf)
|
||||
|
||||
|
||||
def test_validate_pairs(default_conf, mocker):
|
||||
api_mock = MagicMock()
|
||||
@ -97,6 +120,20 @@ def test_validate_pairs_stake_exception(default_conf, mocker, caplog):
|
||||
Exchange(conf)
|
||||
|
||||
|
||||
def test_exchangehas(default_conf, mocker):
|
||||
exchange = get_patched_exchange(mocker, default_conf)
|
||||
assert not exchange.exchange_has('ASDFASDF')
|
||||
api_mock = MagicMock()
|
||||
|
||||
type(api_mock).has = PropertyMock(return_value={'deadbeef': True})
|
||||
exchange = get_patched_exchange(mocker, default_conf, api_mock)
|
||||
assert exchange.exchange_has("deadbeef")
|
||||
|
||||
type(api_mock).has = PropertyMock(return_value={'deadbeef': False})
|
||||
exchange = get_patched_exchange(mocker, default_conf, api_mock)
|
||||
assert not exchange.exchange_has("deadbeef")
|
||||
|
||||
|
||||
def test_buy_dry_run(default_conf, mocker):
|
||||
default_conf['dry_run'] = True
|
||||
exchange = get_patched_exchange(mocker, default_conf)
|
||||
@ -216,6 +253,11 @@ def test_get_balance_prod(default_conf, mocker):
|
||||
|
||||
exchange.get_balance(currency='BTC')
|
||||
|
||||
with pytest.raises(TemporaryError, match=r'.*balance due to malformed exchange response:.*'):
|
||||
exchange = get_patched_exchange(mocker, default_conf, api_mock)
|
||||
mocker.patch('freqtrade.exchange.Exchange.get_balances', MagicMock(return_value={}))
|
||||
exchange.get_balance(currency='BTC')
|
||||
|
||||
|
||||
def test_get_balances_dry_run(default_conf, mocker):
|
||||
default_conf['dry_run'] = True
|
||||
@ -243,17 +285,8 @@ def test_get_balances_prod(default_conf, mocker):
|
||||
assert exchange.get_balances()['1ST']['total'] == 10.0
|
||||
assert exchange.get_balances()['1ST']['used'] == 0.0
|
||||
|
||||
with pytest.raises(TemporaryError):
|
||||
api_mock.fetch_balance = MagicMock(side_effect=ccxt.NetworkError)
|
||||
exchange = get_patched_exchange(mocker, default_conf, api_mock)
|
||||
exchange.get_balances()
|
||||
assert api_mock.fetch_balance.call_count == API_RETRY_COUNT + 1
|
||||
|
||||
with pytest.raises(OperationalException):
|
||||
api_mock.fetch_balance = MagicMock(side_effect=ccxt.BaseError)
|
||||
exchange = get_patched_exchange(mocker, default_conf, api_mock)
|
||||
exchange.get_balances()
|
||||
assert api_mock.fetch_balance.call_count == 1
|
||||
ccxt_exceptionhandlers(mocker, default_conf, api_mock,
|
||||
"get_balances", "fetch_balance")
|
||||
|
||||
|
||||
def test_get_tickers(default_conf, mocker):
|
||||
@ -282,15 +315,8 @@ def test_get_tickers(default_conf, mocker):
|
||||
assert tickers['BCH/BTC']['bid'] == 0.6
|
||||
assert tickers['BCH/BTC']['ask'] == 0.5
|
||||
|
||||
with pytest.raises(TemporaryError): # test retrier
|
||||
api_mock.fetch_tickers = MagicMock(side_effect=ccxt.NetworkError)
|
||||
exchange = get_patched_exchange(mocker, default_conf, api_mock)
|
||||
exchange.get_tickers()
|
||||
|
||||
with pytest.raises(OperationalException):
|
||||
api_mock.fetch_tickers = MagicMock(side_effect=ccxt.BaseError)
|
||||
exchange = get_patched_exchange(mocker, default_conf, api_mock)
|
||||
exchange.get_tickers()
|
||||
ccxt_exceptionhandlers(mocker, default_conf, api_mock,
|
||||
"get_tickers", "fetch_tickers")
|
||||
|
||||
with pytest.raises(OperationalException):
|
||||
api_mock.fetch_tickers = MagicMock(side_effect=ccxt.NotSupported)
|
||||
@ -345,15 +371,9 @@ def test_get_ticker(default_conf, mocker):
|
||||
exchange.get_ticker(pair='ETH/BTC', refresh=False)
|
||||
assert api_mock.fetch_ticker.call_count == 0
|
||||
|
||||
with pytest.raises(TemporaryError): # test retrier
|
||||
api_mock.fetch_ticker = MagicMock(side_effect=ccxt.NetworkError)
|
||||
exchange = get_patched_exchange(mocker, default_conf, api_mock)
|
||||
exchange.get_ticker(pair='ETH/BTC', refresh=True)
|
||||
|
||||
with pytest.raises(OperationalException):
|
||||
api_mock.fetch_ticker = MagicMock(side_effect=ccxt.BaseError)
|
||||
exchange = get_patched_exchange(mocker, default_conf, api_mock)
|
||||
exchange.get_ticker(pair='ETH/BTC', refresh=True)
|
||||
ccxt_exceptionhandlers(mocker, default_conf, api_mock,
|
||||
"get_ticker", "fetch_ticker",
|
||||
pair='ETH/BTC', refresh=True)
|
||||
|
||||
api_mock.fetch_ticker = MagicMock(return_value={})
|
||||
exchange = get_patched_exchange(mocker, default_conf, api_mock)
|
||||
@ -416,17 +436,14 @@ def test_get_ticker_history(default_conf, mocker):
|
||||
assert ticks[0][4] == 9
|
||||
assert ticks[0][5] == 10
|
||||
|
||||
with pytest.raises(TemporaryError): # test retrier
|
||||
api_mock.fetch_ohlcv = MagicMock(side_effect=ccxt.NetworkError)
|
||||
exchange = get_patched_exchange(mocker, default_conf, api_mock)
|
||||
# new symbol to get around cache
|
||||
exchange.get_ticker_history('ABCD/BTC', default_conf['ticker_interval'])
|
||||
ccxt_exceptionhandlers(mocker, default_conf, api_mock,
|
||||
"get_ticker_history", "fetch_ohlcv",
|
||||
pair='ABCD/BTC', tick_interval=default_conf['ticker_interval'])
|
||||
|
||||
with pytest.raises(OperationalException):
|
||||
api_mock.fetch_ohlcv = MagicMock(side_effect=ccxt.BaseError)
|
||||
with pytest.raises(OperationalException, match=r'Exchange .* does not support.*'):
|
||||
api_mock.fetch_ohlcv = MagicMock(side_effect=ccxt.NotSupported)
|
||||
exchange = get_patched_exchange(mocker, default_conf, api_mock)
|
||||
# new symbol to get around cache
|
||||
exchange.get_ticker_history('EFGH/BTC', default_conf['ticker_interval'])
|
||||
exchange.get_ticker_history(pair='ABCD/BTC', tick_interval=default_conf['ticker_interval'])
|
||||
|
||||
|
||||
def test_get_ticker_history_sort(default_conf, mocker):
|
||||
@ -515,24 +532,15 @@ def test_cancel_order(default_conf, mocker):
|
||||
exchange = get_patched_exchange(mocker, default_conf, api_mock)
|
||||
assert exchange.cancel_order(order_id='_', pair='TKN/BTC') == 123
|
||||
|
||||
with pytest.raises(TemporaryError):
|
||||
api_mock.cancel_order = MagicMock(side_effect=ccxt.NetworkError)
|
||||
|
||||
exchange = get_patched_exchange(mocker, default_conf, api_mock)
|
||||
exchange.cancel_order(order_id='_', pair='TKN/BTC')
|
||||
assert api_mock.cancel_order.call_count == API_RETRY_COUNT + 1
|
||||
|
||||
with pytest.raises(DependencyException):
|
||||
api_mock.cancel_order = MagicMock(side_effect=ccxt.InvalidOrder)
|
||||
exchange = get_patched_exchange(mocker, default_conf, api_mock)
|
||||
exchange.cancel_order(order_id='_', pair='TKN/BTC')
|
||||
assert api_mock.cancel_order.call_count == API_RETRY_COUNT + 1
|
||||
|
||||
with pytest.raises(OperationalException):
|
||||
api_mock.cancel_order = MagicMock(side_effect=ccxt.BaseError)
|
||||
exchange = get_patched_exchange(mocker, default_conf, api_mock)
|
||||
exchange.cancel_order(order_id='_', pair='TKN/BTC')
|
||||
assert api_mock.cancel_order.call_count == 1
|
||||
ccxt_exceptionhandlers(mocker, default_conf, api_mock,
|
||||
"cancel_order", "cancel_order",
|
||||
order_id='_', pair='TKN/BTC')
|
||||
|
||||
|
||||
def test_get_order(default_conf, mocker):
|
||||
@ -550,23 +558,15 @@ def test_get_order(default_conf, mocker):
|
||||
exchange = get_patched_exchange(mocker, default_conf, api_mock)
|
||||
assert exchange.get_order('X', 'TKN/BTC') == 456
|
||||
|
||||
with pytest.raises(TemporaryError):
|
||||
api_mock.fetch_order = MagicMock(side_effect=ccxt.NetworkError)
|
||||
exchange = get_patched_exchange(mocker, default_conf, api_mock)
|
||||
exchange.get_order(order_id='_', pair='TKN/BTC')
|
||||
assert api_mock.fetch_order.call_count == API_RETRY_COUNT + 1
|
||||
|
||||
with pytest.raises(DependencyException):
|
||||
api_mock.fetch_order = MagicMock(side_effect=ccxt.InvalidOrder)
|
||||
exchange = get_patched_exchange(mocker, default_conf, api_mock)
|
||||
exchange.get_order(order_id='_', pair='TKN/BTC')
|
||||
assert api_mock.fetch_order.call_count == API_RETRY_COUNT + 1
|
||||
|
||||
with pytest.raises(OperationalException):
|
||||
api_mock.fetch_order = MagicMock(side_effect=ccxt.BaseError)
|
||||
exchange = get_patched_exchange(mocker, default_conf, api_mock)
|
||||
exchange.get_order(order_id='_', pair='TKN/BTC')
|
||||
assert api_mock.fetch_order.call_count == 1
|
||||
ccxt_exceptionhandlers(mocker, default_conf, api_mock,
|
||||
'get_order', 'fetch_order',
|
||||
order_id='_', pair='TKN/BTC')
|
||||
|
||||
|
||||
def test_name(default_conf, mocker):
|
||||
@ -651,19 +651,12 @@ def test_get_trades_for_order(default_conf, mocker):
|
||||
assert len(orders) == 1
|
||||
assert orders[0]['price'] == 165
|
||||
|
||||
# test Exceptions
|
||||
with pytest.raises(OperationalException):
|
||||
api_mock = MagicMock()
|
||||
api_mock.fetch_my_trades = MagicMock(side_effect=ccxt.BaseError)
|
||||
exchange = get_patched_exchange(mocker, default_conf, api_mock)
|
||||
exchange.get_trades_for_order(order_id, 'LTC/BTC', since)
|
||||
ccxt_exceptionhandlers(mocker, default_conf, api_mock,
|
||||
'get_trades_for_order', 'fetch_my_trades',
|
||||
order_id=order_id, pair='LTC/BTC', since=since)
|
||||
|
||||
with pytest.raises(TemporaryError):
|
||||
api_mock = MagicMock()
|
||||
api_mock.fetch_my_trades = MagicMock(side_effect=ccxt.NetworkError)
|
||||
exchange = get_patched_exchange(mocker, default_conf, api_mock)
|
||||
exchange.get_trades_for_order(order_id, 'LTC/BTC', since)
|
||||
assert api_mock.fetch_my_trades.call_count == API_RETRY_COUNT + 1
|
||||
mocker.patch('freqtrade.exchange.Exchange.exchange_has', MagicMock(return_value=False))
|
||||
assert exchange.get_trades_for_order(order_id, 'LTC/BTC', since) == []
|
||||
|
||||
|
||||
def test_get_markets(default_conf, mocker, markets):
|
||||
@ -677,19 +670,8 @@ def test_get_markets(default_conf, mocker, markets):
|
||||
assert ret[0]["id"] == "ethbtc"
|
||||
assert ret[0]["symbol"] == "ETH/BTC"
|
||||
|
||||
# test Exceptions
|
||||
with pytest.raises(OperationalException):
|
||||
api_mock = MagicMock()
|
||||
api_mock.fetch_markets = MagicMock(side_effect=ccxt.BaseError)
|
||||
exchange = get_patched_exchange(mocker, default_conf, api_mock)
|
||||
exchange.get_markets()
|
||||
|
||||
with pytest.raises(TemporaryError):
|
||||
api_mock = MagicMock()
|
||||
api_mock.fetch_markets = MagicMock(side_effect=ccxt.NetworkError)
|
||||
exchange = get_patched_exchange(mocker, default_conf, api_mock)
|
||||
exchange.get_markets()
|
||||
assert api_mock.fetch_markets.call_count == API_RETRY_COUNT + 1
|
||||
ccxt_exceptionhandlers(mocker, default_conf, api_mock,
|
||||
'get_markets', 'fetch_markets')
|
||||
|
||||
|
||||
def test_get_fee(default_conf, mocker):
|
||||
@ -704,19 +686,8 @@ def test_get_fee(default_conf, mocker):
|
||||
|
||||
assert exchange.get_fee() == 0.025
|
||||
|
||||
# test Exceptions
|
||||
with pytest.raises(OperationalException):
|
||||
api_mock = MagicMock()
|
||||
api_mock.calculate_fee = MagicMock(side_effect=ccxt.BaseError)
|
||||
exchange = get_patched_exchange(mocker, default_conf, api_mock)
|
||||
exchange.get_fee()
|
||||
|
||||
with pytest.raises(TemporaryError):
|
||||
api_mock = MagicMock()
|
||||
api_mock.calculate_fee = MagicMock(side_effect=ccxt.NetworkError)
|
||||
exchange = get_patched_exchange(mocker, default_conf, api_mock)
|
||||
exchange.get_fee()
|
||||
assert api_mock.calculate_fee.call_count == API_RETRY_COUNT + 1
|
||||
ccxt_exceptionhandlers(mocker, default_conf, api_mock,
|
||||
'get_fee', 'calculate_fee')
|
||||
|
||||
|
||||
def test_get_amount_lots(default_conf, mocker):
|
||||
|
@ -3,19 +3,20 @@
|
||||
import json
|
||||
import math
|
||||
import random
|
||||
import pytest
|
||||
from copy import deepcopy
|
||||
from typing import List
|
||||
from unittest.mock import MagicMock
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import pytest
|
||||
from arrow import Arrow
|
||||
|
||||
from freqtrade import optimize, constants, DependencyException
|
||||
from freqtrade import DependencyException, constants, optimize
|
||||
from freqtrade.analyze import Analyze
|
||||
from freqtrade.arguments import Arguments, TimeRange
|
||||
from freqtrade.optimize.backtesting import Backtesting, start, setup_configuration
|
||||
from freqtrade.optimize.backtesting import (Backtesting, setup_configuration,
|
||||
start)
|
||||
from freqtrade.tests.conftest import log_has, patch_exchange
|
||||
|
||||
|
||||
@ -627,9 +628,13 @@ def test_backtest_record(default_conf, fee, mocker):
|
||||
Arrow(2017, 11, 14, 22, 10, 00).datetime,
|
||||
Arrow(2017, 11, 14, 22, 43, 00).datetime,
|
||||
Arrow(2017, 11, 14, 22, 58, 00).datetime],
|
||||
"open_rate": [0.002543, 0.003003, 0.003089, 0.003214],
|
||||
"close_rate": [0.002546, 0.003014, 0.003103, 0.003217],
|
||||
"open_index": [1, 119, 153, 185],
|
||||
"close_index": [118, 151, 184, 199],
|
||||
"trade_duration": [123, 34, 31, 14]})
|
||||
"trade_duration": [123, 34, 31, 14],
|
||||
"open_at_end": [False, False, False, True]
|
||||
})
|
||||
backtesting._store_backtest_result("backtest-result.json", results)
|
||||
assert len(results) == 4
|
||||
# Assert file_dump_json was only called once
|
||||
@ -640,12 +645,16 @@ def test_backtest_record(default_conf, fee, mocker):
|
||||
# ('UNITTEST/BTC', 0.00331158, '1510684320', '1510691700', 0, 117)
|
||||
# Below follows just a typecheck of the schema/type of trade-records
|
||||
oix = None
|
||||
for (pair, profit, date_buy, date_sell, buy_index, dur) in records:
|
||||
for (pair, profit, date_buy, date_sell, buy_index, dur,
|
||||
openr, closer, open_at_end) in records:
|
||||
assert pair == 'UNITTEST/BTC'
|
||||
isinstance(profit, float)
|
||||
assert isinstance(profit, float)
|
||||
# FIX: buy/sell should be converted to ints
|
||||
isinstance(date_buy, str)
|
||||
isinstance(date_sell, str)
|
||||
assert isinstance(date_buy, float)
|
||||
assert isinstance(date_sell, float)
|
||||
assert isinstance(openr, float)
|
||||
assert isinstance(closer, float)
|
||||
assert isinstance(open_at_end, bool)
|
||||
isinstance(buy_index, pd._libs.tslib.Timestamp)
|
||||
if oix:
|
||||
assert buy_index > oix
|
||||
|
@ -1,6 +1,5 @@
|
||||
# pragma pylint: disable=missing-docstring,W0212,C0103
|
||||
import os
|
||||
import signal
|
||||
from copy import deepcopy
|
||||
from unittest.mock import MagicMock
|
||||
|
||||
@ -40,21 +39,11 @@ def create_trials(mocker) -> None:
|
||||
mocker.patch('freqtrade.optimize.hyperopt.os.path.exists', return_value=False)
|
||||
mocker.patch('freqtrade.optimize.hyperopt.os.path.getsize', return_value=1)
|
||||
mocker.patch('freqtrade.optimize.hyperopt.os.remove', return_value=True)
|
||||
mocker.patch('freqtrade.optimize.hyperopt.pickle.dump', return_value=None)
|
||||
mocker.patch('freqtrade.optimize.hyperopt.dump', return_value=None)
|
||||
|
||||
return mocker.Mock(
|
||||
results=[
|
||||
{
|
||||
'loss': 1,
|
||||
'result': 'foo',
|
||||
'status': 'ok'
|
||||
}
|
||||
],
|
||||
best_trial={'misc': {'vals': {'adx': 999}}}
|
||||
)
|
||||
return [{'loss': 1, 'result': 'foo', 'params': {}}]
|
||||
|
||||
|
||||
# Unit tests
|
||||
def test_start(mocker, default_conf, caplog) -> None:
|
||||
"""
|
||||
Test start() function
|
||||
@ -148,155 +137,18 @@ def test_no_log_if_loss_does_not_improve(init_hyperopt, caplog) -> None:
|
||||
assert caplog.record_tuples == []
|
||||
|
||||
|
||||
def test_fmin_best_results(mocker, init_hyperopt, default_conf, caplog) -> None:
|
||||
fmin_result = {
|
||||
"macd_below_zero": 0,
|
||||
"adx": 1,
|
||||
"adx-value": 15.0,
|
||||
"fastd": 1,
|
||||
"fastd-value": 40.0,
|
||||
"green_candle": 1,
|
||||
"mfi": 0,
|
||||
"over_sar": 0,
|
||||
"rsi": 1,
|
||||
"rsi-value": 37.0,
|
||||
"trigger": 2,
|
||||
"uptrend_long_ema": 1,
|
||||
"uptrend_short_ema": 0,
|
||||
"uptrend_sma": 0,
|
||||
"stoploss": -0.1,
|
||||
"roi_t1": 1,
|
||||
"roi_t2": 2,
|
||||
"roi_t3": 3,
|
||||
"roi_p1": 1,
|
||||
"roi_p2": 2,
|
||||
"roi_p3": 3,
|
||||
}
|
||||
|
||||
conf = deepcopy(default_conf)
|
||||
conf.update({'config': 'config.json.example'})
|
||||
conf.update({'epochs': 1})
|
||||
conf.update({'timerange': None})
|
||||
conf.update({'spaces': 'all'})
|
||||
|
||||
mocker.patch('freqtrade.optimize.hyperopt.load_data', MagicMock())
|
||||
mocker.patch('freqtrade.optimize.hyperopt.fmin', return_value=fmin_result)
|
||||
patch_exchange(mocker)
|
||||
|
||||
StrategyResolver({'strategy': 'DefaultStrategy'})
|
||||
hyperopt = Hyperopt(conf)
|
||||
hyperopt.trials = create_trials(mocker)
|
||||
hyperopt.tickerdata_to_dataframe = MagicMock()
|
||||
hyperopt.start()
|
||||
|
||||
exists = [
|
||||
'Best parameters:',
|
||||
'"adx": {\n "enabled": true,\n "value": 15.0\n },',
|
||||
'"fastd": {\n "enabled": true,\n "value": 40.0\n },',
|
||||
'"green_candle": {\n "enabled": true\n },',
|
||||
'"macd_below_zero": {\n "enabled": false\n },',
|
||||
'"mfi": {\n "enabled": false\n },',
|
||||
'"over_sar": {\n "enabled": false\n },',
|
||||
'"roi_p1": 1.0,',
|
||||
'"roi_p2": 2.0,',
|
||||
'"roi_p3": 3.0,',
|
||||
'"roi_t1": 1.0,',
|
||||
'"roi_t2": 2.0,',
|
||||
'"roi_t3": 3.0,',
|
||||
'"rsi": {\n "enabled": true,\n "value": 37.0\n },',
|
||||
'"stoploss": -0.1,',
|
||||
'"trigger": {\n "type": "faststoch10"\n },',
|
||||
'"uptrend_long_ema": {\n "enabled": true\n },',
|
||||
'"uptrend_short_ema": {\n "enabled": false\n },',
|
||||
'"uptrend_sma": {\n "enabled": false\n }',
|
||||
'ROI table:\n{0: 6.0, 3.0: 3.0, 5.0: 1.0, 6.0: 0}',
|
||||
'Best Result:\nfoo'
|
||||
]
|
||||
for line in exists:
|
||||
assert line in caplog.text
|
||||
|
||||
|
||||
def test_fmin_throw_value_error(mocker, init_hyperopt, default_conf, caplog) -> None:
|
||||
mocker.patch('freqtrade.optimize.hyperopt.load_data', MagicMock())
|
||||
mocker.patch('freqtrade.optimize.hyperopt.fmin', side_effect=ValueError())
|
||||
|
||||
conf = deepcopy(default_conf)
|
||||
conf.update({'config': 'config.json.example'})
|
||||
conf.update({'epochs': 1})
|
||||
conf.update({'timerange': None})
|
||||
conf.update({'spaces': 'all'})
|
||||
patch_exchange(mocker)
|
||||
|
||||
StrategyResolver({'strategy': 'DefaultStrategy'})
|
||||
hyperopt = Hyperopt(conf)
|
||||
hyperopt.trials = create_trials(mocker)
|
||||
hyperopt.tickerdata_to_dataframe = MagicMock()
|
||||
|
||||
hyperopt.start()
|
||||
|
||||
exists = [
|
||||
'Best Result:',
|
||||
'Sorry, Hyperopt was not able to find good parameters. Please try with more epochs '
|
||||
'(param: -e).',
|
||||
]
|
||||
|
||||
for line in exists:
|
||||
assert line in caplog.text
|
||||
|
||||
|
||||
def test_resuming_previous_hyperopt_results_succeeds(mocker, init_hyperopt, default_conf) -> None:
|
||||
trials = create_trials(mocker)
|
||||
|
||||
conf = deepcopy(default_conf)
|
||||
conf.update({'config': 'config.json.example'})
|
||||
conf.update({'epochs': 1})
|
||||
conf.update({'timerange': None})
|
||||
conf.update({'spaces': 'all'})
|
||||
|
||||
mocker.patch('freqtrade.optimize.hyperopt.os.path.exists', return_value=True)
|
||||
mocker.patch('freqtrade.optimize.hyperopt.len', return_value=len(trials.results))
|
||||
mock_read = mocker.patch(
|
||||
'freqtrade.optimize.hyperopt.Hyperopt.read_trials',
|
||||
return_value=trials
|
||||
)
|
||||
mock_save = mocker.patch(
|
||||
'freqtrade.optimize.hyperopt.Hyperopt.save_trials',
|
||||
return_value=None
|
||||
)
|
||||
mocker.patch('freqtrade.optimize.hyperopt.sorted', return_value=trials.results)
|
||||
mocker.patch('freqtrade.optimize.hyperopt.load_data', MagicMock())
|
||||
mocker.patch('freqtrade.optimize.hyperopt.fmin', return_value={})
|
||||
patch_exchange(mocker)
|
||||
|
||||
StrategyResolver({'strategy': 'DefaultStrategy'})
|
||||
hyperopt = Hyperopt(conf)
|
||||
hyperopt.trials = trials
|
||||
hyperopt.tickerdata_to_dataframe = MagicMock()
|
||||
|
||||
hyperopt.start()
|
||||
|
||||
mock_read.assert_called_once()
|
||||
mock_save.assert_called_once()
|
||||
|
||||
current_tries = hyperopt.current_tries
|
||||
total_tries = hyperopt.total_tries
|
||||
|
||||
assert current_tries == len(trials.results)
|
||||
assert total_tries == (current_tries + len(trials.results))
|
||||
|
||||
|
||||
def test_save_trials_saves_trials(mocker, init_hyperopt, caplog) -> None:
|
||||
create_trials(mocker)
|
||||
mock_dump = mocker.patch('freqtrade.optimize.hyperopt.pickle.dump', return_value=None)
|
||||
trials = create_trials(mocker)
|
||||
mock_dump = mocker.patch('freqtrade.optimize.hyperopt.dump', return_value=None)
|
||||
|
||||
hyperopt = _HYPEROPT
|
||||
mocker.patch('freqtrade.optimize.hyperopt.open', return_value=hyperopt.trials_file)
|
||||
_HYPEROPT.trials = trials
|
||||
|
||||
hyperopt.save_trials()
|
||||
|
||||
trials_file = os.path.join('freqtrade', 'tests', 'optimize', 'ut_trials.pickle')
|
||||
assert log_has(
|
||||
'Saving Trials to \'{}\''.format(trials_file),
|
||||
'Saving 1 evaluations to \'{}\''.format(trials_file),
|
||||
caplog.record_tuples
|
||||
)
|
||||
mock_dump.assert_called_once()
|
||||
@ -304,8 +156,7 @@ def test_save_trials_saves_trials(mocker, init_hyperopt, caplog) -> None:
|
||||
|
||||
def test_read_trials_returns_trials_file(mocker, init_hyperopt, caplog) -> None:
|
||||
trials = create_trials(mocker)
|
||||
mock_load = mocker.patch('freqtrade.optimize.hyperopt.pickle.load', return_value=trials)
|
||||
mock_open = mocker.patch('freqtrade.optimize.hyperopt.open', return_value=mock_load)
|
||||
mock_load = mocker.patch('freqtrade.optimize.hyperopt.load', return_value=trials)
|
||||
|
||||
hyperopt = _HYPEROPT
|
||||
hyperopt_trial = hyperopt.read_trials()
|
||||
@ -315,7 +166,6 @@ def test_read_trials_returns_trials_file(mocker, init_hyperopt, caplog) -> None:
|
||||
caplog.record_tuples
|
||||
)
|
||||
assert hyperopt_trial == trials
|
||||
mock_open.assert_called_once()
|
||||
mock_load.assert_called_once()
|
||||
|
||||
|
||||
@ -333,12 +183,15 @@ def test_roi_table_generation(init_hyperopt) -> None:
|
||||
assert hyperopt.generate_roi_table(params) == {0: 6, 15: 3, 25: 1, 30: 0}
|
||||
|
||||
|
||||
def test_start_calls_fmin(mocker, init_hyperopt, default_conf) -> None:
|
||||
trials = create_trials(mocker)
|
||||
mocker.patch('freqtrade.optimize.hyperopt.sorted', return_value=trials.results)
|
||||
def test_start_calls_optimizer(mocker, init_hyperopt, default_conf, caplog) -> None:
|
||||
dumper = mocker.patch('freqtrade.optimize.hyperopt.dump', MagicMock())
|
||||
mocker.patch('freqtrade.optimize.hyperopt.load_data', MagicMock())
|
||||
mocker.patch('freqtrade.optimize.hyperopt.multiprocessing.cpu_count', MagicMock(return_value=1))
|
||||
parallel = mocker.patch(
|
||||
'freqtrade.optimize.hyperopt.Hyperopt.run_optimizer_parallel',
|
||||
MagicMock(return_value=[{'loss': 1, 'result': 'foo result', 'params': {}}])
|
||||
)
|
||||
patch_exchange(mocker)
|
||||
mock_fmin = mocker.patch('freqtrade.optimize.hyperopt.fmin', return_value={})
|
||||
|
||||
conf = deepcopy(default_conf)
|
||||
conf.update({'config': 'config.json.example'})
|
||||
@ -347,11 +200,13 @@ def test_start_calls_fmin(mocker, init_hyperopt, default_conf) -> None:
|
||||
conf.update({'spaces': 'all'})
|
||||
|
||||
hyperopt = Hyperopt(conf)
|
||||
hyperopt.trials = trials
|
||||
hyperopt.tickerdata_to_dataframe = MagicMock()
|
||||
|
||||
hyperopt.start()
|
||||
mock_fmin.assert_called_once()
|
||||
parallel.assert_called_once()
|
||||
|
||||
assert 'Best result:\nfoo result\nwith values:\n{}' in caplog.text
|
||||
assert dumper.called
|
||||
|
||||
|
||||
def test_format_results(init_hyperopt):
|
||||
@ -384,20 +239,6 @@ def test_format_results(init_hyperopt):
|
||||
assert result.find('Total profit 1.00000000 EUR')
|
||||
|
||||
|
||||
def test_signal_handler(mocker, init_hyperopt):
|
||||
"""
|
||||
Test Hyperopt.signal_handler()
|
||||
"""
|
||||
m = MagicMock()
|
||||
mocker.patch('sys.exit', m)
|
||||
mocker.patch('freqtrade.optimize.hyperopt.Hyperopt.save_trials', m)
|
||||
mocker.patch('freqtrade.optimize.hyperopt.Hyperopt.log_trials_result', m)
|
||||
|
||||
hyperopt = _HYPEROPT
|
||||
hyperopt.signal_handler(signal.SIGTERM, None)
|
||||
assert m.call_count == 3
|
||||
|
||||
|
||||
def test_has_space(init_hyperopt):
|
||||
"""
|
||||
Test Hyperopt.has_space() method
|
||||
@ -422,8 +263,8 @@ def test_populate_indicators(init_hyperopt) -> None:
|
||||
|
||||
# Check if some indicators are generated. We will not test all of them
|
||||
assert 'adx' in dataframe
|
||||
assert 'ao' in dataframe
|
||||
assert 'cci' in dataframe
|
||||
assert 'mfi' in dataframe
|
||||
assert 'rsi' in dataframe
|
||||
|
||||
|
||||
def test_buy_strategy_generator(init_hyperopt) -> None:
|
||||
@ -437,44 +278,15 @@ def test_buy_strategy_generator(init_hyperopt) -> None:
|
||||
|
||||
populate_buy_trend = _HYPEROPT.buy_strategy_generator(
|
||||
{
|
||||
'uptrend_long_ema': {
|
||||
'enabled': True
|
||||
},
|
||||
'macd_below_zero': {
|
||||
'enabled': True
|
||||
},
|
||||
'uptrend_short_ema': {
|
||||
'enabled': True
|
||||
},
|
||||
'mfi': {
|
||||
'enabled': True,
|
||||
'value': 20
|
||||
},
|
||||
'fastd': {
|
||||
'enabled': True,
|
||||
'value': 20
|
||||
},
|
||||
'adx': {
|
||||
'enabled': True,
|
||||
'value': 20
|
||||
},
|
||||
'rsi': {
|
||||
'enabled': True,
|
||||
'value': 20
|
||||
},
|
||||
'over_sar': {
|
||||
'enabled': True,
|
||||
},
|
||||
'green_candle': {
|
||||
'enabled': True,
|
||||
},
|
||||
'uptrend_sma': {
|
||||
'enabled': True,
|
||||
},
|
||||
|
||||
'trigger': {
|
||||
'type': 'lower_bb'
|
||||
}
|
||||
'adx-value': 20,
|
||||
'fastd-value': 20,
|
||||
'mfi-value': 20,
|
||||
'rsi-value': 20,
|
||||
'adx-enabled': True,
|
||||
'fastd-enabled': True,
|
||||
'mfi-enabled': True,
|
||||
'rsi-enabled': True,
|
||||
'trigger': 'bb_lower'
|
||||
}
|
||||
)
|
||||
result = populate_buy_trend(dataframe)
|
||||
@ -503,35 +315,34 @@ def test_generate_optimizer(mocker, init_hyperopt, default_conf) -> None:
|
||||
MagicMock(return_value=backtest_result)
|
||||
)
|
||||
patch_exchange(mocker)
|
||||
mocker.patch('freqtrade.optimize.hyperopt.load', MagicMock())
|
||||
|
||||
optimizer_param = {
|
||||
'adx': {'enabled': False},
|
||||
'fastd': {'enabled': True, 'value': 35.0},
|
||||
'green_candle': {'enabled': True},
|
||||
'macd_below_zero': {'enabled': True},
|
||||
'mfi': {'enabled': False},
|
||||
'over_sar': {'enabled': False},
|
||||
'roi_p1': 0.01,
|
||||
'roi_p2': 0.01,
|
||||
'roi_p3': 0.1,
|
||||
'adx-value': 0,
|
||||
'fastd-value': 35,
|
||||
'mfi-value': 0,
|
||||
'rsi-value': 0,
|
||||
'adx-enabled': False,
|
||||
'fastd-enabled': True,
|
||||
'mfi-enabled': False,
|
||||
'rsi-enabled': False,
|
||||
'trigger': 'macd_cross_signal',
|
||||
'roi_t1': 60.0,
|
||||
'roi_t2': 30.0,
|
||||
'roi_t3': 20.0,
|
||||
'rsi': {'enabled': False},
|
||||
'roi_p1': 0.01,
|
||||
'roi_p2': 0.01,
|
||||
'roi_p3': 0.1,
|
||||
'stoploss': -0.4,
|
||||
'trigger': {'type': 'macd_cross_signal'},
|
||||
'uptrend_long_ema': {'enabled': False},
|
||||
'uptrend_short_ema': {'enabled': True},
|
||||
'uptrend_sma': {'enabled': True}
|
||||
}
|
||||
|
||||
response_expected = {
|
||||
'loss': 1.9840569076926293,
|
||||
'result': ' 1 trades. Avg profit 2.31%. Total profit 0.00023300 BTC '
|
||||
'(0.0231Σ%). Avg duration 100.0 mins.',
|
||||
'status': 'ok'
|
||||
'params': optimizer_param
|
||||
}
|
||||
|
||||
hyperopt = Hyperopt(conf)
|
||||
generate_optimizer_value = hyperopt.generate_optimizer(optimizer_param)
|
||||
generate_optimizer_value = hyperopt.generate_optimizer(list(optimizer_param.values()))
|
||||
assert generate_optimizer_value == response_expected
|
||||
|
@ -3,16 +3,19 @@
|
||||
import json
|
||||
import os
|
||||
import uuid
|
||||
import arrow
|
||||
from shutil import copyfile
|
||||
|
||||
import arrow
|
||||
|
||||
from freqtrade import optimize
|
||||
from freqtrade.misc import file_dump_json
|
||||
from freqtrade.optimize.__init__ import make_testdata_path, download_pairs, \
|
||||
download_backtesting_testdata, load_tickerdata_file, trim_tickerlist, \
|
||||
load_cached_data_for_updating
|
||||
from freqtrade.arguments import TimeRange
|
||||
from freqtrade.tests.conftest import log_has, get_patched_exchange
|
||||
from freqtrade.misc import file_dump_json
|
||||
from freqtrade.optimize.__init__ import (download_backtesting_testdata,
|
||||
download_pairs,
|
||||
load_cached_data_for_updating,
|
||||
load_tickerdata_file,
|
||||
make_testdata_path, trim_tickerlist)
|
||||
from freqtrade.tests.conftest import get_patched_exchange, log_has
|
||||
|
||||
# Change this if modifying UNITTEST/BTC testdatafile
|
||||
_BTC_UNITTEST_LENGTH = 13681
|
||||
|
@ -13,7 +13,8 @@ from freqtrade.freqtradebot import FreqtradeBot
|
||||
from freqtrade.persistence import Trade
|
||||
from freqtrade.rpc.rpc import RPC, RPCException
|
||||
from freqtrade.state import State
|
||||
from freqtrade.tests.test_freqtradebot import patch_get_signal, patch_coinmarketcap
|
||||
from freqtrade.tests.test_freqtradebot import (patch_coinmarketcap,
|
||||
patch_get_signal)
|
||||
|
||||
|
||||
# Functions for recurrent object patching
|
||||
|
@ -7,7 +7,7 @@ from copy import deepcopy
|
||||
from unittest.mock import MagicMock
|
||||
|
||||
from freqtrade.rpc.rpc_manager import RPCManager
|
||||
from freqtrade.tests.conftest import log_has, get_patched_freqtradebot
|
||||
from freqtrade.tests.conftest import get_patched_freqtradebot, log_has
|
||||
|
||||
|
||||
def test_rpc_manager_object() -> None:
|
||||
|
@ -11,17 +11,18 @@ from datetime import datetime
|
||||
from random import randint
|
||||
from unittest.mock import MagicMock
|
||||
|
||||
from telegram import Update, Message, Chat
|
||||
from telegram import Chat, Message, Update
|
||||
from telegram.error import NetworkError
|
||||
|
||||
from freqtrade import __version__
|
||||
from freqtrade.freqtradebot import FreqtradeBot
|
||||
from freqtrade.persistence import Trade
|
||||
from freqtrade.rpc.telegram import Telegram
|
||||
from freqtrade.rpc.telegram import authorized_only
|
||||
from freqtrade.rpc.telegram import Telegram, authorized_only
|
||||
from freqtrade.state import State
|
||||
from freqtrade.tests.conftest import get_patched_freqtradebot, patch_exchange, log_has
|
||||
from freqtrade.tests.test_freqtradebot import patch_get_signal, patch_coinmarketcap
|
||||
from freqtrade.tests.conftest import (get_patched_freqtradebot, log_has,
|
||||
patch_exchange)
|
||||
from freqtrade.tests.test_freqtradebot import (patch_coinmarketcap,
|
||||
patch_get_signal)
|
||||
|
||||
|
||||
class DummyCls(Telegram):
|
||||
|
@ -1,8 +1,9 @@
|
||||
# pragma pylint: disable=missing-docstring,C0103,protected-access
|
||||
|
||||
import freqtrade.tests.conftest as tt # test tools
|
||||
from unittest.mock import MagicMock
|
||||
|
||||
import freqtrade.tests.conftest as tt # test tools
|
||||
|
||||
# whitelist, blacklist, filtering, all of that will
|
||||
# eventually become some rules to run on a generic ACL engine
|
||||
# perhaps try to anticipate that by using some python package
|
||||
|
@ -12,9 +12,9 @@ import arrow
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade.analyze import Analyze, SignalType
|
||||
from freqtrade.optimize.__init__ import load_tickerdata_file
|
||||
from freqtrade.arguments import TimeRange
|
||||
from freqtrade.tests.conftest import log_has, get_patched_exchange
|
||||
from freqtrade.optimize.__init__ import load_tickerdata_file
|
||||
from freqtrade.tests.conftest import get_patched_exchange, log_has
|
||||
|
||||
# Avoid to reinit the same object again and again
|
||||
_ANALYZE = Analyze({'strategy': 'DefaultStrategy'})
|
||||
@ -42,6 +42,7 @@ def test_analyze_object() -> None:
|
||||
assert hasattr(Analyze, 'get_signal')
|
||||
assert hasattr(Analyze, 'should_sell')
|
||||
assert hasattr(Analyze, 'min_roi_reached')
|
||||
assert hasattr(Analyze, 'stop_loss_reached')
|
||||
|
||||
|
||||
def test_dataframe_correct_length(result):
|
||||
|
@ -4,18 +4,18 @@
|
||||
Unit test file for configuration.py
|
||||
"""
|
||||
import json
|
||||
from argparse import Namespace
|
||||
from copy import deepcopy
|
||||
from unittest.mock import MagicMock
|
||||
from argparse import Namespace
|
||||
|
||||
import pytest
|
||||
from jsonschema import ValidationError
|
||||
|
||||
from freqtrade import OperationalException
|
||||
from freqtrade.arguments import Arguments
|
||||
from freqtrade.configuration import Configuration
|
||||
from freqtrade.constants import DEFAULT_DB_PROD_URL, DEFAULT_DB_DRYRUN_URL
|
||||
from freqtrade.constants import DEFAULT_DB_DRYRUN_URL, DEFAULT_DB_PROD_URL
|
||||
from freqtrade.tests.conftest import log_has
|
||||
from freqtrade import OperationalException
|
||||
|
||||
|
||||
def test_configuration_object() -> None:
|
||||
|
@ -5,7 +5,6 @@ import time
|
||||
from unittest.mock import MagicMock
|
||||
|
||||
import pytest
|
||||
|
||||
from requests.exceptions import RequestException
|
||||
|
||||
from freqtrade.fiat_convert import CryptoFiat, CryptoToFiatConverter
|
||||
|
@ -14,11 +14,13 @@ import arrow
|
||||
import pytest
|
||||
import requests
|
||||
|
||||
from freqtrade import constants, DependencyException, OperationalException, TemporaryError
|
||||
from freqtrade import (DependencyException, OperationalException,
|
||||
TemporaryError, constants)
|
||||
from freqtrade.freqtradebot import FreqtradeBot
|
||||
from freqtrade.persistence import Trade
|
||||
from freqtrade.state import State
|
||||
from freqtrade.tests.conftest import log_has, patch_coinmarketcap, patch_exchange
|
||||
from freqtrade.tests.conftest import (log_has, patch_coinmarketcap,
|
||||
patch_exchange)
|
||||
|
||||
|
||||
# Functions for recurrent object patching
|
||||
@ -348,6 +350,34 @@ def test_get_min_pair_stake_amount(mocker, default_conf) -> None:
|
||||
result = freqtrade._get_min_pair_stake_amount('ETH/BTC', 1)
|
||||
assert result is None
|
||||
|
||||
# no cost Min
|
||||
mocker.patch(
|
||||
'freqtrade.exchange.Exchange.get_markets',
|
||||
MagicMock(return_value=[{
|
||||
'symbol': 'ETH/BTC',
|
||||
'limits': {
|
||||
'cost': {"min": None},
|
||||
'amount': {}
|
||||
}
|
||||
}])
|
||||
)
|
||||
result = freqtrade._get_min_pair_stake_amount('ETH/BTC', 1)
|
||||
assert result is None
|
||||
|
||||
# no amount Min
|
||||
mocker.patch(
|
||||
'freqtrade.exchange.Exchange.get_markets',
|
||||
MagicMock(return_value=[{
|
||||
'symbol': 'ETH/BTC',
|
||||
'limits': {
|
||||
'cost': {},
|
||||
'amount': {"min": None}
|
||||
}
|
||||
}])
|
||||
)
|
||||
result = freqtrade._get_min_pair_stake_amount('ETH/BTC', 1)
|
||||
assert result is None
|
||||
|
||||
# empty 'cost'/'amount' section
|
||||
mocker.patch(
|
||||
'freqtrade.exchange.Exchange.get_markets',
|
||||
@ -1124,7 +1154,7 @@ def test_check_handle_timedout_buy(default_conf, ticker, limit_buy_order_old, fe
|
||||
Trade.session.add(trade_buy)
|
||||
|
||||
# check it does cancel buy orders over the time limit
|
||||
freqtrade.check_handle_timedout(600)
|
||||
freqtrade.check_handle_timedout()
|
||||
assert cancel_order_mock.call_count == 1
|
||||
assert rpc_mock.call_count == 1
|
||||
trades = Trade.query.filter(Trade.open_order_id.is_(trade_buy.open_order_id)).all()
|
||||
@ -1165,7 +1195,7 @@ def test_check_handle_timedout_sell(default_conf, ticker, limit_sell_order_old,
|
||||
Trade.session.add(trade_sell)
|
||||
|
||||
# check it does cancel sell orders over the time limit
|
||||
freqtrade.check_handle_timedout(600)
|
||||
freqtrade.check_handle_timedout()
|
||||
assert cancel_order_mock.call_count == 1
|
||||
assert rpc_mock.call_count == 1
|
||||
assert trade_sell.is_open is True
|
||||
@ -1205,7 +1235,7 @@ def test_check_handle_timedout_partial(default_conf, ticker, limit_buy_order_old
|
||||
|
||||
# check it does cancel buy orders over the time limit
|
||||
# note this is for a partially-complete buy order
|
||||
freqtrade.check_handle_timedout(600)
|
||||
freqtrade.check_handle_timedout()
|
||||
assert cancel_order_mock.call_count == 1
|
||||
assert rpc_mock.call_count == 1
|
||||
trades = Trade.query.filter(Trade.open_order_id.is_(trade_buy.open_order_id)).all()
|
||||
@ -1256,7 +1286,7 @@ def test_check_handle_timedout_exception(default_conf, ticker, mocker, caplog) -
|
||||
'recent call last):\n.*'
|
||||
)
|
||||
|
||||
freqtrade.check_handle_timedout(600)
|
||||
freqtrade.check_handle_timedout()
|
||||
assert filter(regexp.match, caplog.record_tuples)
|
||||
|
||||
|
||||
@ -1599,6 +1629,7 @@ def test_sell_profit_only_disable_loss(default_conf, limit_buy_order, fee, marke
|
||||
}),
|
||||
buy=MagicMock(return_value={'id': limit_buy_order['id']}),
|
||||
get_fee=fee,
|
||||
get_markets=markets
|
||||
)
|
||||
|
||||
conf = deepcopy(default_conf)
|
||||
@ -1616,7 +1647,7 @@ def test_sell_profit_only_disable_loss(default_conf, limit_buy_order, fee, marke
|
||||
assert freqtrade.handle_trade(trade) is True
|
||||
|
||||
|
||||
def test_ignore_roi_if_buy_signal(default_conf, limit_buy_order, fee, mocker) -> None:
|
||||
def test_ignore_roi_if_buy_signal(default_conf, limit_buy_order, fee, markets, mocker) -> None:
|
||||
"""
|
||||
Test sell_profit_only feature when enabled and we have a loss
|
||||
"""
|
||||
@ -1634,6 +1665,7 @@ def test_ignore_roi_if_buy_signal(default_conf, limit_buy_order, fee, mocker) ->
|
||||
}),
|
||||
buy=MagicMock(return_value={'id': limit_buy_order['id']}),
|
||||
get_fee=fee,
|
||||
get_markets=markets
|
||||
)
|
||||
|
||||
conf = deepcopy(default_conf)
|
||||
@ -1654,6 +1686,103 @@ def test_ignore_roi_if_buy_signal(default_conf, limit_buy_order, fee, mocker) ->
|
||||
assert freqtrade.handle_trade(trade) is True
|
||||
|
||||
|
||||
def test_trailing_stop_loss(default_conf, limit_buy_order, fee, caplog, mocker) -> None:
|
||||
"""
|
||||
Test sell_profit_only feature when enabled and we have a loss
|
||||
"""
|
||||
patch_get_signal(mocker)
|
||||
patch_RPCManager(mocker)
|
||||
patch_coinmarketcap(mocker)
|
||||
mocker.patch('freqtrade.freqtradebot.Analyze.min_roi_reached', return_value=False)
|
||||
mocker.patch.multiple(
|
||||
'freqtrade.exchange.Exchange',
|
||||
validate_pairs=MagicMock(),
|
||||
get_ticker=MagicMock(return_value={
|
||||
'bid': 0.00000102,
|
||||
'ask': 0.00000103,
|
||||
'last': 0.00000102
|
||||
}),
|
||||
buy=MagicMock(return_value={'id': limit_buy_order['id']}),
|
||||
get_fee=fee,
|
||||
)
|
||||
|
||||
conf = deepcopy(default_conf)
|
||||
conf['trailing_stop'] = True
|
||||
print(limit_buy_order)
|
||||
freqtrade = FreqtradeBot(conf)
|
||||
freqtrade.create_trade()
|
||||
|
||||
trade = Trade.query.first()
|
||||
trade.update(limit_buy_order)
|
||||
caplog.set_level(logging.DEBUG)
|
||||
# Sell as trailing-stop is reached
|
||||
assert freqtrade.handle_trade(trade) is True
|
||||
assert log_has(
|
||||
f'HIT STOP: current price at 0.000001, stop loss is {trade.stop_loss:.6f}, '
|
||||
f'initial stop loss was at 0.000010, trade opened at 0.000011', caplog.record_tuples)
|
||||
|
||||
|
||||
def test_trailing_stop_loss_positive(default_conf, limit_buy_order, fee, caplog, mocker) -> None:
|
||||
"""
|
||||
Test sell_profit_only feature when enabled and we have a loss
|
||||
"""
|
||||
buy_price = limit_buy_order['price']
|
||||
patch_get_signal(mocker)
|
||||
patch_RPCManager(mocker)
|
||||
patch_coinmarketcap(mocker)
|
||||
mocker.patch('freqtrade.freqtradebot.Analyze.min_roi_reached', return_value=False)
|
||||
mocker.patch.multiple(
|
||||
'freqtrade.exchange.Exchange',
|
||||
validate_pairs=MagicMock(),
|
||||
get_ticker=MagicMock(return_value={
|
||||
'bid': buy_price - 0.000001,
|
||||
'ask': buy_price - 0.000001,
|
||||
'last': buy_price - 0.000001
|
||||
}),
|
||||
buy=MagicMock(return_value={'id': limit_buy_order['id']}),
|
||||
get_fee=fee,
|
||||
)
|
||||
|
||||
conf = deepcopy(default_conf)
|
||||
conf['trailing_stop'] = True
|
||||
conf['trailing_stop_positive'] = 0.01
|
||||
freqtrade = FreqtradeBot(conf)
|
||||
freqtrade.create_trade()
|
||||
|
||||
trade = Trade.query.first()
|
||||
trade.update(limit_buy_order)
|
||||
caplog.set_level(logging.DEBUG)
|
||||
# stop-loss not reached
|
||||
assert freqtrade.handle_trade(trade) is False
|
||||
|
||||
# Raise ticker above buy price
|
||||
mocker.patch('freqtrade.exchange.Exchange.get_ticker',
|
||||
MagicMock(return_value={
|
||||
'bid': buy_price + 0.000003,
|
||||
'ask': buy_price + 0.000003,
|
||||
'last': buy_price + 0.000003
|
||||
}))
|
||||
# stop-loss not reached, adjusted stoploss
|
||||
assert freqtrade.handle_trade(trade) is False
|
||||
assert log_has(f'using positive stop loss mode: 0.01 since we have profit 0.26662643',
|
||||
caplog.record_tuples)
|
||||
assert log_has(f'adjusted stop loss', caplog.record_tuples)
|
||||
assert trade.stop_loss == 0.0000138501
|
||||
|
||||
mocker.patch('freqtrade.exchange.Exchange.get_ticker',
|
||||
MagicMock(return_value={
|
||||
'bid': buy_price + 0.000002,
|
||||
'ask': buy_price + 0.000002,
|
||||
'last': buy_price + 0.000002
|
||||
}))
|
||||
# Lower price again (but still positive)
|
||||
assert freqtrade.handle_trade(trade) is True
|
||||
assert log_has(
|
||||
f'HIT STOP: current price at {buy_price + 0.000002:.6f}, '
|
||||
f'stop loss is {trade.stop_loss:.6f}, '
|
||||
f'initial stop loss was at 0.000010, trade opened at 0.000011', caplog.record_tuples)
|
||||
|
||||
|
||||
def test_disable_ignore_roi_if_buy_signal(default_conf, limit_buy_order,
|
||||
fee, markets, mocker) -> None:
|
||||
"""
|
||||
|
@ -1,6 +1,6 @@
|
||||
import pandas as pd
|
||||
|
||||
from freqtrade.indicator_helpers import went_up, went_down
|
||||
from freqtrade.indicator_helpers import went_down, went_up
|
||||
|
||||
|
||||
def test_went_up():
|
||||
|
@ -11,7 +11,7 @@ import pytest
|
||||
from freqtrade import OperationalException
|
||||
from freqtrade.arguments import Arguments
|
||||
from freqtrade.freqtradebot import FreqtradeBot
|
||||
from freqtrade.main import main, set_loggers, reconfigure
|
||||
from freqtrade.main import main, reconfigure, set_loggers
|
||||
from freqtrade.state import State
|
||||
from freqtrade.tests.conftest import log_has, patch_exchange
|
||||
|
||||
|
@ -8,8 +8,8 @@ import datetime
|
||||
from unittest.mock import MagicMock
|
||||
|
||||
from freqtrade.analyze import Analyze
|
||||
from freqtrade.misc import (shorten_date, datesarray_to_datetimearray,
|
||||
common_datearray, file_dump_json, format_ms_time)
|
||||
from freqtrade.misc import (common_datearray, datesarray_to_datetimearray,
|
||||
file_dump_json, format_ms_time, shorten_date)
|
||||
from freqtrade.optimize.__init__ import load_tickerdata_file
|
||||
|
||||
|
||||
|
@ -5,8 +5,9 @@ from unittest.mock import MagicMock
|
||||
import pytest
|
||||
from sqlalchemy import create_engine
|
||||
|
||||
from freqtrade import constants, OperationalException
|
||||
from freqtrade.persistence import Trade, init, clean_dry_run_db
|
||||
from freqtrade import OperationalException, constants
|
||||
from freqtrade.persistence import Trade, clean_dry_run_db, init
|
||||
from freqtrade.tests.conftest import log_has
|
||||
|
||||
|
||||
@pytest.fixture(scope='function')
|
||||
@ -400,9 +401,12 @@ def test_migrate_old(mocker, default_conf, fee):
|
||||
assert trade.stake_amount == default_conf.get("stake_amount")
|
||||
assert trade.pair == "ETC/BTC"
|
||||
assert trade.exchange == "bittrex"
|
||||
assert trade.max_rate == 0.0
|
||||
assert trade.stop_loss == 0.0
|
||||
assert trade.initial_stop_loss == 0.0
|
||||
|
||||
|
||||
def test_migrate_new(mocker, default_conf, fee):
|
||||
def test_migrate_new(mocker, default_conf, fee, caplog):
|
||||
"""
|
||||
Test Database migration (starting with new pairformat)
|
||||
"""
|
||||
@ -439,6 +443,11 @@ def test_migrate_new(mocker, default_conf, fee):
|
||||
# Create table using the old format
|
||||
engine.execute(create_table_old)
|
||||
engine.execute(insert_table_old)
|
||||
|
||||
# fake previous backup
|
||||
engine.execute("create table trades_bak as select * from trades")
|
||||
|
||||
engine.execute("create table trades_bak1 as select * from trades")
|
||||
# Run init to test migration
|
||||
init(default_conf)
|
||||
|
||||
@ -453,3 +462,54 @@ def test_migrate_new(mocker, default_conf, fee):
|
||||
assert trade.stake_amount == default_conf.get("stake_amount")
|
||||
assert trade.pair == "ETC/BTC"
|
||||
assert trade.exchange == "binance"
|
||||
assert trade.max_rate == 0.0
|
||||
assert trade.stop_loss == 0.0
|
||||
assert trade.initial_stop_loss == 0.0
|
||||
assert log_has("trying trades_bak1", caplog.record_tuples)
|
||||
assert log_has("trying trades_bak2", caplog.record_tuples)
|
||||
|
||||
|
||||
def test_adjust_stop_loss(limit_buy_order, limit_sell_order, fee):
|
||||
trade = Trade(
|
||||
pair='ETH/BTC',
|
||||
stake_amount=0.001,
|
||||
fee_open=fee.return_value,
|
||||
fee_close=fee.return_value,
|
||||
exchange='bittrex',
|
||||
open_rate=1,
|
||||
)
|
||||
|
||||
trade.adjust_stop_loss(trade.open_rate, 0.05, True)
|
||||
assert trade.stop_loss == 0.95
|
||||
assert trade.max_rate == 1
|
||||
assert trade.initial_stop_loss == 0.95
|
||||
|
||||
# Get percent of profit with a lowre rate
|
||||
trade.adjust_stop_loss(0.96, 0.05)
|
||||
assert trade.stop_loss == 0.95
|
||||
assert trade.max_rate == 1
|
||||
assert trade.initial_stop_loss == 0.95
|
||||
|
||||
# Get percent of profit with a custom rate (Higher than open rate)
|
||||
trade.adjust_stop_loss(1.3, -0.1)
|
||||
assert round(trade.stop_loss, 8) == 1.17
|
||||
assert trade.max_rate == 1.3
|
||||
assert trade.initial_stop_loss == 0.95
|
||||
|
||||
# current rate lower again ... should not change
|
||||
trade.adjust_stop_loss(1.2, 0.1)
|
||||
assert round(trade.stop_loss, 8) == 1.17
|
||||
assert trade.max_rate == 1.3
|
||||
assert trade.initial_stop_loss == 0.95
|
||||
|
||||
# current rate higher... should raise stoploss
|
||||
trade.adjust_stop_loss(1.4, 0.1)
|
||||
assert round(trade.stop_loss, 8) == 1.26
|
||||
assert trade.max_rate == 1.4
|
||||
assert trade.initial_stop_loss == 0.95
|
||||
|
||||
# Initial is true but stop_loss set - so doesn't do anything
|
||||
trade.adjust_stop_loss(1.7, 0.1, True)
|
||||
assert round(trade.stop_loss, 8) == 1.26
|
||||
assert trade.max_rate == 1.4
|
||||
assert trade.initial_stop_loss == 0.95
|
||||
|
@ -1,5 +1,5 @@
|
||||
ccxt==1.14.256
|
||||
SQLAlchemy==1.2.8
|
||||
ccxt==1.15.13
|
||||
SQLAlchemy==1.2.9
|
||||
python-telegram-bot==10.1.0
|
||||
arrow==0.12.1
|
||||
cachetools==2.1.0
|
||||
@ -12,14 +12,14 @@ scipy==1.1.0
|
||||
jsonschema==2.6.0
|
||||
numpy==1.14.5
|
||||
TA-Lib==0.4.17
|
||||
pytest==3.6.2
|
||||
pytest==3.6.3
|
||||
pytest-mock==1.10.0
|
||||
pytest-cov==2.5.1
|
||||
hyperopt==0.1
|
||||
# do not upgrade networkx before this is fixed https://github.com/hyperopt/hyperopt/issues/325
|
||||
networkx==1.11 # pyup: ignore
|
||||
tabulate==0.8.2
|
||||
coinmarketcap==5.0.3
|
||||
|
||||
# Required for hyperopt
|
||||
scikit-optimize==0.5.2
|
||||
|
||||
# Required for plotting data
|
||||
#plotly==2.7.0
|
||||
|
@ -143,15 +143,14 @@ def convert_main(args: Namespace) -> None:
|
||||
interval = str_interval
|
||||
break
|
||||
# change order on pairs if old ticker interval found
|
||||
|
||||
filename_new = path.join(path.dirname(filename),
|
||||
"{}_{}-{}.json".format(currencies[1],
|
||||
currencies[0], interval))
|
||||
f"{currencies[1]}_{currencies[0]}-{interval}.json")
|
||||
|
||||
elif ret_string:
|
||||
interval = ret_string.group(0)
|
||||
filename_new = path.join(path.dirname(filename),
|
||||
"{}_{}-{}.json".format(currencies[0],
|
||||
currencies[1], interval))
|
||||
f"{currencies[0]}_{currencies[1]}-{interval}.json")
|
||||
|
||||
else:
|
||||
logger.warning("file %s could not be converted, interval not found", filename)
|
||||
|
@ -3,11 +3,14 @@
|
||||
"""This script generate json data from bittrex"""
|
||||
import json
|
||||
import sys
|
||||
import os
|
||||
from pathlib import Path
|
||||
import arrow
|
||||
|
||||
from freqtrade import (arguments, misc)
|
||||
from freqtrade import arguments
|
||||
from freqtrade.arguments import TimeRange
|
||||
from freqtrade.exchange import Exchange
|
||||
from freqtrade.optimize import download_backtesting_testdata
|
||||
|
||||
|
||||
DEFAULT_DL_PATH = 'user_data/data'
|
||||
|
||||
@ -17,25 +20,27 @@ args = arguments.parse_args()
|
||||
|
||||
timeframes = args.timeframes
|
||||
|
||||
dl_path = os.path.join(DEFAULT_DL_PATH, args.exchange)
|
||||
dl_path = Path(DEFAULT_DL_PATH).joinpath(args.exchange)
|
||||
if args.export:
|
||||
dl_path = args.export
|
||||
dl_path = Path(args.export)
|
||||
|
||||
if not os.path.isdir(dl_path):
|
||||
if not dl_path.is_dir():
|
||||
sys.exit(f'Directory {dl_path} does not exist.')
|
||||
|
||||
pairs_file = args.pairs_file if args.pairs_file else os.path.join(dl_path, 'pairs.json')
|
||||
if not os.path.isfile(pairs_file):
|
||||
pairs_file = Path(args.pairs_file) if args.pairs_file else dl_path.joinpath('pairs.json')
|
||||
if not pairs_file.exists():
|
||||
sys.exit(f'No pairs file found with path {pairs_file}.')
|
||||
|
||||
with open(pairs_file) as file:
|
||||
with pairs_file.open() as file:
|
||||
PAIRS = list(set(json.load(file)))
|
||||
|
||||
PAIRS.sort()
|
||||
|
||||
since_time = None
|
||||
|
||||
timerange = TimeRange()
|
||||
if args.days:
|
||||
since_time = arrow.utcnow().shift(days=-args.days).timestamp * 1000
|
||||
time_since = arrow.utcnow().shift(days=-args.days).strftime("%Y%m%d")
|
||||
timerange = arguments.parse_timerange(f'{time_since}-')
|
||||
|
||||
|
||||
print(f'About to download pairs: {PAIRS} to {dl_path}')
|
||||
@ -59,21 +64,18 @@ for pair in PAIRS:
|
||||
print(f"skipping pair {pair}")
|
||||
continue
|
||||
for tick_interval in timeframes:
|
||||
print(f'downloading pair {pair}, interval {tick_interval}')
|
||||
|
||||
data = exchange.get_ticker_history(pair, tick_interval, since_ms=since_time)
|
||||
if not data:
|
||||
print('\tNo data was downloaded')
|
||||
break
|
||||
|
||||
print('\tData was downloaded for period %s - %s' % (
|
||||
arrow.get(data[0][0] / 1000).format(),
|
||||
arrow.get(data[-1][0] / 1000).format()))
|
||||
|
||||
# save data
|
||||
pair_print = pair.replace('/', '_')
|
||||
filename = f'{pair_print}-{tick_interval}.json'
|
||||
misc.file_dump_json(os.path.join(dl_path, filename), data)
|
||||
dl_file = dl_path.joinpath(filename)
|
||||
if args.erase and dl_file.exists():
|
||||
print(f'Deleting existing data for pair {pair}, interval {tick_interval}')
|
||||
dl_file.unlink()
|
||||
|
||||
print(f'downloading pair {pair}, interval {tick_interval}')
|
||||
download_backtesting_testdata(str(dl_path), exchange=exchange,
|
||||
pair=pair,
|
||||
tick_interval=tick_interval,
|
||||
timerange=timerange)
|
||||
|
||||
|
||||
if pairs_not_available:
|
||||
|
@ -25,11 +25,13 @@ Example of usage:
|
||||
--indicators2 fastk,fastd
|
||||
"""
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
import json
|
||||
from pathlib import Path
|
||||
from argparse import Namespace
|
||||
from typing import Dict, List, Any
|
||||
|
||||
import pandas as pd
|
||||
import plotly.graph_objs as go
|
||||
from plotly import tools
|
||||
from plotly.offline import plot
|
||||
@ -37,7 +39,7 @@ from plotly.offline import plot
|
||||
import freqtrade.optimize as optimize
|
||||
from freqtrade import persistence
|
||||
from freqtrade.analyze import Analyze
|
||||
from freqtrade.arguments import Arguments
|
||||
from freqtrade.arguments import Arguments, TimeRange
|
||||
from freqtrade.exchange import Exchange
|
||||
from freqtrade.optimize.backtesting import setup_configuration
|
||||
from freqtrade.persistence import Trade
|
||||
@ -46,6 +48,45 @@ logger = logging.getLogger(__name__)
|
||||
_CONF: Dict[str, Any] = {}
|
||||
|
||||
|
||||
def load_trades(args: Namespace, pair: str, timerange: TimeRange) -> pd.DataFrame:
|
||||
trades: pd.DataFrame = pd.DataFrame()
|
||||
if args.db_url:
|
||||
persistence.init(_CONF)
|
||||
columns = ["pair", "profit", "opents", "closets", "open_rate", "close_rate", "duration"]
|
||||
|
||||
trades = pd.DataFrame([(t.pair, t.calc_profit(),
|
||||
t.open_date, t.close_date,
|
||||
t.open_rate, t.close_rate,
|
||||
t.close_date.timestamp() - t.open_date.timestamp())
|
||||
for t in Trade.query.filter(Trade.pair.is_(pair)).all()],
|
||||
columns=columns)
|
||||
|
||||
if args.exportfilename:
|
||||
file = Path(args.exportfilename)
|
||||
# must align with columns in backtest.py
|
||||
columns = ["pair", "profit", "opents", "closets", "index", "duration",
|
||||
"open_rate", "close_rate", "open_at_end"]
|
||||
with file.open() as f:
|
||||
data = json.load(f)
|
||||
trades = pd.DataFrame(data, columns=columns)
|
||||
trades = trades.loc[trades["pair"] == pair]
|
||||
if timerange:
|
||||
if timerange.starttype == 'date':
|
||||
trades = trades.loc[trades["opents"] >= timerange.startts]
|
||||
if timerange.stoptype == 'date':
|
||||
trades = trades.loc[trades["opents"] <= timerange.stopts]
|
||||
|
||||
trades['opents'] = pd.to_datetime(trades['opents'],
|
||||
unit='s',
|
||||
utc=True,
|
||||
infer_datetime_format=True)
|
||||
trades['closets'] = pd.to_datetime(trades['closets'],
|
||||
unit='s',
|
||||
utc=True,
|
||||
infer_datetime_format=True)
|
||||
return trades
|
||||
|
||||
|
||||
def plot_analyzed_dataframe(args: Namespace) -> None:
|
||||
"""
|
||||
Calls analyze() and plots the returned dataframe
|
||||
@ -102,31 +143,32 @@ def plot_analyzed_dataframe(args: Namespace) -> None:
|
||||
if tickers == {}:
|
||||
exit()
|
||||
|
||||
if args.db_url and args.exportfilename:
|
||||
logger.critical("Can only specify --db-url or --export-filename")
|
||||
# Get trades already made from the DB
|
||||
trades: List[Trade] = []
|
||||
if args.db_url:
|
||||
persistence.init(_CONF)
|
||||
trades = Trade.query.filter(Trade.pair.is_(pair)).all()
|
||||
trades = load_trades(args, pair, timerange)
|
||||
|
||||
dataframes = analyze.tickerdata_to_dataframe(tickers)
|
||||
dataframe = dataframes[pair]
|
||||
dataframe = analyze.populate_buy_trend(dataframe)
|
||||
dataframe = analyze.populate_sell_trend(dataframe)
|
||||
|
||||
if len(dataframe.index) > 750:
|
||||
logger.warning('Ticker contained more than 750 candles, clipping.')
|
||||
|
||||
if len(dataframe.index) > args.plot_limit:
|
||||
logger.warning('Ticker contained more than %s candles as defined '
|
||||
'with --plot-limit, clipping.', args.plot_limit)
|
||||
dataframe = dataframe.tail(args.plot_limit)
|
||||
trades = trades.loc[trades['opents'] >= dataframe.iloc[0]['date']]
|
||||
fig = generate_graph(
|
||||
pair=pair,
|
||||
trades=trades,
|
||||
data=dataframe.tail(750),
|
||||
data=dataframe,
|
||||
args=args
|
||||
)
|
||||
|
||||
plot(fig, filename=os.path.join('user_data', 'freqtrade-plot.html'))
|
||||
plot(fig, filename=str(Path('user_data').joinpath('freqtrade-plot.html')))
|
||||
|
||||
|
||||
def generate_graph(pair, trades, data, args) -> tools.make_subplots:
|
||||
def generate_graph(pair, trades: pd.DataFrame, data: pd.DataFrame, args) -> tools.make_subplots:
|
||||
"""
|
||||
Generate the graph from the data generated by Backtesting or from DB
|
||||
:param pair: Pair to Display on the graph
|
||||
@ -187,8 +229,8 @@ def generate_graph(pair, trades, data, args) -> tools.make_subplots:
|
||||
)
|
||||
|
||||
trade_buys = go.Scattergl(
|
||||
x=[t.open_date.isoformat() for t in trades],
|
||||
y=[t.open_rate for t in trades],
|
||||
x=trades["opents"],
|
||||
y=trades["open_rate"],
|
||||
mode='markers',
|
||||
name='trade_buy',
|
||||
marker=dict(
|
||||
@ -199,8 +241,8 @@ def generate_graph(pair, trades, data, args) -> tools.make_subplots:
|
||||
)
|
||||
)
|
||||
trade_sells = go.Scattergl(
|
||||
x=[t.close_date.isoformat() for t in trades],
|
||||
y=[t.close_rate for t in trades],
|
||||
x=trades["closets"],
|
||||
y=trades["close_rate"],
|
||||
mode='markers',
|
||||
name='trade_sell',
|
||||
marker=dict(
|
||||
@ -299,11 +341,17 @@ def plot_parse_args(args: List[str]) -> Namespace:
|
||||
default='macd',
|
||||
dest='indicators2',
|
||||
)
|
||||
|
||||
arguments.parser.add_argument(
|
||||
'--plot-limit',
|
||||
help='Specify tick limit for plotting - too high values cause huge files - '
|
||||
'Default: %(default)s',
|
||||
dest='plot_limit',
|
||||
default=750,
|
||||
type=int,
|
||||
)
|
||||
arguments.common_args_parser()
|
||||
arguments.optimizer_shared_options(arguments.parser)
|
||||
arguments.backtesting_options(arguments.parser)
|
||||
|
||||
return arguments.parse_args()
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user