Merge branch 'develop' into BASE64

This commit is contained in:
Gert Wohlgemuth
2018-07-05 14:40:04 -07:00
committed by GitHub
48 changed files with 1135 additions and 1140 deletions

View File

@@ -1,5 +1,5 @@
""" FreqTrade bot """
__version__ = '0.17.0'
__version__ = '0.17.1'
class DependencyException(BaseException):

View File

@@ -7,8 +7,8 @@ To launch Freqtrade as a module
"""
import sys
from freqtrade import main
from freqtrade import main
if __name__ == '__main__':
main.set_loggers()

View File

@@ -12,8 +12,7 @@ from pandas import DataFrame, to_datetime
from freqtrade import constants
from freqtrade.exchange import Exchange
from freqtrade.persistence import Trade
from freqtrade.strategy.resolver import StrategyResolver, IStrategy
from freqtrade.strategy.resolver import IStrategy, StrategyResolver
logger = logging.getLogger(__name__)
@@ -180,7 +179,7 @@ class Analyze(object):
:return: True if trade should be sold, False otherwise
"""
current_profit = trade.calc_profit_percent(rate)
if self.stop_loss_reached(current_profit=current_profit):
if self.stop_loss_reached(current_rate=rate, trade=trade, current_time=date):
return True
experimental = self.config.get('experimental', {})
@@ -204,12 +203,46 @@ class Analyze(object):
return False
def stop_loss_reached(self, current_profit: float) -> bool:
"""Based on current profit of the trade and configured stoploss, decides to sell or not"""
def stop_loss_reached(self, current_rate: float, trade: Trade, current_time: datetime) -> bool:
"""
Based on current profit of the trade and configured (trailing) stoploss,
decides to sell or not
"""
current_profit = trade.calc_profit_percent(current_rate)
trailing_stop = self.config.get('trailing_stop', False)
trade.adjust_stop_loss(trade.open_rate, self.strategy.stoploss, initial=True)
# evaluate if the stoploss was hit
if self.strategy.stoploss is not None and trade.stop_loss >= current_rate:
if trailing_stop:
logger.debug(
f"HIT STOP: current price at {current_rate:.6f}, "
f"stop loss is {trade.stop_loss:.6f}, "
f"initial stop loss was at {trade.initial_stop_loss:.6f}, "
f"trade opened at {trade.open_rate:.6f}")
logger.debug(f"trailing stop saved {trade.stop_loss - trade.initial_stop_loss:.6f}")
if self.strategy.stoploss is not None and current_profit < self.strategy.stoploss:
logger.debug('Stop loss hit.')
return True
# update the stop loss afterwards, after all by definition it's supposed to be hanging
if trailing_stop:
# check if we have a special stop loss for positive condition
# and if profit is positive
stop_loss_value = self.strategy.stoploss
if 'trailing_stop_positive' in self.config and current_profit > 0:
# Ignore mypy error check in configuration that this is a float
stop_loss_value = self.config.get('trailing_stop_positive') # type: ignore
logger.debug(f"using positive stop loss mode: {stop_loss_value} "
f"since we have profit {current_profit}")
trade.adjust_stop_loss(current_rate, stop_loss_value)
return False
def min_roi_reached(self, trade: Trade, current_profit: float, current_time: datetime) -> bool:

View File

@@ -2,12 +2,13 @@
This module contains the argument manager class
"""
import os
import argparse
import logging
import os
import re
from typing import List, NamedTuple, Optional
import arrow
from typing import List, Optional, NamedTuple
from freqtrade import __version__, constants
@@ -334,3 +335,10 @@ class Arguments(object):
nargs='+',
dest='timeframes',
)
self.parser.add_argument(
'--erase',
help='Clean all existing data for the selected exchange/pairs/timeframes',
dest='erase',
action='store_true'
)

View File

@@ -1,18 +1,18 @@
"""
This module contains the configuration class
"""
import os
import json
import logging
import os
from argparse import Namespace
from typing import Optional, Dict, Any
from typing import Any, Dict, Optional
import ccxt
from jsonschema import Draft4Validator, validate
from jsonschema.exceptions import ValidationError, best_match
import ccxt
from freqtrade import OperationalException, constants
logger = logging.getLogger(__name__)
@@ -62,8 +62,8 @@ class Configuration(object):
conf = json.load(file)
except FileNotFoundError:
raise OperationalException(
'Config file "{}" not found!'
' Please create a config file or check whether it exists.'.format(path))
f'Config file "{path}" not found!'
' Please create a config file or check whether it exists.')
if 'internals' not in conf:
conf['internals'] = {}
@@ -109,7 +109,7 @@ class Configuration(object):
config['db_url'] = constants.DEFAULT_DB_PROD_URL
logger.info('Dry run is disabled')
logger.info('Using DB: "{}"'.format(config['db_url']))
logger.info(f'Using DB: "{config["db_url"]}"')
# Check if the exchange set by the user is supported
self.check_exchange(config)

View File

@@ -61,7 +61,15 @@ CONF_SCHEMA = {
'minProperties': 1
},
'stoploss': {'type': 'number', 'maximum': 0, 'exclusiveMaximum': True},
'unfilledtimeout': {'type': 'integer', 'minimum': 0},
'trailing_stop': {'type': 'boolean'},
'trailing_stop_positive': {'type': 'number', 'minimum': 0, 'maximum': 1},
'unfilledtimeout': {
'type': 'object',
'properties': {
'buy': {'type': 'number', 'minimum': 3},
'sell': {'type': 'number', 'minimum': 10}
}
},
'bid_strategy': {
'type': 'object',
'properties': {

View File

@@ -7,10 +7,12 @@ import logging
import time
from typing import Dict, List
from coinmarketcap import Market
from requests.exceptions import RequestException
from coinmarketcap import Market
from freqtrade.constants import SUPPORTED_FIAT
logger = logging.getLogger(__name__)

View File

@@ -7,16 +7,14 @@ import logging
import time
import traceback
from datetime import datetime
from typing import Dict, List, Optional, Any, Callable
from typing import Any, Callable, Dict, List, Optional
import arrow
import requests
from cachetools import TTLCache, cached
from freqtrade import (
DependencyException, OperationalException, TemporaryError, persistence, __version__,
)
from freqtrade import constants
from freqtrade import (DependencyException, OperationalException,
TemporaryError, __version__, constants, persistence)
from freqtrade.analyze import Analyze
from freqtrade.exchange import Exchange
from freqtrade.fiat_convert import CryptoToFiatConverter
@@ -160,7 +158,7 @@ class FreqtradeBot(object):
if 'unfilledtimeout' in self.config:
# Check and handle any timed out open orders
self.check_handle_timedout(self.config['unfilledtimeout'])
self.check_handle_timedout()
Trade.session.flush()
except TemporaryError as error:
@@ -277,11 +275,14 @@ class FreqtradeBot(object):
return None
min_stake_amounts = []
if 'cost' in market['limits'] and 'min' in market['limits']['cost']:
min_stake_amounts.append(market['limits']['cost']['min'])
limits = market['limits']
if ('cost' in limits and 'min' in limits['cost']
and limits['cost']['min'] is not None):
min_stake_amounts.append(limits['cost']['min'])
if 'amount' in market['limits'] and 'min' in market['limits']['amount']:
min_stake_amounts.append(market['limits']['amount']['min'] * price)
if ('amount' in limits and 'min' in limits['amount']
and limits['amount']['min'] is not None):
min_stake_amounts.append(limits['amount']['min'] * price)
if not min_stake_amounts:
return None
@@ -492,13 +493,16 @@ with limit `{buy_limit:.8f} ({stake_amount:.6f} \
logger.info('Found no sell signals for whitelisted currencies. Trying again..')
return False
def check_handle_timedout(self, timeoutvalue: int) -> None:
def check_handle_timedout(self) -> None:
"""
Check if any orders are timed out and cancel if neccessary
:param timeoutvalue: Number of minutes until order is considered timed out
:return: None
"""
timeoutthreashold = arrow.utcnow().shift(minutes=-timeoutvalue).datetime
buy_timeout = self.config['unfilledtimeout']['buy']
sell_timeout = self.config['unfilledtimeout']['sell']
buy_timeoutthreashold = arrow.utcnow().shift(minutes=-buy_timeout).datetime
sell_timeoutthreashold = arrow.utcnow().shift(minutes=-sell_timeout).datetime
for trade in Trade.query.filter(Trade.open_order_id.isnot(None)).all():
try:
@@ -521,10 +525,12 @@ with limit `{buy_limit:.8f} ({stake_amount:.6f} \
if int(order['remaining']) == 0:
continue
if order['side'] == 'buy' and ordertime < timeoutthreashold:
self.handle_timedout_limit_buy(trade, order)
elif order['side'] == 'sell' and ordertime < timeoutthreashold:
self.handle_timedout_limit_sell(trade, order)
# Check if trade is still actually open
if order['status'] == 'open':
if order['side'] == 'buy' and ordertime < buy_timeoutthreashold:
self.handle_timedout_limit_buy(trade, order)
elif order['side'] == 'sell' and ordertime < sell_timeoutthreashold:
self.handle_timedout_limit_sell(trade, order)
# FIX: 20180110, why is cancel.order unconditionally here, whereas
# it is conditionally called in the
@@ -620,12 +626,8 @@ with limit `{buy_limit:.8f} ({stake_amount:.6f} \
# Because telegram._forcesell does not have the configuration
# Ignore the FIAT value and does not show the stake_currency as well
else:
message += '` ({gain}: {profit_percent:.2f}%, {profit_coin:.8f})`'.format(
gain="profit" if fmt_exp_profit > 0 else "loss",
profit_percent=fmt_exp_profit,
profit_coin=profit_trade
)
gain = "profit" if fmt_exp_profit > 0 else "loss"
message += f'` ({gain}: {fmt_exp_profit:.2f}%, {profit_trade:.8f})`'
# Send the message
self.rpc.send_msg(message)
Trade.session.flush()

View File

@@ -1,4 +1,4 @@
from math import exp, pi, sqrt, cos
from math import cos, exp, pi, sqrt
import numpy as np
import talib as ta

View File

@@ -74,10 +74,7 @@ def reconfigure(freqtrade: FreqtradeBot, args: Namespace) -> FreqtradeBot:
# Create new instance
freqtrade = FreqtradeBot(Configuration(args).get_config())
freqtrade.rpc.send_msg(
'*Status:* `Config reloaded ...`'.format(
freqtrade.state.name.lower()
)
)
'*Status:* `Config reloaded {freqtrade.state.name.lower()}...`')
return freqtrade

View File

@@ -2,10 +2,10 @@
Various tool function for Freqtrade and scripts
"""
import gzip
import json
import logging
import re
import gzip
from datetime import datetime
from typing import Dict

View File

@@ -54,11 +54,8 @@ def load_tickerdata_file(
:return dict OR empty if unsuccesful
"""
path = make_testdata_path(datadir)
pair_file_string = pair.replace('/', '_')
file = os.path.join(path, '{pair}-{ticker_interval}.json'.format(
pair=pair_file_string,
ticker_interval=ticker_interval,
))
pair_s = pair.replace('/', '_')
file = os.path.join(path, f'{pair_s}-{ticker_interval}.json')
gzipfile = file + '.gz'
# If the file does not exist we download it when None is returned.

View File

@@ -7,18 +7,18 @@ import logging
import operator
from argparse import Namespace
from datetime import datetime
from typing import Dict, Tuple, Any, List, Optional, NamedTuple
from typing import Any, Dict, List, NamedTuple, Optional, Tuple
import arrow
from pandas import DataFrame
from tabulate import tabulate
import freqtrade.optimize as optimize
from freqtrade import constants, DependencyException
from freqtrade.exchange import Exchange
from freqtrade import DependencyException, constants
from freqtrade.analyze import Analyze
from freqtrade.arguments import Arguments
from freqtrade.configuration import Configuration
from freqtrade.exchange import Exchange
from freqtrade.misc import file_dump_json
from freqtrade.persistence import Trade
@@ -38,6 +38,8 @@ class BacktestResult(NamedTuple):
close_index: int
trade_duration: float
open_at_end: bool
open_rate: float
close_rate: float
class Backtesting(object):
@@ -116,11 +118,10 @@ class Backtesting(object):
def _store_backtest_result(self, recordfilename: Optional[str], results: DataFrame) -> None:
records = [(trade_entry.pair, trade_entry.profit_percent,
trade_entry.open_time.timestamp(),
trade_entry.close_time.timestamp(),
trade_entry.open_index - 1, trade_entry.trade_duration)
for index, trade_entry in results.iterrows()]
records = [(t.pair, t.profit_percent, t.open_time.timestamp(),
t.close_time.timestamp(), t.open_index - 1, t.trade_duration,
t.open_rate, t.close_rate, t.open_at_end)
for index, t in results.iterrows()]
if records:
logger.info('Dumping backtest results to %s', recordfilename)
@@ -159,7 +160,9 @@ class Backtesting(object):
trade_duration=(sell_row.date - buy_row.date).seconds // 60,
open_index=buy_row.Index,
close_index=sell_row.Index,
open_at_end=False
open_at_end=False,
open_rate=buy_row.close,
close_rate=sell_row.close
)
if partial_ticker:
# no sell condition found - trade stil open at end of backtest period
@@ -172,7 +175,9 @@ class Backtesting(object):
trade_duration=(sell_row.date - buy_row.date).seconds // 60,
open_index=buy_row.Index,
close_index=sell_row.Index,
open_at_end=True
open_at_end=True,
open_rate=buy_row.close,
close_rate=sell_row.close
)
logger.debug('Force_selling still open trade %s with %s perc - %s', btr.pair,
btr.profit_percent, btr.profit_abs)

View File

@@ -4,22 +4,21 @@
This module contains the hyperopt logic
"""
import json
import logging
import multiprocessing
import os
import pickle
import signal
import sys
from argparse import Namespace
from functools import reduce
from math import exp
from operator import itemgetter
from typing import Dict, Any, Callable, Optional
from typing import Any, Callable, Dict, List
import numpy
import talib.abstract as ta
from hyperopt import STATUS_FAIL, STATUS_OK, Trials, fmin, hp, space_eval, tpe
from pandas import DataFrame
from sklearn.externals.joblib import Parallel, delayed, dump, load
from skopt import Optimizer
from skopt.space import Categorical, Dimension, Integer, Real
import freqtrade.vendor.qtpylib.indicators as qtpylib
from freqtrade.arguments import Arguments
@@ -29,6 +28,9 @@ from freqtrade.optimize.backtesting import Backtesting
logger = logging.getLogger(__name__)
MAX_LOSS = 100000 # just a big enough number to be bad result in loss optimization
TICKERDATA_PICKLE = os.path.join('user_data', 'hyperopt_tickerdata.pkl')
class Hyperopt(Backtesting):
"""
@@ -44,7 +46,6 @@ class Hyperopt(Backtesting):
# to the number of days
self.target_trades = 600
self.total_tries = config.get('epochs', 0)
self.current_tries = 0
self.current_best_loss = 100
# max average trade duration in minutes
@@ -56,130 +57,38 @@ class Hyperopt(Backtesting):
# check that the reported Σ% values do not exceed this!
self.expected_max_profit = 3.0
# Configuration and data used by hyperopt
self.processed: Optional[Dict[str, Any]] = None
# Previous evaluations
self.trials_file = os.path.join('user_data', 'hyperopt_results.pickle')
self.trials: List = []
# Hyperopt Trials
self.trials_file = os.path.join('user_data', 'hyperopt_trials.pickle')
self.trials = Trials()
def get_args(self, params):
dimensions = self.hyperopt_space()
# Ensure the number of dimensions match
# the number of parameters in the list x.
if len(params) != len(dimensions):
raise ValueError('Mismatch in number of search-space dimensions. '
f'len(dimensions)=={len(dimensions)} and len(x)=={len(params)}')
# Create a dict where the keys are the names of the dimensions
# and the values are taken from the list of parameters x.
arg_dict = {dim.name: value for dim, value in zip(dimensions, params)}
return arg_dict
@staticmethod
def populate_indicators(dataframe: DataFrame) -> DataFrame:
"""
Adds several different TA indicators to the given DataFrame
"""
dataframe['adx'] = ta.ADX(dataframe)
dataframe['ao'] = qtpylib.awesome_oscillator(dataframe)
dataframe['cci'] = ta.CCI(dataframe)
macd = ta.MACD(dataframe)
dataframe['macd'] = macd['macd']
dataframe['macdsignal'] = macd['macdsignal']
dataframe['macdhist'] = macd['macdhist']
dataframe['mfi'] = ta.MFI(dataframe)
dataframe['minus_dm'] = ta.MINUS_DM(dataframe)
dataframe['minus_di'] = ta.MINUS_DI(dataframe)
dataframe['plus_dm'] = ta.PLUS_DM(dataframe)
dataframe['plus_di'] = ta.PLUS_DI(dataframe)
dataframe['roc'] = ta.ROC(dataframe)
dataframe['rsi'] = ta.RSI(dataframe)
# Inverse Fisher transform on RSI, values [-1.0, 1.0] (https://goo.gl/2JGGoy)
rsi = 0.1 * (dataframe['rsi'] - 50)
dataframe['fisher_rsi'] = (numpy.exp(2 * rsi) - 1) / (numpy.exp(2 * rsi) + 1)
# Inverse Fisher transform on RSI normalized, value [0.0, 100.0] (https://goo.gl/2JGGoy)
dataframe['fisher_rsi_norma'] = 50 * (dataframe['fisher_rsi'] + 1)
# Stoch
stoch = ta.STOCH(dataframe)
dataframe['slowd'] = stoch['slowd']
dataframe['slowk'] = stoch['slowk']
# Stoch fast
stoch_fast = ta.STOCHF(dataframe)
dataframe['fastd'] = stoch_fast['fastd']
dataframe['fastk'] = stoch_fast['fastk']
# Stoch RSI
stoch_rsi = ta.STOCHRSI(dataframe)
dataframe['fastd_rsi'] = stoch_rsi['fastd']
dataframe['fastk_rsi'] = stoch_rsi['fastk']
dataframe['minus_di'] = ta.MINUS_DI(dataframe)
# Bollinger bands
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
dataframe['bb_lowerband'] = bollinger['lower']
dataframe['bb_middleband'] = bollinger['mid']
dataframe['bb_upperband'] = bollinger['upper']
# EMA - Exponential Moving Average
dataframe['ema3'] = ta.EMA(dataframe, timeperiod=3)
dataframe['ema5'] = ta.EMA(dataframe, timeperiod=5)
dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10)
dataframe['ema50'] = ta.EMA(dataframe, timeperiod=50)
dataframe['ema100'] = ta.EMA(dataframe, timeperiod=100)
# SAR Parabolic
dataframe['sar'] = ta.SAR(dataframe)
# SMA - Simple Moving Average
dataframe['sma'] = ta.SMA(dataframe, timeperiod=40)
# TEMA - Triple Exponential Moving Average
dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9)
# Hilbert Transform Indicator - SineWave
hilbert = ta.HT_SINE(dataframe)
dataframe['htsine'] = hilbert['sine']
dataframe['htleadsine'] = hilbert['leadsine']
# Pattern Recognition - Bullish candlestick patterns
# ------------------------------------
"""
# Hammer: values [0, 100]
dataframe['CDLHAMMER'] = ta.CDLHAMMER(dataframe)
# Inverted Hammer: values [0, 100]
dataframe['CDLINVERTEDHAMMER'] = ta.CDLINVERTEDHAMMER(dataframe)
# Dragonfly Doji: values [0, 100]
dataframe['CDLDRAGONFLYDOJI'] = ta.CDLDRAGONFLYDOJI(dataframe)
# Piercing Line: values [0, 100]
dataframe['CDLPIERCING'] = ta.CDLPIERCING(dataframe) # values [0, 100]
# Morningstar: values [0, 100]
dataframe['CDLMORNINGSTAR'] = ta.CDLMORNINGSTAR(dataframe) # values [0, 100]
# Three White Soldiers: values [0, 100]
dataframe['CDL3WHITESOLDIERS'] = ta.CDL3WHITESOLDIERS(dataframe) # values [0, 100]
"""
# Pattern Recognition - Bearish candlestick patterns
# ------------------------------------
"""
# Hanging Man: values [0, 100]
dataframe['CDLHANGINGMAN'] = ta.CDLHANGINGMAN(dataframe)
# Shooting Star: values [0, 100]
dataframe['CDLSHOOTINGSTAR'] = ta.CDLSHOOTINGSTAR(dataframe)
# Gravestone Doji: values [0, 100]
dataframe['CDLGRAVESTONEDOJI'] = ta.CDLGRAVESTONEDOJI(dataframe)
# Dark Cloud Cover: values [0, 100]
dataframe['CDLDARKCLOUDCOVER'] = ta.CDLDARKCLOUDCOVER(dataframe)
# Evening Doji Star: values [0, 100]
dataframe['CDLEVENINGDOJISTAR'] = ta.CDLEVENINGDOJISTAR(dataframe)
# Evening Star: values [0, 100]
dataframe['CDLEVENINGSTAR'] = ta.CDLEVENINGSTAR(dataframe)
"""
# Pattern Recognition - Bullish/Bearish candlestick patterns
# ------------------------------------
"""
# Three Line Strike: values [0, -100, 100]
dataframe['CDL3LINESTRIKE'] = ta.CDL3LINESTRIKE(dataframe)
# Spinning Top: values [0, -100, 100]
dataframe['CDLSPINNINGTOP'] = ta.CDLSPINNINGTOP(dataframe) # values [0, -100, 100]
# Engulfing: values [0, -100, 100]
dataframe['CDLENGULFING'] = ta.CDLENGULFING(dataframe) # values [0, -100, 100]
# Harami: values [0, -100, 100]
dataframe['CDLHARAMI'] = ta.CDLHARAMI(dataframe) # values [0, -100, 100]
# Three Outside Up/Down: values [0, -100, 100]
dataframe['CDL3OUTSIDE'] = ta.CDL3OUTSIDE(dataframe) # values [0, -100, 100]
# Three Inside Up/Down: values [0, -100, 100]
dataframe['CDL3INSIDE'] = ta.CDL3INSIDE(dataframe) # values [0, -100, 100]
"""
# Chart type
# ------------------------------------
# Heikinashi stategy
heikinashi = qtpylib.heikinashi(dataframe)
dataframe['ha_open'] = heikinashi['open']
dataframe['ha_close'] = heikinashi['close']
dataframe['ha_high'] = heikinashi['high']
dataframe['ha_low'] = heikinashi['low']
return dataframe
@@ -187,15 +96,16 @@ class Hyperopt(Backtesting):
"""
Save hyperopt trials to file
"""
logger.info('Saving Trials to \'%s\'', self.trials_file)
pickle.dump(self.trials, open(self.trials_file, 'wb'))
if self.trials:
logger.info('Saving %d evaluations to \'%s\'', len(self.trials), self.trials_file)
dump(self.trials, self.trials_file)
def read_trials(self) -> Trials:
def read_trials(self) -> List:
"""
Read hyperopt trials file
"""
logger.info('Reading Trials from \'%s\'', self.trials_file)
trials = pickle.load(open(self.trials_file, 'rb'))
trials = load(self.trials_file)
os.remove(self.trials_file)
return trials
@@ -203,22 +113,27 @@ class Hyperopt(Backtesting):
"""
Display Best hyperopt result
"""
vals = json.dumps(self.trials.best_trial['misc']['vals'], indent=4)
results = self.trials.best_trial['result']['result']
logger.info('Best result:\n%s\nwith values:\n%s', results, vals)
results = sorted(self.trials, key=itemgetter('loss'))
best_result = results[0]
logger.info(
'Best result:\n%s\nwith values:\n%s',
best_result['result'],
best_result['params']
)
if 'roi_t1' in best_result['params']:
logger.info('ROI table:\n%s', self.generate_roi_table(best_result['params']))
def log_results(self, results) -> None:
"""
Log results if it is better than any previous evaluation
"""
if results['loss'] < self.current_best_loss:
current = results['current_tries']
total = results['total_tries']
res = results['result']
loss = results['loss']
self.current_best_loss = results['loss']
log_msg = '\n{:5d}/{}: {}. Loss {:.5f}'.format(
results['current_tries'],
results['total_tries'],
results['result'],
results['loss']
)
log_msg = f'\n{current:5d}/{total}: {res}. Loss {loss:.5f}'
print(log_msg)
else:
print('.', end='')
@@ -231,7 +146,8 @@ class Hyperopt(Backtesting):
trade_loss = 1 - 0.25 * exp(-(trade_count - self.target_trades) ** 2 / 10 ** 5.8)
profit_loss = max(0, 1 - total_profit / self.expected_max_profit)
duration_loss = 0.4 * min(trade_duration / self.max_accepted_trade_duration, 1)
return trade_loss + profit_loss + duration_loss
result = trade_loss + profit_loss + duration_loss
return result
@staticmethod
def generate_roi_table(params: Dict) -> Dict[int, float]:
@@ -247,87 +163,44 @@ class Hyperopt(Backtesting):
return roi_table
@staticmethod
def roi_space() -> Dict[str, Any]:
def roi_space() -> List[Dimension]:
"""
Values to search for each ROI steps
"""
return {
'roi_t1': hp.quniform('roi_t1', 10, 120, 20),
'roi_t2': hp.quniform('roi_t2', 10, 60, 15),
'roi_t3': hp.quniform('roi_t3', 10, 40, 10),
'roi_p1': hp.quniform('roi_p1', 0.01, 0.04, 0.01),
'roi_p2': hp.quniform('roi_p2', 0.01, 0.07, 0.01),
'roi_p3': hp.quniform('roi_p3', 0.01, 0.20, 0.01),
}
return [
Integer(10, 120, name='roi_t1'),
Integer(10, 60, name='roi_t2'),
Integer(10, 40, name='roi_t3'),
Real(0.01, 0.04, name='roi_p1'),
Real(0.01, 0.07, name='roi_p2'),
Real(0.01, 0.20, name='roi_p3'),
]
@staticmethod
def stoploss_space() -> Dict[str, Any]:
def stoploss_space() -> List[Dimension]:
"""
Stoploss Value to search
Stoploss search space
"""
return {
'stoploss': hp.quniform('stoploss', -0.5, -0.02, 0.02),
}
return [
Real(-0.5, -0.02, name='stoploss'),
]
@staticmethod
def indicator_space() -> Dict[str, Any]:
def indicator_space() -> List[Dimension]:
"""
Define your Hyperopt space for searching strategy parameters
"""
return {
'macd_below_zero': hp.choice('macd_below_zero', [
{'enabled': False},
{'enabled': True}
]),
'mfi': hp.choice('mfi', [
{'enabled': False},
{'enabled': True, 'value': hp.quniform('mfi-value', 10, 25, 5)}
]),
'fastd': hp.choice('fastd', [
{'enabled': False},
{'enabled': True, 'value': hp.quniform('fastd-value', 15, 45, 5)}
]),
'adx': hp.choice('adx', [
{'enabled': False},
{'enabled': True, 'value': hp.quniform('adx-value', 20, 50, 5)}
]),
'rsi': hp.choice('rsi', [
{'enabled': False},
{'enabled': True, 'value': hp.quniform('rsi-value', 20, 40, 5)}
]),
'uptrend_long_ema': hp.choice('uptrend_long_ema', [
{'enabled': False},
{'enabled': True}
]),
'uptrend_short_ema': hp.choice('uptrend_short_ema', [
{'enabled': False},
{'enabled': True}
]),
'over_sar': hp.choice('over_sar', [
{'enabled': False},
{'enabled': True}
]),
'green_candle': hp.choice('green_candle', [
{'enabled': False},
{'enabled': True}
]),
'uptrend_sma': hp.choice('uptrend_sma', [
{'enabled': False},
{'enabled': True}
]),
'trigger': hp.choice('trigger', [
{'type': 'lower_bb'},
{'type': 'lower_bb_tema'},
{'type': 'faststoch10'},
{'type': 'ao_cross_zero'},
{'type': 'ema3_cross_ema10'},
{'type': 'macd_cross_signal'},
{'type': 'sar_reversal'},
{'type': 'ht_sine'},
{'type': 'heiken_reversal_bull'},
{'type': 'di_cross'},
]),
}
return [
Integer(10, 25, name='mfi-value'),
Integer(15, 45, name='fastd-value'),
Integer(20, 50, name='adx-value'),
Integer(20, 40, name='rsi-value'),
Categorical([True, False], name='mfi-enabled'),
Categorical([True, False], name='fastd-enabled'),
Categorical([True, False], name='adx-enabled'),
Categorical([True, False], name='rsi-enabled'),
Categorical(['bb_lower', 'macd_cross_signal', 'sar_reversal'], name='trigger')
]
def has_space(self, space: str) -> bool:
"""
@@ -337,17 +210,17 @@ class Hyperopt(Backtesting):
return True
return False
def hyperopt_space(self) -> Dict[str, Any]:
def hyperopt_space(self) -> List[Dimension]:
"""
Return the space to use during Hyperopt
"""
spaces: Dict = {}
spaces: List[Dimension] = []
if self.has_space('buy'):
spaces = {**spaces, **Hyperopt.indicator_space()}
spaces += Hyperopt.indicator_space()
if self.has_space('roi'):
spaces = {**spaces, **Hyperopt.roi_space()}
spaces += Hyperopt.roi_space()
if self.has_space('stoploss'):
spaces = {**spaces, **Hyperopt.stoploss_space()}
spaces += Hyperopt.stoploss_space()
return spaces
@staticmethod
@@ -361,63 +234,26 @@ class Hyperopt(Backtesting):
"""
conditions = []
# GUARDS AND TRENDS
if 'uptrend_long_ema' in params and params['uptrend_long_ema']['enabled']:
conditions.append(dataframe['ema50'] > dataframe['ema100'])
if 'macd_below_zero' in params and params['macd_below_zero']['enabled']:
conditions.append(dataframe['macd'] < 0)
if 'uptrend_short_ema' in params and params['uptrend_short_ema']['enabled']:
conditions.append(dataframe['ema5'] > dataframe['ema10'])
if 'mfi' in params and params['mfi']['enabled']:
conditions.append(dataframe['mfi'] < params['mfi']['value'])
if 'fastd' in params and params['fastd']['enabled']:
conditions.append(dataframe['fastd'] < params['fastd']['value'])
if 'adx' in params and params['adx']['enabled']:
conditions.append(dataframe['adx'] > params['adx']['value'])
if 'rsi' in params and params['rsi']['enabled']:
conditions.append(dataframe['rsi'] < params['rsi']['value'])
if 'over_sar' in params and params['over_sar']['enabled']:
conditions.append(dataframe['close'] > dataframe['sar'])
if 'green_candle' in params and params['green_candle']['enabled']:
conditions.append(dataframe['close'] > dataframe['open'])
if 'uptrend_sma' in params and params['uptrend_sma']['enabled']:
prevsma = dataframe['sma'].shift(1)
conditions.append(dataframe['sma'] > prevsma)
if 'mfi-enabled' in params and params['mfi-enabled']:
conditions.append(dataframe['mfi'] < params['mfi-value'])
if 'fastd-enabled' in params and params['fastd-enabled']:
conditions.append(dataframe['fastd'] < params['fastd-value'])
if 'adx-enabled' in params and params['adx-enabled']:
conditions.append(dataframe['adx'] > params['adx-value'])
if 'rsi-enabled' in params and params['rsi-enabled']:
conditions.append(dataframe['rsi'] < params['rsi-value'])
# TRIGGERS
triggers = {
'lower_bb': (
dataframe['close'] < dataframe['bb_lowerband']
),
'lower_bb_tema': (
dataframe['tema'] < dataframe['bb_lowerband']
),
'faststoch10': (qtpylib.crossed_above(
dataframe['fastd'], 10.0
)),
'ao_cross_zero': (qtpylib.crossed_above(
dataframe['ao'], 0.0
)),
'ema3_cross_ema10': (qtpylib.crossed_above(
dataframe['ema3'], dataframe['ema10']
)),
'macd_cross_signal': (qtpylib.crossed_above(
if params['trigger'] == 'bb_lower':
conditions.append(dataframe['close'] < dataframe['bb_lowerband'])
if params['trigger'] == 'macd_cross_signal':
conditions.append(qtpylib.crossed_above(
dataframe['macd'], dataframe['macdsignal']
)),
'sar_reversal': (qtpylib.crossed_above(
))
if params['trigger'] == 'sar_reversal':
conditions.append(qtpylib.crossed_above(
dataframe['close'], dataframe['sar']
)),
'ht_sine': (qtpylib.crossed_above(
dataframe['htleadsine'], dataframe['htsine']
)),
'heiken_reversal_bull': (
(qtpylib.crossed_above(dataframe['ha_close'], dataframe['ha_open'])) &
(dataframe['ha_low'] == dataframe['ha_open'])
),
'di_cross': (qtpylib.crossed_above(
dataframe['plus_di'], dataframe['minus_di']
)),
}
conditions.append(triggers.get(params['trigger']['type']))
))
dataframe.loc[
reduce(lambda x, y: x & y, conditions),
@@ -427,7 +263,9 @@ class Hyperopt(Backtesting):
return populate_buy_trend
def generate_optimizer(self, params: Dict) -> Dict:
def generate_optimizer(self, _params) -> Dict:
params = self.get_args(_params)
if self.has_space('roi'):
self.analyze.strategy.minimal_roi = self.generate_roi_table(params)
@@ -437,10 +275,11 @@ class Hyperopt(Backtesting):
if self.has_space('stoploss'):
self.analyze.strategy.stoploss = params['stoploss']
processed = load(TICKERDATA_PICKLE)
results = self.backtest(
{
'stake_amount': self.config['stake_amount'],
'processed': self.processed,
'processed': processed,
'realistic': self.config.get('realistic_simulation', False),
}
)
@@ -450,30 +289,18 @@ class Hyperopt(Backtesting):
trade_count = len(results.index)
trade_duration = results.trade_duration.mean()
if trade_count == 0 or trade_duration > self.max_accepted_trade_duration:
print('.', end='')
sys.stdout.flush()
if trade_count == 0:
return {
'status': STATUS_FAIL,
'loss': float('inf')
'loss': MAX_LOSS,
'params': params,
'result': result_explanation,
}
loss = self.calculate_loss(total_profit, trade_count, trade_duration)
self.current_tries += 1
self.log_results(
{
'loss': loss,
'current_tries': self.current_tries,
'total_tries': self.total_tries,
'result': result_explanation,
}
)
return {
'loss': loss,
'status': STATUS_OK,
'params': params,
'result': result_explanation,
}
@@ -481,15 +308,37 @@ class Hyperopt(Backtesting):
"""
Return the format result in a string
"""
return ('{:6d} trades. Avg profit {: 5.2f}%. '
'Total profit {: 11.8f} {} ({:.4f}Σ%). Avg duration {:5.1f} mins.').format(
len(results.index),
results.profit_percent.mean() * 100.0,
results.profit_abs.sum(),
self.config['stake_currency'],
results.profit_percent.sum(),
results.trade_duration.mean(),
)
trades = len(results.index)
avg_profit = results.profit_percent.mean() * 100.0
total_profit = results.profit_abs.sum()
stake_cur = self.config['stake_currency']
profit = results.profit_percent.sum()
duration = results.trade_duration.mean()
return (f'{trades:6d} trades. Avg profit {avg_profit: 5.2f}%. '
f'Total profit {total_profit: 11.8f} {stake_cur} '
f'({profit:.4f}Σ%). Avg duration {duration:5.1f} mins.')
def get_optimizer(self, cpu_count) -> Optimizer:
return Optimizer(
self.hyperopt_space(),
base_estimator="ET",
acq_optimizer="auto",
n_initial_points=30,
acq_optimizer_kwargs={'n_jobs': cpu_count}
)
def run_optimizer_parallel(self, parallel, asked) -> List:
return parallel(delayed(self.generate_optimizer)(v) for v in asked)
def load_previous_results(self):
""" read trials file if we have one """
if os.path.exists(self.trials_file) and os.path.getsize(self.trials_file) > 0:
self.trials = self.read_trials()
logger.info(
'Loaded %d previous evaluations from disk.',
len(self.trials)
)
def start(self) -> None:
timerange = Arguments.parse_timerange(None if self.config.get(
@@ -503,67 +352,35 @@ class Hyperopt(Backtesting):
if self.has_space('buy'):
self.analyze.populate_indicators = Hyperopt.populate_indicators # type: ignore
self.processed = self.tickerdata_to_dataframe(data)
dump(self.tickerdata_to_dataframe(data), TICKERDATA_PICKLE)
self.exchange = None # type: ignore
self.load_previous_results()
logger.info('Preparing Trials..')
signal.signal(signal.SIGINT, self.signal_handler)
# read trials file if we have one
if os.path.exists(self.trials_file) and os.path.getsize(self.trials_file) > 0:
self.trials = self.read_trials()
self.current_tries = len(self.trials.results)
self.total_tries += self.current_tries
logger.info(
'Continuing with trials. Current: %d, Total: %d',
self.current_tries,
self.total_tries
)
cpus = multiprocessing.cpu_count()
logger.info(f'Found {cpus} CPU cores. Let\'s make them scream!')
opt = self.get_optimizer(cpus)
EVALS = max(self.total_tries//cpus, 1)
try:
best_parameters = fmin(
fn=self.generate_optimizer,
space=self.hyperopt_space(),
algo=tpe.suggest,
max_evals=self.total_tries,
trials=self.trials
)
with Parallel(n_jobs=cpus) as parallel:
for i in range(EVALS):
asked = opt.ask(n_points=cpus)
f_val = self.run_optimizer_parallel(parallel, asked)
opt.tell(asked, [i['loss'] for i in f_val])
results = sorted(self.trials.results, key=itemgetter('loss'))
best_result = results[0]['result']
except ValueError:
best_parameters = {}
best_result = 'Sorry, Hyperopt was not able to find good parameters. Please ' \
'try with more epochs (param: -e).'
# Improve best parameter logging display
if best_parameters:
best_parameters = space_eval(
self.hyperopt_space(),
best_parameters
)
logger.info('Best parameters:\n%s', json.dumps(best_parameters, indent=4))
if 'roi_t1' in best_parameters:
logger.info('ROI table:\n%s', self.generate_roi_table(best_parameters))
logger.info('Best Result:\n%s', best_result)
# Store trials result to file to resume next time
self.save_trials()
def signal_handler(self, sig, frame) -> None:
"""
Hyperopt SIGINT handler
"""
logger.info(
'Hyperopt received %s',
signal.Signals(sig).name
)
self.trials += f_val
for j in range(cpus):
self.log_results({
'loss': f_val[j]['loss'],
'current_tries': i * cpus + j,
'total_tries': self.total_tries,
'result': f_val[j]['result'],
})
except KeyboardInterrupt:
print('User interrupted..')
self.save_trials()
self.log_trials_result()
sys.exit(0)
def start(args: Namespace) -> None:

View File

@@ -5,12 +5,11 @@ This module contains the class to persist trades into SQLite
import logging
from datetime import datetime
from decimal import Decimal, getcontext
from typing import Dict, Optional, Any
from typing import Any, Dict, Optional
import arrow
from sqlalchemy import (Boolean, Column, DateTime, Float, Integer, String,
create_engine)
from sqlalchemy import inspect
create_engine, inspect)
from sqlalchemy.exc import NoSuchModuleError
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm.scoping import scoped_session
@@ -22,6 +21,7 @@ from freqtrade import OperationalException
logger = logging.getLogger(__name__)
_DECL_BASE: Any = declarative_base()
_SQL_DOCS_URL = 'http://docs.sqlalchemy.org/en/latest/core/engines.html#database-urls'
def init(config: Dict) -> None:
@@ -46,10 +46,8 @@ def init(config: Dict) -> None:
try:
engine = create_engine(db_url, **kwargs)
except NoSuchModuleError:
error = 'Given value for db_url: \'{}\' is no valid database URL! (See {}).'.format(
db_url, 'http://docs.sqlalchemy.org/en/latest/core/engines.html#database-urls'
)
raise OperationalException(error)
raise OperationalException(f'Given value for db_url: \'{db_url}\' '
f'is no valid database URL! (See {_SQL_DOCS_URL})')
session = scoped_session(sessionmaker(bind=engine, autoflush=True, autocommit=True))
Trade.session = session()
@@ -66,6 +64,10 @@ def has_column(columns, searchname: str) -> bool:
return len(list(filter(lambda x: x["name"] == searchname, columns))) == 1
def get_column_def(columns, column: str, default: str) -> str:
return default if not has_column(columns, column) else column
def check_migrate(engine) -> None:
"""
Checks if migration is necessary and migrates if necessary
@@ -73,18 +75,32 @@ def check_migrate(engine) -> None:
inspector = inspect(engine)
cols = inspector.get_columns('trades')
tabs = inspector.get_table_names()
table_back_name = 'trades_bak'
for i, table_back_name in enumerate(tabs):
table_back_name = f'trades_bak{i}'
logger.info(f'trying {table_back_name}')
# Check for latest column
if not has_column(cols, 'max_rate'):
open_rate_requested = get_column_def(cols, 'open_rate_requested', 'null')
close_rate_requested = get_column_def(cols, 'close_rate_requested', 'null')
stop_loss = get_column_def(cols, 'stop_loss', '0.0')
initial_stop_loss = get_column_def(cols, 'initial_stop_loss', '0.0')
max_rate = get_column_def(cols, 'max_rate', '0.0')
if not has_column(cols, 'fee_open'):
# Schema migration necessary
engine.execute("alter table trades rename to trades_bak")
engine.execute(f"alter table trades rename to {table_back_name}")
# let SQLAlchemy create the schema as required
_DECL_BASE.metadata.create_all(engine)
# Copy data back - following the correct schema
engine.execute("""insert into trades
engine.execute(f"""insert into trades
(id, exchange, pair, is_open, fee_open, fee_close, open_rate,
open_rate_requested, close_rate, close_rate_requested, close_profit,
stake_amount, amount, open_date, close_date, open_order_id)
stake_amount, amount, open_date, close_date, open_order_id,
stop_loss, initial_stop_loss, max_rate
)
select id, lower(exchange),
case
when instr(pair, '_') != 0 then
@@ -94,21 +110,18 @@ def check_migrate(engine) -> None:
end
pair,
is_open, fee fee_open, fee fee_close,
open_rate, null open_rate_requested, close_rate,
null close_rate_requested, close_profit,
stake_amount, amount, open_date, close_date, open_order_id
from trades_bak
open_rate, {open_rate_requested} open_rate_requested, close_rate,
{close_rate_requested} close_rate_requested, close_profit,
stake_amount, amount, open_date, close_date, open_order_id,
{stop_loss} stop_loss, {initial_stop_loss} initial_stop_loss,
{max_rate} max_rate
from {table_back_name}
""")
# Reread columns - the above recreated the table!
inspector = inspect(engine)
cols = inspector.get_columns('trades')
if not has_column(cols, 'open_rate_requested'):
engine.execute("alter table trades add open_rate_requested float")
if not has_column(cols, 'close_rate_requested'):
engine.execute("alter table trades add close_rate_requested float")
def cleanup() -> None:
"""
@@ -151,15 +164,57 @@ class Trade(_DECL_BASE):
open_date = Column(DateTime, nullable=False, default=datetime.utcnow)
close_date = Column(DateTime)
open_order_id = Column(String)
# absolute value of the stop loss
stop_loss = Column(Float, nullable=True, default=0.0)
# absolute value of the initial stop loss
initial_stop_loss = Column(Float, nullable=True, default=0.0)
# absolute value of the highest reached price
max_rate = Column(Float, nullable=True, default=0.0)
def __repr__(self):
return 'Trade(id={}, pair={}, amount={:.8f}, open_rate={:.8f}, open_since={})'.format(
self.id,
self.pair,
self.amount,
self.open_rate,
arrow.get(self.open_date).humanize() if self.is_open else 'closed'
)
open_since = arrow.get(self.open_date).humanize() if self.is_open else 'closed'
return (f'Trade(id={self.id}, pair={self.pair}, amount={self.amount:.8f}, '
f'open_rate={self.open_rate:.8f}, open_since={open_since})')
def adjust_stop_loss(self, current_price: float, stoploss: float, initial: bool = False):
"""this adjusts the stop loss to it's most recently observed setting"""
if initial and not (self.stop_loss is None or self.stop_loss == 0):
# Don't modify if called with initial and nothing to do
return
new_loss = float(current_price * (1 - abs(stoploss)))
# keeping track of the highest observed rate for this trade
if self.max_rate is None:
self.max_rate = current_price
else:
if current_price > self.max_rate:
self.max_rate = current_price
# no stop loss assigned yet
if not self.stop_loss:
logger.debug("assigning new stop loss")
self.stop_loss = new_loss
self.initial_stop_loss = new_loss
# evaluate if the stop loss needs to be updated
else:
if new_loss > self.stop_loss: # stop losses only walk up, never down!
self.stop_loss = new_loss
logger.debug("adjusted stop loss")
else:
logger.debug("keeping current stop loss")
logger.debug(
f"{self.pair} - current price {current_price:.8f}, "
f"bought at {self.open_rate:.8f} and calculated "
f"stop loss is at: {self.initial_stop_loss:.8f} initial "
f"stop at {self.stop_loss:.8f}. "
f"trailing stop loss saved us: "
f"{float(self.stop_loss) - float(self.initial_stop_loss):.8f} "
f"and max observed rate was {self.max_rate:.8f}")
def update(self, order: Dict) -> None:
"""
@@ -167,6 +222,7 @@ class Trade(_DECL_BASE):
:param order: order retrieved by exchange.get_order()
:return: None
"""
order_type = order['type']
# Ignore open and cancelled orders
if order['status'] == 'open' or order['price'] is None:
return
@@ -174,16 +230,16 @@ class Trade(_DECL_BASE):
logger.info('Updating trade (id=%d) ...', self.id)
getcontext().prec = 8 # Bittrex do not go above 8 decimal
if order['type'] == 'limit' and order['side'] == 'buy':
if order_type == 'limit' and order['side'] == 'buy':
# Update open rate and actual amount
self.open_rate = Decimal(order['price'])
self.amount = Decimal(order['amount'])
logger.info('LIMIT_BUY has been fulfilled for %s.', self)
self.open_order_id = None
elif order['type'] == 'limit' and order['side'] == 'sell':
elif order_type == 'limit' and order['side'] == 'sell':
self.close(order['price'])
else:
raise ValueError('Unknown order type: {}'.format(order['type']))
raise ValueError(f'Unknown order type: {order_type}')
cleanup()
def close(self, rate: float) -> None:
@@ -254,7 +310,8 @@ class Trade(_DECL_BASE):
rate=(rate or self.close_rate),
fee=(fee or self.fee_close)
)
return float("{0:.8f}".format(close_trade_price - open_trade_price))
profit = close_trade_price - open_trade_price
return float(f"{profit:.8f}")
def calc_profit_percent(
self,
@@ -274,5 +331,5 @@ class Trade(_DECL_BASE):
rate=(rate or self.close_rate),
fee=(fee or self.fee_close)
)
return float("{0:.8f}".format((close_trade_price / open_trade_price) - 1))
profit_percent = (close_trade_price / open_trade_price) - 1
return float(f"{profit_percent:.8f}")

View File

@@ -3,9 +3,9 @@ This module contains class to define a RPC communications
"""
import logging
from abc import abstractmethod
from datetime import datetime, timedelta, date
from datetime import date, datetime, timedelta
from decimal import Decimal
from typing import Dict, Tuple, Any, List
from typing import Any, Dict, List, Tuple
import arrow
import sqlalchemy as sql
@@ -74,34 +74,32 @@ class RPC(object):
# calculate profit and send message to user
current_rate = self._freqtrade.exchange.get_ticker(trade.pair, False)['bid']
current_profit = trade.calc_profit_percent(current_rate)
fmt_close_profit = '{:.2f}%'.format(
round(trade.close_profit * 100, 2)
) if trade.close_profit else None
message = "*Trade ID:* `{trade_id}`\n" \
"*Current Pair:* [{pair}]({market_url})\n" \
"*Open Since:* `{date}`\n" \
"*Amount:* `{amount}`\n" \
"*Open Rate:* `{open_rate:.8f}`\n" \
"*Close Rate:* `{close_rate}`\n" \
"*Current Rate:* `{current_rate:.8f}`\n" \
"*Close Profit:* `{close_profit}`\n" \
"*Current Profit:* `{current_profit:.2f}%`\n" \
"*Open Order:* `{open_order}`"\
.format(
trade_id=trade.id,
pair=trade.pair,
market_url=self._freqtrade.exchange.get_pair_detail_url(trade.pair),
date=arrow.get(trade.open_date).humanize(),
open_rate=trade.open_rate,
close_rate=trade.close_rate,
current_rate=current_rate,
amount=round(trade.amount, 8),
close_profit=fmt_close_profit,
current_profit=round(current_profit * 100, 2),
open_order='({} {} rem={:.8f})'.format(
order['type'], order['side'], order['remaining']
) if order else None,
)
fmt_close_profit = (f'{round(trade.close_profit * 100, 2):.2f}%'
if trade.close_profit else None)
market_url = self._freqtrade.exchange.get_pair_detail_url(trade.pair)
trade_date = arrow.get(trade.open_date).humanize()
open_rate = trade.open_rate
close_rate = trade.close_rate
amount = round(trade.amount, 8)
current_profit = round(current_profit * 100, 2)
open_order = ''
if order:
order_type = order['type']
order_side = order['side']
order_rem = order['remaining']
open_order = f'({order_type} {order_side} rem={order_rem:.8f})'
message = f"*Trade ID:* `{trade.id}`\n" \
f"*Current Pair:* [{trade.pair}]({market_url})\n" \
f"*Open Since:* `{trade_date}`\n" \
f"*Amount:* `{amount}`\n" \
f"*Open Rate:* `{open_rate:.8f}`\n" \
f"*Close Rate:* `{close_rate}`\n" \
f"*Current Rate:* `{current_rate:.8f}`\n" \
f"*Close Profit:* `{fmt_close_profit}`\n" \
f"*Current Profit:* `{current_profit:.2f}%`\n" \
f"*Open Order:* `{open_order}`"\
result.append(message)
return result
@@ -116,11 +114,12 @@ class RPC(object):
for trade in trades:
# calculate profit and send message to user
current_rate = self._freqtrade.exchange.get_ticker(trade.pair, False)['bid']
trade_perc = (100 * trade.calc_profit_percent(current_rate))
trades_list.append([
trade.id,
trade.pair,
shorten_date(arrow.get(trade.open_date).humanize(only_distance=True)),
'{:.2f}%'.format(100 * trade.calc_profit_percent(current_rate))
f'{trade_perc:.2f}%'
])
columns = ['ID', 'Pair', 'Since', 'Profit']
@@ -148,7 +147,7 @@ class RPC(object):
.all()
curdayprofit = sum(trade.calc_profit() for trade in trades)
profit_days[profitday] = {
'amount': format(curdayprofit, '.8f'),
'amount': f'{curdayprofit:.8f}',
'trades': len(trades)
}

View File

@@ -153,7 +153,7 @@ class Telegram(RPC):
try:
df_statuses = self._rpc_status_table()
message = tabulate(df_statuses, headers='keys', tablefmt='simple')
self._send_msg("<pre>{}</pre>".format(message), parse_mode=ParseMode.HTML)
self._send_msg(f"<pre>{message}</pre>", parse_mode=ParseMode.HTML)
except RPCException as e:
self._send_msg(str(e), bot=bot)
@@ -166,6 +166,8 @@ class Telegram(RPC):
:param update: message update
:return: None
"""
stake_cur = self._config['stake_currency']
fiat_disp_cur = self._config['fiat_display_currency']
try:
timescale = int(update.message.text.replace('/daily', '').strip())
except (TypeError, ValueError):
@@ -173,18 +175,17 @@ class Telegram(RPC):
try:
stats = self._rpc_daily_profit(
timescale,
self._config['stake_currency'],
self._config['fiat_display_currency']
stake_cur,
fiat_disp_cur
)
stats = tabulate(stats,
headers=[
'Day',
'Profit {}'.format(self._config['stake_currency']),
'Profit {}'.format(self._config['fiat_display_currency'])
f'Profit {stake_cur}',
f'Profit {fiat_disp_cur}'
],
tablefmt='simple')
message = '<b>Daily Profit over the last {} days</b>:\n<pre>{}</pre>'\
.format(timescale, stats)
message = f'<b>Daily Profit over the last {timescale} days</b>:\n<pre>{stats}</pre>'
self._send_msg(message, bot=bot, parse_mode=ParseMode.HTML)
except RPCException as e:
self._send_msg(str(e), bot=bot)
@@ -198,39 +199,38 @@ class Telegram(RPC):
:param update: message update
:return: None
"""
stake_cur = self._config['stake_currency']
fiat_disp_cur = self._config['fiat_display_currency']
try:
stats = self._rpc_trade_statistics(
self._config['stake_currency'],
self._config['fiat_display_currency'])
stake_cur,
fiat_disp_cur)
profit_closed_coin = stats['profit_closed_coin']
profit_closed_percent = stats['profit_closed_percent']
profit_closed_fiat = stats['profit_closed_fiat']
profit_all_coin = stats['profit_all_coin']
profit_all_percent = stats['profit_all_percent']
profit_all_fiat = stats['profit_all_fiat']
trade_count = stats['trade_count']
first_trade_date = stats['first_trade_date']
latest_trade_date = stats['latest_trade_date']
avg_duration = stats['avg_duration']
best_pair = stats['best_pair']
best_rate = stats['best_rate']
# Message to display
markdown_msg = "*ROI:* Close trades\n" \
"∙ `{profit_closed_coin:.8f} {coin} ({profit_closed_percent:.2f}%)`\n" \
"∙ `{profit_closed_fiat:.3f} {fiat}`\n" \
"*ROI:* All trades\n" \
"∙ `{profit_all_coin:.8f} {coin} ({profit_all_percent:.2f}%)`\n" \
"∙ `{profit_all_fiat:.3f} {fiat}`\n" \
"*Total Trade Count:* `{trade_count}`\n" \
"*First Trade opened:* `{first_trade_date}`\n" \
"*Latest Trade opened:* `{latest_trade_date}`\n" \
"*Avg. Duration:* `{avg_duration}`\n" \
"*Best Performing:* `{best_pair}: {best_rate:.2f}%`"\
.format(
coin=self._config['stake_currency'],
fiat=self._config['fiat_display_currency'],
profit_closed_coin=stats['profit_closed_coin'],
profit_closed_percent=stats['profit_closed_percent'],
profit_closed_fiat=stats['profit_closed_fiat'],
profit_all_coin=stats['profit_all_coin'],
profit_all_percent=stats['profit_all_percent'],
profit_all_fiat=stats['profit_all_fiat'],
trade_count=stats['trade_count'],
first_trade_date=stats['first_trade_date'],
latest_trade_date=stats['latest_trade_date'],
avg_duration=stats['avg_duration'],
best_pair=stats['best_pair'],
best_rate=stats['best_rate']
)
f"∙ `{profit_closed_coin:.8f} {stake_cur} "\
f"({profit_closed_percent:.2f}%)`\n" \
f"∙ `{profit_closed_fiat:.3f} {fiat_disp_cur}`\n" \
f"*ROI:* All trades\n" \
f"∙ `{profit_all_coin:.8f} {stake_cur} ({profit_all_percent:.2f}%)`\n" \
f"∙ `{profit_all_fiat:.3f} {fiat_disp_cur}`\n" \
f"*Total Trade Count:* `{trade_count}`\n" \
f"*First Trade opened:* `{first_trade_date}`\n" \
f"*Latest Trade opened:* `{latest_trade_date}`\n" \
f"*Avg. Duration:* `{avg_duration}`\n" \
f"*Best Performing:* `{best_pair}: {best_rate:.2f}%`"
self._send_msg(markdown_msg, bot=bot)
except RPCException as e:
self._send_msg(str(e), bot=bot)

View File

@@ -2,8 +2,8 @@
IStrategy interface
This module defines the interface to apply for strategies
"""
from typing import Dict
from abc import ABC, abstractmethod
from typing import Dict
from pandas import DataFrame

View File

@@ -8,7 +8,7 @@ import inspect
import logging
from base64 import urlsafe_b64decode
from collections import OrderedDict
from typing import Optional, Dict, Type
from typing import Dict, Optional, Type
from freqtrade import constants
from freqtrade.strategy import import_strategy
@@ -17,6 +17,7 @@ import tempfile
import os
from pathlib import Path
logger = logging.getLogger(__name__)
@@ -82,8 +83,8 @@ class StrategyResolver(object):
# Add extra strategy directory on top of search paths
abs_paths.insert(0, extra_dir)
if ":" in strategy_name and "http" not in strategy_name:
print("loading none http based strategy: {}".format(strategy_name))
if ":" in strategy_name:
logger.debug(("loading base64 endocded strategy".)
strat = strategy_name.split(":")
if len(strat) == 2:

View File

@@ -2,8 +2,8 @@
import json
import logging
from datetime import datetime
from typing import Dict, Optional
from functools import reduce
from typing import Dict, Optional
from unittest.mock import MagicMock
import arrow
@@ -11,8 +11,8 @@ import pytest
from jsonschema import validate
from telegram import Chat, Message, Update
from freqtrade.analyze import Analyze
from freqtrade import constants
from freqtrade.analyze import Analyze
from freqtrade.exchange import Exchange
from freqtrade.freqtradebot import FreqtradeBot
@@ -100,7 +100,10 @@ def default_conf():
"0": 0.04
},
"stoploss": -0.10,
"unfilledtimeout": 600,
"unfilledtimeout": {
"buy": 10,
"sell": 30
},
"bid_strategy": {
"ask_last_balance": 0.0
},

View File

@@ -2,16 +2,32 @@
# pragma pylint: disable=protected-access
import logging
from copy import deepcopy
from random import randint
from datetime import datetime
from random import randint
from unittest.mock import MagicMock, PropertyMock
import ccxt
import pytest
from freqtrade import OperationalException, DependencyException, TemporaryError
from freqtrade.exchange import Exchange, API_RETRY_COUNT
from freqtrade.tests.conftest import log_has, get_patched_exchange
from freqtrade import DependencyException, OperationalException, TemporaryError
from freqtrade.exchange import API_RETRY_COUNT, Exchange
from freqtrade.tests.conftest import get_patched_exchange, log_has
def ccxt_exceptionhandlers(mocker, default_conf, api_mock, fun, mock_ccxt_fun, **kwargs):
"""Function to test ccxt exception handling """
with pytest.raises(TemporaryError):
api_mock.__dict__[mock_ccxt_fun] = MagicMock(side_effect=ccxt.NetworkError)
exchange = get_patched_exchange(mocker, default_conf, api_mock)
getattr(exchange, fun)(**kwargs)
assert api_mock.__dict__[mock_ccxt_fun].call_count == API_RETRY_COUNT + 1
with pytest.raises(OperationalException):
api_mock.__dict__[mock_ccxt_fun] = MagicMock(side_effect=ccxt.BaseError)
exchange = get_patched_exchange(mocker, default_conf, api_mock)
getattr(exchange, fun)(**kwargs)
assert api_mock.__dict__[mock_ccxt_fun].call_count == 1
def test_init(default_conf, mocker, caplog):
@@ -20,7 +36,7 @@ def test_init(default_conf, mocker, caplog):
assert log_has('Instance is running with dry_run enabled', caplog.record_tuples)
def test_init_exception(default_conf):
def test_init_exception(default_conf, mocker):
default_conf['exchange']['name'] = 'wrong_exchange_name'
with pytest.raises(
@@ -28,6 +44,13 @@ def test_init_exception(default_conf):
match='Exchange {} is not supported'.format(default_conf['exchange']['name'])):
Exchange(default_conf)
default_conf['exchange']['name'] = 'binance'
with pytest.raises(
OperationalException,
match='Exchange {} is not supported'.format(default_conf['exchange']['name'])):
mocker.patch("ccxt.binance", MagicMock(side_effect=AttributeError))
Exchange(default_conf)
def test_validate_pairs(default_conf, mocker):
api_mock = MagicMock()
@@ -97,6 +120,20 @@ def test_validate_pairs_stake_exception(default_conf, mocker, caplog):
Exchange(conf)
def test_exchangehas(default_conf, mocker):
exchange = get_patched_exchange(mocker, default_conf)
assert not exchange.exchange_has('ASDFASDF')
api_mock = MagicMock()
type(api_mock).has = PropertyMock(return_value={'deadbeef': True})
exchange = get_patched_exchange(mocker, default_conf, api_mock)
assert exchange.exchange_has("deadbeef")
type(api_mock).has = PropertyMock(return_value={'deadbeef': False})
exchange = get_patched_exchange(mocker, default_conf, api_mock)
assert not exchange.exchange_has("deadbeef")
def test_buy_dry_run(default_conf, mocker):
default_conf['dry_run'] = True
exchange = get_patched_exchange(mocker, default_conf)
@@ -216,6 +253,11 @@ def test_get_balance_prod(default_conf, mocker):
exchange.get_balance(currency='BTC')
with pytest.raises(TemporaryError, match=r'.*balance due to malformed exchange response:.*'):
exchange = get_patched_exchange(mocker, default_conf, api_mock)
mocker.patch('freqtrade.exchange.Exchange.get_balances', MagicMock(return_value={}))
exchange.get_balance(currency='BTC')
def test_get_balances_dry_run(default_conf, mocker):
default_conf['dry_run'] = True
@@ -243,17 +285,8 @@ def test_get_balances_prod(default_conf, mocker):
assert exchange.get_balances()['1ST']['total'] == 10.0
assert exchange.get_balances()['1ST']['used'] == 0.0
with pytest.raises(TemporaryError):
api_mock.fetch_balance = MagicMock(side_effect=ccxt.NetworkError)
exchange = get_patched_exchange(mocker, default_conf, api_mock)
exchange.get_balances()
assert api_mock.fetch_balance.call_count == API_RETRY_COUNT + 1
with pytest.raises(OperationalException):
api_mock.fetch_balance = MagicMock(side_effect=ccxt.BaseError)
exchange = get_patched_exchange(mocker, default_conf, api_mock)
exchange.get_balances()
assert api_mock.fetch_balance.call_count == 1
ccxt_exceptionhandlers(mocker, default_conf, api_mock,
"get_balances", "fetch_balance")
def test_get_tickers(default_conf, mocker):
@@ -282,15 +315,8 @@ def test_get_tickers(default_conf, mocker):
assert tickers['BCH/BTC']['bid'] == 0.6
assert tickers['BCH/BTC']['ask'] == 0.5
with pytest.raises(TemporaryError): # test retrier
api_mock.fetch_tickers = MagicMock(side_effect=ccxt.NetworkError)
exchange = get_patched_exchange(mocker, default_conf, api_mock)
exchange.get_tickers()
with pytest.raises(OperationalException):
api_mock.fetch_tickers = MagicMock(side_effect=ccxt.BaseError)
exchange = get_patched_exchange(mocker, default_conf, api_mock)
exchange.get_tickers()
ccxt_exceptionhandlers(mocker, default_conf, api_mock,
"get_tickers", "fetch_tickers")
with pytest.raises(OperationalException):
api_mock.fetch_tickers = MagicMock(side_effect=ccxt.NotSupported)
@@ -345,15 +371,9 @@ def test_get_ticker(default_conf, mocker):
exchange.get_ticker(pair='ETH/BTC', refresh=False)
assert api_mock.fetch_ticker.call_count == 0
with pytest.raises(TemporaryError): # test retrier
api_mock.fetch_ticker = MagicMock(side_effect=ccxt.NetworkError)
exchange = get_patched_exchange(mocker, default_conf, api_mock)
exchange.get_ticker(pair='ETH/BTC', refresh=True)
with pytest.raises(OperationalException):
api_mock.fetch_ticker = MagicMock(side_effect=ccxt.BaseError)
exchange = get_patched_exchange(mocker, default_conf, api_mock)
exchange.get_ticker(pair='ETH/BTC', refresh=True)
ccxt_exceptionhandlers(mocker, default_conf, api_mock,
"get_ticker", "fetch_ticker",
pair='ETH/BTC', refresh=True)
api_mock.fetch_ticker = MagicMock(return_value={})
exchange = get_patched_exchange(mocker, default_conf, api_mock)
@@ -416,17 +436,14 @@ def test_get_ticker_history(default_conf, mocker):
assert ticks[0][4] == 9
assert ticks[0][5] == 10
with pytest.raises(TemporaryError): # test retrier
api_mock.fetch_ohlcv = MagicMock(side_effect=ccxt.NetworkError)
exchange = get_patched_exchange(mocker, default_conf, api_mock)
# new symbol to get around cache
exchange.get_ticker_history('ABCD/BTC', default_conf['ticker_interval'])
ccxt_exceptionhandlers(mocker, default_conf, api_mock,
"get_ticker_history", "fetch_ohlcv",
pair='ABCD/BTC', tick_interval=default_conf['ticker_interval'])
with pytest.raises(OperationalException):
api_mock.fetch_ohlcv = MagicMock(side_effect=ccxt.BaseError)
with pytest.raises(OperationalException, match=r'Exchange .* does not support.*'):
api_mock.fetch_ohlcv = MagicMock(side_effect=ccxt.NotSupported)
exchange = get_patched_exchange(mocker, default_conf, api_mock)
# new symbol to get around cache
exchange.get_ticker_history('EFGH/BTC', default_conf['ticker_interval'])
exchange.get_ticker_history(pair='ABCD/BTC', tick_interval=default_conf['ticker_interval'])
def test_get_ticker_history_sort(default_conf, mocker):
@@ -515,24 +532,15 @@ def test_cancel_order(default_conf, mocker):
exchange = get_patched_exchange(mocker, default_conf, api_mock)
assert exchange.cancel_order(order_id='_', pair='TKN/BTC') == 123
with pytest.raises(TemporaryError):
api_mock.cancel_order = MagicMock(side_effect=ccxt.NetworkError)
exchange = get_patched_exchange(mocker, default_conf, api_mock)
exchange.cancel_order(order_id='_', pair='TKN/BTC')
assert api_mock.cancel_order.call_count == API_RETRY_COUNT + 1
with pytest.raises(DependencyException):
api_mock.cancel_order = MagicMock(side_effect=ccxt.InvalidOrder)
exchange = get_patched_exchange(mocker, default_conf, api_mock)
exchange.cancel_order(order_id='_', pair='TKN/BTC')
assert api_mock.cancel_order.call_count == API_RETRY_COUNT + 1
with pytest.raises(OperationalException):
api_mock.cancel_order = MagicMock(side_effect=ccxt.BaseError)
exchange = get_patched_exchange(mocker, default_conf, api_mock)
exchange.cancel_order(order_id='_', pair='TKN/BTC')
assert api_mock.cancel_order.call_count == 1
ccxt_exceptionhandlers(mocker, default_conf, api_mock,
"cancel_order", "cancel_order",
order_id='_', pair='TKN/BTC')
def test_get_order(default_conf, mocker):
@@ -550,23 +558,15 @@ def test_get_order(default_conf, mocker):
exchange = get_patched_exchange(mocker, default_conf, api_mock)
assert exchange.get_order('X', 'TKN/BTC') == 456
with pytest.raises(TemporaryError):
api_mock.fetch_order = MagicMock(side_effect=ccxt.NetworkError)
exchange = get_patched_exchange(mocker, default_conf, api_mock)
exchange.get_order(order_id='_', pair='TKN/BTC')
assert api_mock.fetch_order.call_count == API_RETRY_COUNT + 1
with pytest.raises(DependencyException):
api_mock.fetch_order = MagicMock(side_effect=ccxt.InvalidOrder)
exchange = get_patched_exchange(mocker, default_conf, api_mock)
exchange.get_order(order_id='_', pair='TKN/BTC')
assert api_mock.fetch_order.call_count == API_RETRY_COUNT + 1
with pytest.raises(OperationalException):
api_mock.fetch_order = MagicMock(side_effect=ccxt.BaseError)
exchange = get_patched_exchange(mocker, default_conf, api_mock)
exchange.get_order(order_id='_', pair='TKN/BTC')
assert api_mock.fetch_order.call_count == 1
ccxt_exceptionhandlers(mocker, default_conf, api_mock,
'get_order', 'fetch_order',
order_id='_', pair='TKN/BTC')
def test_name(default_conf, mocker):
@@ -651,19 +651,12 @@ def test_get_trades_for_order(default_conf, mocker):
assert len(orders) == 1
assert orders[0]['price'] == 165
# test Exceptions
with pytest.raises(OperationalException):
api_mock = MagicMock()
api_mock.fetch_my_trades = MagicMock(side_effect=ccxt.BaseError)
exchange = get_patched_exchange(mocker, default_conf, api_mock)
exchange.get_trades_for_order(order_id, 'LTC/BTC', since)
ccxt_exceptionhandlers(mocker, default_conf, api_mock,
'get_trades_for_order', 'fetch_my_trades',
order_id=order_id, pair='LTC/BTC', since=since)
with pytest.raises(TemporaryError):
api_mock = MagicMock()
api_mock.fetch_my_trades = MagicMock(side_effect=ccxt.NetworkError)
exchange = get_patched_exchange(mocker, default_conf, api_mock)
exchange.get_trades_for_order(order_id, 'LTC/BTC', since)
assert api_mock.fetch_my_trades.call_count == API_RETRY_COUNT + 1
mocker.patch('freqtrade.exchange.Exchange.exchange_has', MagicMock(return_value=False))
assert exchange.get_trades_for_order(order_id, 'LTC/BTC', since) == []
def test_get_markets(default_conf, mocker, markets):
@@ -677,19 +670,8 @@ def test_get_markets(default_conf, mocker, markets):
assert ret[0]["id"] == "ethbtc"
assert ret[0]["symbol"] == "ETH/BTC"
# test Exceptions
with pytest.raises(OperationalException):
api_mock = MagicMock()
api_mock.fetch_markets = MagicMock(side_effect=ccxt.BaseError)
exchange = get_patched_exchange(mocker, default_conf, api_mock)
exchange.get_markets()
with pytest.raises(TemporaryError):
api_mock = MagicMock()
api_mock.fetch_markets = MagicMock(side_effect=ccxt.NetworkError)
exchange = get_patched_exchange(mocker, default_conf, api_mock)
exchange.get_markets()
assert api_mock.fetch_markets.call_count == API_RETRY_COUNT + 1
ccxt_exceptionhandlers(mocker, default_conf, api_mock,
'get_markets', 'fetch_markets')
def test_get_fee(default_conf, mocker):
@@ -704,19 +686,8 @@ def test_get_fee(default_conf, mocker):
assert exchange.get_fee() == 0.025
# test Exceptions
with pytest.raises(OperationalException):
api_mock = MagicMock()
api_mock.calculate_fee = MagicMock(side_effect=ccxt.BaseError)
exchange = get_patched_exchange(mocker, default_conf, api_mock)
exchange.get_fee()
with pytest.raises(TemporaryError):
api_mock = MagicMock()
api_mock.calculate_fee = MagicMock(side_effect=ccxt.NetworkError)
exchange = get_patched_exchange(mocker, default_conf, api_mock)
exchange.get_fee()
assert api_mock.calculate_fee.call_count == API_RETRY_COUNT + 1
ccxt_exceptionhandlers(mocker, default_conf, api_mock,
'get_fee', 'calculate_fee')
def test_get_amount_lots(default_conf, mocker):

View File

@@ -3,19 +3,20 @@
import json
import math
import random
import pytest
from copy import deepcopy
from typing import List
from unittest.mock import MagicMock
import numpy as np
import pandas as pd
import pytest
from arrow import Arrow
from freqtrade import optimize, constants, DependencyException
from freqtrade import DependencyException, constants, optimize
from freqtrade.analyze import Analyze
from freqtrade.arguments import Arguments, TimeRange
from freqtrade.optimize.backtesting import Backtesting, start, setup_configuration
from freqtrade.optimize.backtesting import (Backtesting, setup_configuration,
start)
from freqtrade.tests.conftest import log_has, patch_exchange
@@ -627,9 +628,13 @@ def test_backtest_record(default_conf, fee, mocker):
Arrow(2017, 11, 14, 22, 10, 00).datetime,
Arrow(2017, 11, 14, 22, 43, 00).datetime,
Arrow(2017, 11, 14, 22, 58, 00).datetime],
"open_rate": [0.002543, 0.003003, 0.003089, 0.003214],
"close_rate": [0.002546, 0.003014, 0.003103, 0.003217],
"open_index": [1, 119, 153, 185],
"close_index": [118, 151, 184, 199],
"trade_duration": [123, 34, 31, 14]})
"trade_duration": [123, 34, 31, 14],
"open_at_end": [False, False, False, True]
})
backtesting._store_backtest_result("backtest-result.json", results)
assert len(results) == 4
# Assert file_dump_json was only called once
@@ -640,12 +645,16 @@ def test_backtest_record(default_conf, fee, mocker):
# ('UNITTEST/BTC', 0.00331158, '1510684320', '1510691700', 0, 117)
# Below follows just a typecheck of the schema/type of trade-records
oix = None
for (pair, profit, date_buy, date_sell, buy_index, dur) in records:
for (pair, profit, date_buy, date_sell, buy_index, dur,
openr, closer, open_at_end) in records:
assert pair == 'UNITTEST/BTC'
isinstance(profit, float)
assert isinstance(profit, float)
# FIX: buy/sell should be converted to ints
isinstance(date_buy, str)
isinstance(date_sell, str)
assert isinstance(date_buy, float)
assert isinstance(date_sell, float)
assert isinstance(openr, float)
assert isinstance(closer, float)
assert isinstance(open_at_end, bool)
isinstance(buy_index, pd._libs.tslib.Timestamp)
if oix:
assert buy_index > oix

View File

@@ -1,6 +1,5 @@
# pragma pylint: disable=missing-docstring,W0212,C0103
import os
import signal
from copy import deepcopy
from unittest.mock import MagicMock
@@ -40,21 +39,11 @@ def create_trials(mocker) -> None:
mocker.patch('freqtrade.optimize.hyperopt.os.path.exists', return_value=False)
mocker.patch('freqtrade.optimize.hyperopt.os.path.getsize', return_value=1)
mocker.patch('freqtrade.optimize.hyperopt.os.remove', return_value=True)
mocker.patch('freqtrade.optimize.hyperopt.pickle.dump', return_value=None)
mocker.patch('freqtrade.optimize.hyperopt.dump', return_value=None)
return mocker.Mock(
results=[
{
'loss': 1,
'result': 'foo',
'status': 'ok'
}
],
best_trial={'misc': {'vals': {'adx': 999}}}
)
return [{'loss': 1, 'result': 'foo', 'params': {}}]
# Unit tests
def test_start(mocker, default_conf, caplog) -> None:
"""
Test start() function
@@ -148,155 +137,18 @@ def test_no_log_if_loss_does_not_improve(init_hyperopt, caplog) -> None:
assert caplog.record_tuples == []
def test_fmin_best_results(mocker, init_hyperopt, default_conf, caplog) -> None:
fmin_result = {
"macd_below_zero": 0,
"adx": 1,
"adx-value": 15.0,
"fastd": 1,
"fastd-value": 40.0,
"green_candle": 1,
"mfi": 0,
"over_sar": 0,
"rsi": 1,
"rsi-value": 37.0,
"trigger": 2,
"uptrend_long_ema": 1,
"uptrend_short_ema": 0,
"uptrend_sma": 0,
"stoploss": -0.1,
"roi_t1": 1,
"roi_t2": 2,
"roi_t3": 3,
"roi_p1": 1,
"roi_p2": 2,
"roi_p3": 3,
}
conf = deepcopy(default_conf)
conf.update({'config': 'config.json.example'})
conf.update({'epochs': 1})
conf.update({'timerange': None})
conf.update({'spaces': 'all'})
mocker.patch('freqtrade.optimize.hyperopt.load_data', MagicMock())
mocker.patch('freqtrade.optimize.hyperopt.fmin', return_value=fmin_result)
patch_exchange(mocker)
StrategyResolver({'strategy': 'DefaultStrategy'})
hyperopt = Hyperopt(conf)
hyperopt.trials = create_trials(mocker)
hyperopt.tickerdata_to_dataframe = MagicMock()
hyperopt.start()
exists = [
'Best parameters:',
'"adx": {\n "enabled": true,\n "value": 15.0\n },',
'"fastd": {\n "enabled": true,\n "value": 40.0\n },',
'"green_candle": {\n "enabled": true\n },',
'"macd_below_zero": {\n "enabled": false\n },',
'"mfi": {\n "enabled": false\n },',
'"over_sar": {\n "enabled": false\n },',
'"roi_p1": 1.0,',
'"roi_p2": 2.0,',
'"roi_p3": 3.0,',
'"roi_t1": 1.0,',
'"roi_t2": 2.0,',
'"roi_t3": 3.0,',
'"rsi": {\n "enabled": true,\n "value": 37.0\n },',
'"stoploss": -0.1,',
'"trigger": {\n "type": "faststoch10"\n },',
'"uptrend_long_ema": {\n "enabled": true\n },',
'"uptrend_short_ema": {\n "enabled": false\n },',
'"uptrend_sma": {\n "enabled": false\n }',
'ROI table:\n{0: 6.0, 3.0: 3.0, 5.0: 1.0, 6.0: 0}',
'Best Result:\nfoo'
]
for line in exists:
assert line in caplog.text
def test_fmin_throw_value_error(mocker, init_hyperopt, default_conf, caplog) -> None:
mocker.patch('freqtrade.optimize.hyperopt.load_data', MagicMock())
mocker.patch('freqtrade.optimize.hyperopt.fmin', side_effect=ValueError())
conf = deepcopy(default_conf)
conf.update({'config': 'config.json.example'})
conf.update({'epochs': 1})
conf.update({'timerange': None})
conf.update({'spaces': 'all'})
patch_exchange(mocker)
StrategyResolver({'strategy': 'DefaultStrategy'})
hyperopt = Hyperopt(conf)
hyperopt.trials = create_trials(mocker)
hyperopt.tickerdata_to_dataframe = MagicMock()
hyperopt.start()
exists = [
'Best Result:',
'Sorry, Hyperopt was not able to find good parameters. Please try with more epochs '
'(param: -e).',
]
for line in exists:
assert line in caplog.text
def test_resuming_previous_hyperopt_results_succeeds(mocker, init_hyperopt, default_conf) -> None:
trials = create_trials(mocker)
conf = deepcopy(default_conf)
conf.update({'config': 'config.json.example'})
conf.update({'epochs': 1})
conf.update({'timerange': None})
conf.update({'spaces': 'all'})
mocker.patch('freqtrade.optimize.hyperopt.os.path.exists', return_value=True)
mocker.patch('freqtrade.optimize.hyperopt.len', return_value=len(trials.results))
mock_read = mocker.patch(
'freqtrade.optimize.hyperopt.Hyperopt.read_trials',
return_value=trials
)
mock_save = mocker.patch(
'freqtrade.optimize.hyperopt.Hyperopt.save_trials',
return_value=None
)
mocker.patch('freqtrade.optimize.hyperopt.sorted', return_value=trials.results)
mocker.patch('freqtrade.optimize.hyperopt.load_data', MagicMock())
mocker.patch('freqtrade.optimize.hyperopt.fmin', return_value={})
patch_exchange(mocker)
StrategyResolver({'strategy': 'DefaultStrategy'})
hyperopt = Hyperopt(conf)
hyperopt.trials = trials
hyperopt.tickerdata_to_dataframe = MagicMock()
hyperopt.start()
mock_read.assert_called_once()
mock_save.assert_called_once()
current_tries = hyperopt.current_tries
total_tries = hyperopt.total_tries
assert current_tries == len(trials.results)
assert total_tries == (current_tries + len(trials.results))
def test_save_trials_saves_trials(mocker, init_hyperopt, caplog) -> None:
create_trials(mocker)
mock_dump = mocker.patch('freqtrade.optimize.hyperopt.pickle.dump', return_value=None)
trials = create_trials(mocker)
mock_dump = mocker.patch('freqtrade.optimize.hyperopt.dump', return_value=None)
hyperopt = _HYPEROPT
mocker.patch('freqtrade.optimize.hyperopt.open', return_value=hyperopt.trials_file)
_HYPEROPT.trials = trials
hyperopt.save_trials()
trials_file = os.path.join('freqtrade', 'tests', 'optimize', 'ut_trials.pickle')
assert log_has(
'Saving Trials to \'{}\''.format(trials_file),
'Saving 1 evaluations to \'{}\''.format(trials_file),
caplog.record_tuples
)
mock_dump.assert_called_once()
@@ -304,8 +156,7 @@ def test_save_trials_saves_trials(mocker, init_hyperopt, caplog) -> None:
def test_read_trials_returns_trials_file(mocker, init_hyperopt, caplog) -> None:
trials = create_trials(mocker)
mock_load = mocker.patch('freqtrade.optimize.hyperopt.pickle.load', return_value=trials)
mock_open = mocker.patch('freqtrade.optimize.hyperopt.open', return_value=mock_load)
mock_load = mocker.patch('freqtrade.optimize.hyperopt.load', return_value=trials)
hyperopt = _HYPEROPT
hyperopt_trial = hyperopt.read_trials()
@@ -315,7 +166,6 @@ def test_read_trials_returns_trials_file(mocker, init_hyperopt, caplog) -> None:
caplog.record_tuples
)
assert hyperopt_trial == trials
mock_open.assert_called_once()
mock_load.assert_called_once()
@@ -333,12 +183,15 @@ def test_roi_table_generation(init_hyperopt) -> None:
assert hyperopt.generate_roi_table(params) == {0: 6, 15: 3, 25: 1, 30: 0}
def test_start_calls_fmin(mocker, init_hyperopt, default_conf) -> None:
trials = create_trials(mocker)
mocker.patch('freqtrade.optimize.hyperopt.sorted', return_value=trials.results)
def test_start_calls_optimizer(mocker, init_hyperopt, default_conf, caplog) -> None:
dumper = mocker.patch('freqtrade.optimize.hyperopt.dump', MagicMock())
mocker.patch('freqtrade.optimize.hyperopt.load_data', MagicMock())
mocker.patch('freqtrade.optimize.hyperopt.multiprocessing.cpu_count', MagicMock(return_value=1))
parallel = mocker.patch(
'freqtrade.optimize.hyperopt.Hyperopt.run_optimizer_parallel',
MagicMock(return_value=[{'loss': 1, 'result': 'foo result', 'params': {}}])
)
patch_exchange(mocker)
mock_fmin = mocker.patch('freqtrade.optimize.hyperopt.fmin', return_value={})
conf = deepcopy(default_conf)
conf.update({'config': 'config.json.example'})
@@ -347,11 +200,13 @@ def test_start_calls_fmin(mocker, init_hyperopt, default_conf) -> None:
conf.update({'spaces': 'all'})
hyperopt = Hyperopt(conf)
hyperopt.trials = trials
hyperopt.tickerdata_to_dataframe = MagicMock()
hyperopt.start()
mock_fmin.assert_called_once()
parallel.assert_called_once()
assert 'Best result:\nfoo result\nwith values:\n{}' in caplog.text
assert dumper.called
def test_format_results(init_hyperopt):
@@ -384,20 +239,6 @@ def test_format_results(init_hyperopt):
assert result.find('Total profit 1.00000000 EUR')
def test_signal_handler(mocker, init_hyperopt):
"""
Test Hyperopt.signal_handler()
"""
m = MagicMock()
mocker.patch('sys.exit', m)
mocker.patch('freqtrade.optimize.hyperopt.Hyperopt.save_trials', m)
mocker.patch('freqtrade.optimize.hyperopt.Hyperopt.log_trials_result', m)
hyperopt = _HYPEROPT
hyperopt.signal_handler(signal.SIGTERM, None)
assert m.call_count == 3
def test_has_space(init_hyperopt):
"""
Test Hyperopt.has_space() method
@@ -422,8 +263,8 @@ def test_populate_indicators(init_hyperopt) -> None:
# Check if some indicators are generated. We will not test all of them
assert 'adx' in dataframe
assert 'ao' in dataframe
assert 'cci' in dataframe
assert 'mfi' in dataframe
assert 'rsi' in dataframe
def test_buy_strategy_generator(init_hyperopt) -> None:
@@ -437,44 +278,15 @@ def test_buy_strategy_generator(init_hyperopt) -> None:
populate_buy_trend = _HYPEROPT.buy_strategy_generator(
{
'uptrend_long_ema': {
'enabled': True
},
'macd_below_zero': {
'enabled': True
},
'uptrend_short_ema': {
'enabled': True
},
'mfi': {
'enabled': True,
'value': 20
},
'fastd': {
'enabled': True,
'value': 20
},
'adx': {
'enabled': True,
'value': 20
},
'rsi': {
'enabled': True,
'value': 20
},
'over_sar': {
'enabled': True,
},
'green_candle': {
'enabled': True,
},
'uptrend_sma': {
'enabled': True,
},
'trigger': {
'type': 'lower_bb'
}
'adx-value': 20,
'fastd-value': 20,
'mfi-value': 20,
'rsi-value': 20,
'adx-enabled': True,
'fastd-enabled': True,
'mfi-enabled': True,
'rsi-enabled': True,
'trigger': 'bb_lower'
}
)
result = populate_buy_trend(dataframe)
@@ -503,35 +315,34 @@ def test_generate_optimizer(mocker, init_hyperopt, default_conf) -> None:
MagicMock(return_value=backtest_result)
)
patch_exchange(mocker)
mocker.patch('freqtrade.optimize.hyperopt.load', MagicMock())
optimizer_param = {
'adx': {'enabled': False},
'fastd': {'enabled': True, 'value': 35.0},
'green_candle': {'enabled': True},
'macd_below_zero': {'enabled': True},
'mfi': {'enabled': False},
'over_sar': {'enabled': False},
'roi_p1': 0.01,
'roi_p2': 0.01,
'roi_p3': 0.1,
'adx-value': 0,
'fastd-value': 35,
'mfi-value': 0,
'rsi-value': 0,
'adx-enabled': False,
'fastd-enabled': True,
'mfi-enabled': False,
'rsi-enabled': False,
'trigger': 'macd_cross_signal',
'roi_t1': 60.0,
'roi_t2': 30.0,
'roi_t3': 20.0,
'rsi': {'enabled': False},
'roi_p1': 0.01,
'roi_p2': 0.01,
'roi_p3': 0.1,
'stoploss': -0.4,
'trigger': {'type': 'macd_cross_signal'},
'uptrend_long_ema': {'enabled': False},
'uptrend_short_ema': {'enabled': True},
'uptrend_sma': {'enabled': True}
}
response_expected = {
'loss': 1.9840569076926293,
'result': ' 1 trades. Avg profit 2.31%. Total profit 0.00023300 BTC '
'(0.0231Σ%). Avg duration 100.0 mins.',
'status': 'ok'
'params': optimizer_param
}
hyperopt = Hyperopt(conf)
generate_optimizer_value = hyperopt.generate_optimizer(optimizer_param)
generate_optimizer_value = hyperopt.generate_optimizer(list(optimizer_param.values()))
assert generate_optimizer_value == response_expected

View File

@@ -3,16 +3,19 @@
import json
import os
import uuid
import arrow
from shutil import copyfile
import arrow
from freqtrade import optimize
from freqtrade.misc import file_dump_json
from freqtrade.optimize.__init__ import make_testdata_path, download_pairs, \
download_backtesting_testdata, load_tickerdata_file, trim_tickerlist, \
load_cached_data_for_updating
from freqtrade.arguments import TimeRange
from freqtrade.tests.conftest import log_has, get_patched_exchange
from freqtrade.misc import file_dump_json
from freqtrade.optimize.__init__ import (download_backtesting_testdata,
download_pairs,
load_cached_data_for_updating,
load_tickerdata_file,
make_testdata_path, trim_tickerlist)
from freqtrade.tests.conftest import get_patched_exchange, log_has
# Change this if modifying UNITTEST/BTC testdatafile
_BTC_UNITTEST_LENGTH = 13681

View File

@@ -13,7 +13,8 @@ from freqtrade.freqtradebot import FreqtradeBot
from freqtrade.persistence import Trade
from freqtrade.rpc.rpc import RPC, RPCException
from freqtrade.state import State
from freqtrade.tests.test_freqtradebot import patch_get_signal, patch_coinmarketcap
from freqtrade.tests.test_freqtradebot import (patch_coinmarketcap,
patch_get_signal)
# Functions for recurrent object patching

View File

@@ -7,7 +7,7 @@ from copy import deepcopy
from unittest.mock import MagicMock
from freqtrade.rpc.rpc_manager import RPCManager
from freqtrade.tests.conftest import log_has, get_patched_freqtradebot
from freqtrade.tests.conftest import get_patched_freqtradebot, log_has
def test_rpc_manager_object() -> None:

View File

@@ -11,17 +11,18 @@ from datetime import datetime
from random import randint
from unittest.mock import MagicMock
from telegram import Update, Message, Chat
from telegram import Chat, Message, Update
from telegram.error import NetworkError
from freqtrade import __version__
from freqtrade.freqtradebot import FreqtradeBot
from freqtrade.persistence import Trade
from freqtrade.rpc.telegram import Telegram
from freqtrade.rpc.telegram import authorized_only
from freqtrade.rpc.telegram import Telegram, authorized_only
from freqtrade.state import State
from freqtrade.tests.conftest import get_patched_freqtradebot, patch_exchange, log_has
from freqtrade.tests.test_freqtradebot import patch_get_signal, patch_coinmarketcap
from freqtrade.tests.conftest import (get_patched_freqtradebot, log_has,
patch_exchange)
from freqtrade.tests.test_freqtradebot import (patch_coinmarketcap,
patch_get_signal)
class DummyCls(Telegram):

View File

@@ -1,8 +1,9 @@
# pragma pylint: disable=missing-docstring,C0103,protected-access
import freqtrade.tests.conftest as tt # test tools
from unittest.mock import MagicMock
import freqtrade.tests.conftest as tt # test tools
# whitelist, blacklist, filtering, all of that will
# eventually become some rules to run on a generic ACL engine
# perhaps try to anticipate that by using some python package

View File

@@ -12,9 +12,9 @@ import arrow
from pandas import DataFrame
from freqtrade.analyze import Analyze, SignalType
from freqtrade.optimize.__init__ import load_tickerdata_file
from freqtrade.arguments import TimeRange
from freqtrade.tests.conftest import log_has, get_patched_exchange
from freqtrade.optimize.__init__ import load_tickerdata_file
from freqtrade.tests.conftest import get_patched_exchange, log_has
# Avoid to reinit the same object again and again
_ANALYZE = Analyze({'strategy': 'DefaultStrategy'})
@@ -42,6 +42,7 @@ def test_analyze_object() -> None:
assert hasattr(Analyze, 'get_signal')
assert hasattr(Analyze, 'should_sell')
assert hasattr(Analyze, 'min_roi_reached')
assert hasattr(Analyze, 'stop_loss_reached')
def test_dataframe_correct_length(result):

View File

@@ -4,18 +4,18 @@
Unit test file for configuration.py
"""
import json
from argparse import Namespace
from copy import deepcopy
from unittest.mock import MagicMock
from argparse import Namespace
import pytest
from jsonschema import ValidationError
from freqtrade import OperationalException
from freqtrade.arguments import Arguments
from freqtrade.configuration import Configuration
from freqtrade.constants import DEFAULT_DB_PROD_URL, DEFAULT_DB_DRYRUN_URL
from freqtrade.constants import DEFAULT_DB_DRYRUN_URL, DEFAULT_DB_PROD_URL
from freqtrade.tests.conftest import log_has
from freqtrade import OperationalException
def test_configuration_object() -> None:

View File

@@ -5,7 +5,6 @@ import time
from unittest.mock import MagicMock
import pytest
from requests.exceptions import RequestException
from freqtrade.fiat_convert import CryptoFiat, CryptoToFiatConverter

View File

@@ -14,11 +14,13 @@ import arrow
import pytest
import requests
from freqtrade import constants, DependencyException, OperationalException, TemporaryError
from freqtrade import (DependencyException, OperationalException,
TemporaryError, constants)
from freqtrade.freqtradebot import FreqtradeBot
from freqtrade.persistence import Trade
from freqtrade.state import State
from freqtrade.tests.conftest import log_has, patch_coinmarketcap, patch_exchange
from freqtrade.tests.conftest import (log_has, patch_coinmarketcap,
patch_exchange)
# Functions for recurrent object patching
@@ -348,6 +350,34 @@ def test_get_min_pair_stake_amount(mocker, default_conf) -> None:
result = freqtrade._get_min_pair_stake_amount('ETH/BTC', 1)
assert result is None
# no cost Min
mocker.patch(
'freqtrade.exchange.Exchange.get_markets',
MagicMock(return_value=[{
'symbol': 'ETH/BTC',
'limits': {
'cost': {"min": None},
'amount': {}
}
}])
)
result = freqtrade._get_min_pair_stake_amount('ETH/BTC', 1)
assert result is None
# no amount Min
mocker.patch(
'freqtrade.exchange.Exchange.get_markets',
MagicMock(return_value=[{
'symbol': 'ETH/BTC',
'limits': {
'cost': {},
'amount': {"min": None}
}
}])
)
result = freqtrade._get_min_pair_stake_amount('ETH/BTC', 1)
assert result is None
# empty 'cost'/'amount' section
mocker.patch(
'freqtrade.exchange.Exchange.get_markets',
@@ -1124,7 +1154,7 @@ def test_check_handle_timedout_buy(default_conf, ticker, limit_buy_order_old, fe
Trade.session.add(trade_buy)
# check it does cancel buy orders over the time limit
freqtrade.check_handle_timedout(600)
freqtrade.check_handle_timedout()
assert cancel_order_mock.call_count == 1
assert rpc_mock.call_count == 1
trades = Trade.query.filter(Trade.open_order_id.is_(trade_buy.open_order_id)).all()
@@ -1165,7 +1195,7 @@ def test_check_handle_timedout_sell(default_conf, ticker, limit_sell_order_old,
Trade.session.add(trade_sell)
# check it does cancel sell orders over the time limit
freqtrade.check_handle_timedout(600)
freqtrade.check_handle_timedout()
assert cancel_order_mock.call_count == 1
assert rpc_mock.call_count == 1
assert trade_sell.is_open is True
@@ -1205,7 +1235,7 @@ def test_check_handle_timedout_partial(default_conf, ticker, limit_buy_order_old
# check it does cancel buy orders over the time limit
# note this is for a partially-complete buy order
freqtrade.check_handle_timedout(600)
freqtrade.check_handle_timedout()
assert cancel_order_mock.call_count == 1
assert rpc_mock.call_count == 1
trades = Trade.query.filter(Trade.open_order_id.is_(trade_buy.open_order_id)).all()
@@ -1256,7 +1286,7 @@ def test_check_handle_timedout_exception(default_conf, ticker, mocker, caplog) -
'recent call last):\n.*'
)
freqtrade.check_handle_timedout(600)
freqtrade.check_handle_timedout()
assert filter(regexp.match, caplog.record_tuples)
@@ -1599,6 +1629,7 @@ def test_sell_profit_only_disable_loss(default_conf, limit_buy_order, fee, marke
}),
buy=MagicMock(return_value={'id': limit_buy_order['id']}),
get_fee=fee,
get_markets=markets
)
conf = deepcopy(default_conf)
@@ -1616,7 +1647,7 @@ def test_sell_profit_only_disable_loss(default_conf, limit_buy_order, fee, marke
assert freqtrade.handle_trade(trade) is True
def test_ignore_roi_if_buy_signal(default_conf, limit_buy_order, fee, mocker) -> None:
def test_ignore_roi_if_buy_signal(default_conf, limit_buy_order, fee, markets, mocker) -> None:
"""
Test sell_profit_only feature when enabled and we have a loss
"""
@@ -1634,6 +1665,7 @@ def test_ignore_roi_if_buy_signal(default_conf, limit_buy_order, fee, mocker) ->
}),
buy=MagicMock(return_value={'id': limit_buy_order['id']}),
get_fee=fee,
get_markets=markets
)
conf = deepcopy(default_conf)
@@ -1654,6 +1686,103 @@ def test_ignore_roi_if_buy_signal(default_conf, limit_buy_order, fee, mocker) ->
assert freqtrade.handle_trade(trade) is True
def test_trailing_stop_loss(default_conf, limit_buy_order, fee, caplog, mocker) -> None:
"""
Test sell_profit_only feature when enabled and we have a loss
"""
patch_get_signal(mocker)
patch_RPCManager(mocker)
patch_coinmarketcap(mocker)
mocker.patch('freqtrade.freqtradebot.Analyze.min_roi_reached', return_value=False)
mocker.patch.multiple(
'freqtrade.exchange.Exchange',
validate_pairs=MagicMock(),
get_ticker=MagicMock(return_value={
'bid': 0.00000102,
'ask': 0.00000103,
'last': 0.00000102
}),
buy=MagicMock(return_value={'id': limit_buy_order['id']}),
get_fee=fee,
)
conf = deepcopy(default_conf)
conf['trailing_stop'] = True
print(limit_buy_order)
freqtrade = FreqtradeBot(conf)
freqtrade.create_trade()
trade = Trade.query.first()
trade.update(limit_buy_order)
caplog.set_level(logging.DEBUG)
# Sell as trailing-stop is reached
assert freqtrade.handle_trade(trade) is True
assert log_has(
f'HIT STOP: current price at 0.000001, stop loss is {trade.stop_loss:.6f}, '
f'initial stop loss was at 0.000010, trade opened at 0.000011', caplog.record_tuples)
def test_trailing_stop_loss_positive(default_conf, limit_buy_order, fee, caplog, mocker) -> None:
"""
Test sell_profit_only feature when enabled and we have a loss
"""
buy_price = limit_buy_order['price']
patch_get_signal(mocker)
patch_RPCManager(mocker)
patch_coinmarketcap(mocker)
mocker.patch('freqtrade.freqtradebot.Analyze.min_roi_reached', return_value=False)
mocker.patch.multiple(
'freqtrade.exchange.Exchange',
validate_pairs=MagicMock(),
get_ticker=MagicMock(return_value={
'bid': buy_price - 0.000001,
'ask': buy_price - 0.000001,
'last': buy_price - 0.000001
}),
buy=MagicMock(return_value={'id': limit_buy_order['id']}),
get_fee=fee,
)
conf = deepcopy(default_conf)
conf['trailing_stop'] = True
conf['trailing_stop_positive'] = 0.01
freqtrade = FreqtradeBot(conf)
freqtrade.create_trade()
trade = Trade.query.first()
trade.update(limit_buy_order)
caplog.set_level(logging.DEBUG)
# stop-loss not reached
assert freqtrade.handle_trade(trade) is False
# Raise ticker above buy price
mocker.patch('freqtrade.exchange.Exchange.get_ticker',
MagicMock(return_value={
'bid': buy_price + 0.000003,
'ask': buy_price + 0.000003,
'last': buy_price + 0.000003
}))
# stop-loss not reached, adjusted stoploss
assert freqtrade.handle_trade(trade) is False
assert log_has(f'using positive stop loss mode: 0.01 since we have profit 0.26662643',
caplog.record_tuples)
assert log_has(f'adjusted stop loss', caplog.record_tuples)
assert trade.stop_loss == 0.0000138501
mocker.patch('freqtrade.exchange.Exchange.get_ticker',
MagicMock(return_value={
'bid': buy_price + 0.000002,
'ask': buy_price + 0.000002,
'last': buy_price + 0.000002
}))
# Lower price again (but still positive)
assert freqtrade.handle_trade(trade) is True
assert log_has(
f'HIT STOP: current price at {buy_price + 0.000002:.6f}, '
f'stop loss is {trade.stop_loss:.6f}, '
f'initial stop loss was at 0.000010, trade opened at 0.000011', caplog.record_tuples)
def test_disable_ignore_roi_if_buy_signal(default_conf, limit_buy_order,
fee, markets, mocker) -> None:
"""

View File

@@ -1,6 +1,6 @@
import pandas as pd
from freqtrade.indicator_helpers import went_up, went_down
from freqtrade.indicator_helpers import went_down, went_up
def test_went_up():

View File

@@ -11,7 +11,7 @@ import pytest
from freqtrade import OperationalException
from freqtrade.arguments import Arguments
from freqtrade.freqtradebot import FreqtradeBot
from freqtrade.main import main, set_loggers, reconfigure
from freqtrade.main import main, reconfigure, set_loggers
from freqtrade.state import State
from freqtrade.tests.conftest import log_has, patch_exchange

View File

@@ -8,8 +8,8 @@ import datetime
from unittest.mock import MagicMock
from freqtrade.analyze import Analyze
from freqtrade.misc import (shorten_date, datesarray_to_datetimearray,
common_datearray, file_dump_json, format_ms_time)
from freqtrade.misc import (common_datearray, datesarray_to_datetimearray,
file_dump_json, format_ms_time, shorten_date)
from freqtrade.optimize.__init__ import load_tickerdata_file

View File

@@ -5,8 +5,9 @@ from unittest.mock import MagicMock
import pytest
from sqlalchemy import create_engine
from freqtrade import constants, OperationalException
from freqtrade.persistence import Trade, init, clean_dry_run_db
from freqtrade import OperationalException, constants
from freqtrade.persistence import Trade, clean_dry_run_db, init
from freqtrade.tests.conftest import log_has
@pytest.fixture(scope='function')
@@ -400,9 +401,12 @@ def test_migrate_old(mocker, default_conf, fee):
assert trade.stake_amount == default_conf.get("stake_amount")
assert trade.pair == "ETC/BTC"
assert trade.exchange == "bittrex"
assert trade.max_rate == 0.0
assert trade.stop_loss == 0.0
assert trade.initial_stop_loss == 0.0
def test_migrate_new(mocker, default_conf, fee):
def test_migrate_new(mocker, default_conf, fee, caplog):
"""
Test Database migration (starting with new pairformat)
"""
@@ -439,6 +443,11 @@ def test_migrate_new(mocker, default_conf, fee):
# Create table using the old format
engine.execute(create_table_old)
engine.execute(insert_table_old)
# fake previous backup
engine.execute("create table trades_bak as select * from trades")
engine.execute("create table trades_bak1 as select * from trades")
# Run init to test migration
init(default_conf)
@@ -453,3 +462,54 @@ def test_migrate_new(mocker, default_conf, fee):
assert trade.stake_amount == default_conf.get("stake_amount")
assert trade.pair == "ETC/BTC"
assert trade.exchange == "binance"
assert trade.max_rate == 0.0
assert trade.stop_loss == 0.0
assert trade.initial_stop_loss == 0.0
assert log_has("trying trades_bak1", caplog.record_tuples)
assert log_has("trying trades_bak2", caplog.record_tuples)
def test_adjust_stop_loss(limit_buy_order, limit_sell_order, fee):
trade = Trade(
pair='ETH/BTC',
stake_amount=0.001,
fee_open=fee.return_value,
fee_close=fee.return_value,
exchange='bittrex',
open_rate=1,
)
trade.adjust_stop_loss(trade.open_rate, 0.05, True)
assert trade.stop_loss == 0.95
assert trade.max_rate == 1
assert trade.initial_stop_loss == 0.95
# Get percent of profit with a lowre rate
trade.adjust_stop_loss(0.96, 0.05)
assert trade.stop_loss == 0.95
assert trade.max_rate == 1
assert trade.initial_stop_loss == 0.95
# Get percent of profit with a custom rate (Higher than open rate)
trade.adjust_stop_loss(1.3, -0.1)
assert round(trade.stop_loss, 8) == 1.17
assert trade.max_rate == 1.3
assert trade.initial_stop_loss == 0.95
# current rate lower again ... should not change
trade.adjust_stop_loss(1.2, 0.1)
assert round(trade.stop_loss, 8) == 1.17
assert trade.max_rate == 1.3
assert trade.initial_stop_loss == 0.95
# current rate higher... should raise stoploss
trade.adjust_stop_loss(1.4, 0.1)
assert round(trade.stop_loss, 8) == 1.26
assert trade.max_rate == 1.4
assert trade.initial_stop_loss == 0.95
# Initial is true but stop_loss set - so doesn't do anything
trade.adjust_stop_loss(1.7, 0.1, True)
assert round(trade.stop_loss, 8) == 1.26
assert trade.max_rate == 1.4
assert trade.initial_stop_loss == 0.95