Merge branch 'develop' into data_handler
This commit is contained in:
26
freqtrade/commands/__init__.py
Normal file
26
freqtrade/commands/__init__.py
Normal file
@@ -0,0 +1,26 @@
|
||||
# flake8: noqa: F401
|
||||
"""
|
||||
Commands module.
|
||||
Contains all start-commands, subcommands and CLI Interface creation.
|
||||
|
||||
Note: Be careful with file-scoped imports in these subfiles.
|
||||
as they are parsed on startup, nothing containing optional modules should be loaded.
|
||||
"""
|
||||
from freqtrade.commands.arguments import Arguments
|
||||
from freqtrade.commands.data_commands import (start_convert_data,
|
||||
start_download_data)
|
||||
from freqtrade.commands.deploy_commands import (start_create_userdir,
|
||||
start_new_hyperopt,
|
||||
start_new_strategy)
|
||||
from freqtrade.commands.hyperopt_commands import (start_hyperopt_list,
|
||||
start_hyperopt_show)
|
||||
from freqtrade.commands.list_commands import (start_list_exchanges,
|
||||
start_list_markets,
|
||||
start_list_strategies,
|
||||
start_list_timeframes)
|
||||
from freqtrade.commands.optimize_commands import (start_backtesting,
|
||||
start_edge, start_hyperopt)
|
||||
from freqtrade.commands.pairlist_commands import start_test_pairlist
|
||||
from freqtrade.commands.plot_commands import (start_plot_dataframe,
|
||||
start_plot_profit)
|
||||
from freqtrade.commands.trade_commands import start_trading
|
@@ -7,7 +7,7 @@ from pathlib import Path
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
from freqtrade import constants
|
||||
from freqtrade.configuration.cli_options import AVAILABLE_CLI_OPTIONS
|
||||
from freqtrade.commands.cli_options import AVAILABLE_CLI_OPTIONS
|
||||
|
||||
ARGS_COMMON = ["verbosity", "logfile", "version", "config", "datadir", "user_data_dir"]
|
||||
|
||||
@@ -134,14 +134,15 @@ class Arguments:
|
||||
self.parser = argparse.ArgumentParser(description='Free, open source crypto trading bot')
|
||||
self._build_args(optionlist=['version'], parser=self.parser)
|
||||
|
||||
from freqtrade.optimize import start_backtesting, start_hyperopt, start_edge
|
||||
from freqtrade.utils import (start_create_userdir, start_convert_data, start_download_data,
|
||||
start_hyperopt_list, start_hyperopt_show,
|
||||
start_list_exchanges, start_list_markets,
|
||||
start_list_strategies, start_new_hyperopt,
|
||||
start_new_strategy, start_list_timeframes,
|
||||
start_test_pairlist, start_trading)
|
||||
from freqtrade.plot.plot_utils import start_plot_dataframe, start_plot_profit
|
||||
from freqtrade.commands import (start_create_userdir, start_convert_data,
|
||||
start_download_data,
|
||||
start_hyperopt_list, start_hyperopt_show,
|
||||
start_list_exchanges, start_list_markets,
|
||||
start_list_strategies, start_new_hyperopt,
|
||||
start_new_strategy, start_list_timeframes,
|
||||
start_plot_dataframe, start_plot_profit,
|
||||
start_backtesting, start_hyperopt, start_edge,
|
||||
start_test_pairlist, start_trading)
|
||||
|
||||
subparsers = self.parser.add_subparsers(dest='command',
|
||||
# Use custom message when no subhandler is added
|
@@ -1,7 +1,7 @@
|
||||
"""
|
||||
Definition of cli arguments used in arguments.py
|
||||
"""
|
||||
import argparse
|
||||
from argparse import ArgumentTypeError
|
||||
|
||||
from freqtrade import __version__, constants
|
||||
|
||||
@@ -12,7 +12,7 @@ def check_int_positive(value: str) -> int:
|
||||
if uint <= 0:
|
||||
raise ValueError
|
||||
except ValueError:
|
||||
raise argparse.ArgumentTypeError(
|
||||
raise ArgumentTypeError(
|
||||
f"{value} is invalid for this parameter, should be a positive integer value"
|
||||
)
|
||||
return uint
|
||||
@@ -24,7 +24,7 @@ def check_int_nonzero(value: str) -> int:
|
||||
if uint == 0:
|
||||
raise ValueError
|
||||
except ValueError:
|
||||
raise argparse.ArgumentTypeError(
|
||||
raise ArgumentTypeError(
|
||||
f"{value} is invalid for this parameter, should be a non-zero integer value"
|
||||
)
|
||||
return uint
|
85
freqtrade/commands/data_commands.py
Normal file
85
freqtrade/commands/data_commands.py
Normal file
@@ -0,0 +1,85 @@
|
||||
import logging
|
||||
import sys
|
||||
from typing import Any, Dict, List
|
||||
|
||||
import arrow
|
||||
|
||||
from freqtrade.configuration import TimeRange, setup_utils_configuration
|
||||
from freqtrade.data.converter import (convert_ohlcv_format,
|
||||
convert_trades_format)
|
||||
from freqtrade.data.history import (convert_trades_to_ohlcv,
|
||||
refresh_backtest_ohlcv_data,
|
||||
refresh_backtest_trades_data)
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.resolvers import ExchangeResolver
|
||||
from freqtrade.state import RunMode
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def start_download_data(args: Dict[str, Any]) -> None:
|
||||
"""
|
||||
Download data (former download_backtest_data.py script)
|
||||
"""
|
||||
config = setup_utils_configuration(args, RunMode.UTIL_EXCHANGE)
|
||||
|
||||
timerange = TimeRange()
|
||||
if 'days' in config:
|
||||
time_since = arrow.utcnow().shift(days=-config['days']).strftime("%Y%m%d")
|
||||
timerange = TimeRange.parse_timerange(f'{time_since}-')
|
||||
|
||||
if 'pairs' not in config:
|
||||
raise OperationalException(
|
||||
"Downloading data requires a list of pairs. "
|
||||
"Please check the documentation on how to configure this.")
|
||||
|
||||
logger.info(f'About to download pairs: {config["pairs"]}, '
|
||||
f'intervals: {config["timeframes"]} to {config["datadir"]}')
|
||||
|
||||
pairs_not_available: List[str] = []
|
||||
|
||||
# Init exchange
|
||||
exchange = ExchangeResolver.load_exchange(config['exchange']['name'], config)
|
||||
try:
|
||||
|
||||
if config.get('download_trades'):
|
||||
pairs_not_available = refresh_backtest_trades_data(
|
||||
exchange, pairs=config["pairs"], datadir=config['datadir'],
|
||||
timerange=timerange, erase=config.get("erase"),
|
||||
data_format=config['dataformat_trades'])
|
||||
|
||||
# Convert downloaded trade data to different timeframes
|
||||
convert_trades_to_ohlcv(
|
||||
pairs=config["pairs"], timeframes=config["timeframes"],
|
||||
datadir=config['datadir'], timerange=timerange, erase=config.get("erase"),
|
||||
data_format_ohlcv=config['dataformat_ohlcv'],
|
||||
data_format_trades=config['dataformat_trades'],
|
||||
)
|
||||
else:
|
||||
pairs_not_available = refresh_backtest_ohlcv_data(
|
||||
exchange, pairs=config["pairs"], timeframes=config["timeframes"],
|
||||
datadir=config['datadir'], timerange=timerange, erase=config.get("erase"),
|
||||
data_format=config['dataformat_ohlcv'])
|
||||
|
||||
except KeyboardInterrupt:
|
||||
sys.exit("SIGINT received, aborting ...")
|
||||
|
||||
finally:
|
||||
if pairs_not_available:
|
||||
logger.info(f"Pairs [{','.join(pairs_not_available)}] not available "
|
||||
f"on exchange {exchange.name}.")
|
||||
|
||||
|
||||
def start_convert_data(args: Dict[str, Any], ohlcv: bool = True) -> None:
|
||||
"""
|
||||
Convert data from one format to another
|
||||
"""
|
||||
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
|
||||
if ohlcv:
|
||||
convert_ohlcv_format(config,
|
||||
convert_from=args['format_from'], convert_to=args['format_to'],
|
||||
erase=args['erase'])
|
||||
else:
|
||||
convert_trades_format(config,
|
||||
convert_from=args['format_from'], convert_to=args['format_to'],
|
||||
erase=args['erase'])
|
112
freqtrade/commands/deploy_commands.py
Normal file
112
freqtrade/commands/deploy_commands.py
Normal file
@@ -0,0 +1,112 @@
|
||||
import logging
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict
|
||||
|
||||
from freqtrade.configuration import setup_utils_configuration
|
||||
from freqtrade.configuration.directory_operations import (copy_sample_files,
|
||||
create_userdata_dir)
|
||||
from freqtrade.constants import USERPATH_HYPEROPTS, USERPATH_STRATEGY
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.misc import render_template
|
||||
from freqtrade.state import RunMode
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def start_create_userdir(args: Dict[str, Any]) -> None:
|
||||
"""
|
||||
Create "user_data" directory to contain user data strategies, hyperopt, ...)
|
||||
:param args: Cli args from Arguments()
|
||||
:return: None
|
||||
"""
|
||||
if "user_data_dir" in args and args["user_data_dir"]:
|
||||
userdir = create_userdata_dir(args["user_data_dir"], create_dir=True)
|
||||
copy_sample_files(userdir, overwrite=args["reset"])
|
||||
else:
|
||||
logger.warning("`create-userdir` requires --userdir to be set.")
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
def deploy_new_strategy(strategy_name, strategy_path: Path, subtemplate: str):
|
||||
"""
|
||||
Deploy new strategy from template to strategy_path
|
||||
"""
|
||||
indicators = render_template(templatefile=f"subtemplates/indicators_{subtemplate}.j2",)
|
||||
buy_trend = render_template(templatefile=f"subtemplates/buy_trend_{subtemplate}.j2",)
|
||||
sell_trend = render_template(templatefile=f"subtemplates/sell_trend_{subtemplate}.j2",)
|
||||
plot_config = render_template(templatefile=f"subtemplates/plot_config_{subtemplate}.j2",)
|
||||
|
||||
strategy_text = render_template(templatefile='base_strategy.py.j2',
|
||||
arguments={"strategy": strategy_name,
|
||||
"indicators": indicators,
|
||||
"buy_trend": buy_trend,
|
||||
"sell_trend": sell_trend,
|
||||
"plot_config": plot_config,
|
||||
})
|
||||
|
||||
logger.info(f"Writing strategy to `{strategy_path}`.")
|
||||
strategy_path.write_text(strategy_text)
|
||||
|
||||
|
||||
def start_new_strategy(args: Dict[str, Any]) -> None:
|
||||
|
||||
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
|
||||
|
||||
if "strategy" in args and args["strategy"]:
|
||||
if args["strategy"] == "DefaultStrategy":
|
||||
raise OperationalException("DefaultStrategy is not allowed as name.")
|
||||
|
||||
new_path = config['user_data_dir'] / USERPATH_STRATEGY / (args["strategy"] + ".py")
|
||||
|
||||
if new_path.exists():
|
||||
raise OperationalException(f"`{new_path}` already exists. "
|
||||
"Please choose another Strategy Name.")
|
||||
|
||||
deploy_new_strategy(args['strategy'], new_path, args['template'])
|
||||
|
||||
else:
|
||||
raise OperationalException("`new-strategy` requires --strategy to be set.")
|
||||
|
||||
|
||||
def deploy_new_hyperopt(hyperopt_name, hyperopt_path: Path, subtemplate: str):
|
||||
"""
|
||||
Deploys a new hyperopt template to hyperopt_path
|
||||
"""
|
||||
buy_guards = render_template(
|
||||
templatefile=f"subtemplates/hyperopt_buy_guards_{subtemplate}.j2",)
|
||||
sell_guards = render_template(
|
||||
templatefile=f"subtemplates/hyperopt_sell_guards_{subtemplate}.j2",)
|
||||
buy_space = render_template(
|
||||
templatefile=f"subtemplates/hyperopt_buy_space_{subtemplate}.j2",)
|
||||
sell_space = render_template(
|
||||
templatefile=f"subtemplates/hyperopt_sell_space_{subtemplate}.j2",)
|
||||
|
||||
strategy_text = render_template(templatefile='base_hyperopt.py.j2',
|
||||
arguments={"hyperopt": hyperopt_name,
|
||||
"buy_guards": buy_guards,
|
||||
"sell_guards": sell_guards,
|
||||
"buy_space": buy_space,
|
||||
"sell_space": sell_space,
|
||||
})
|
||||
|
||||
logger.info(f"Writing hyperopt to `{hyperopt_path}`.")
|
||||
hyperopt_path.write_text(strategy_text)
|
||||
|
||||
|
||||
def start_new_hyperopt(args: Dict[str, Any]) -> None:
|
||||
|
||||
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
|
||||
|
||||
if "hyperopt" in args and args["hyperopt"]:
|
||||
if args["hyperopt"] == "DefaultHyperopt":
|
||||
raise OperationalException("DefaultHyperopt is not allowed as name.")
|
||||
|
||||
new_path = config['user_data_dir'] / USERPATH_HYPEROPTS / (args["hyperopt"] + ".py")
|
||||
|
||||
if new_path.exists():
|
||||
raise OperationalException(f"`{new_path}` already exists. "
|
||||
"Please choose another Strategy Name.")
|
||||
deploy_new_hyperopt(args['hyperopt'], new_path, args['template'])
|
||||
else:
|
||||
raise OperationalException("`new-hyperopt` requires --hyperopt to be set.")
|
114
freqtrade/commands/hyperopt_commands.py
Normal file
114
freqtrade/commands/hyperopt_commands.py
Normal file
@@ -0,0 +1,114 @@
|
||||
import logging
|
||||
from operator import itemgetter
|
||||
from typing import Any, Dict, List
|
||||
|
||||
from colorama import init as colorama_init
|
||||
|
||||
from freqtrade.configuration import setup_utils_configuration
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.state import RunMode
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def start_hyperopt_list(args: Dict[str, Any]) -> None:
|
||||
"""
|
||||
List hyperopt epochs previously evaluated
|
||||
"""
|
||||
from freqtrade.optimize.hyperopt import Hyperopt
|
||||
|
||||
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
|
||||
|
||||
only_best = config.get('hyperopt_list_best', False)
|
||||
only_profitable = config.get('hyperopt_list_profitable', False)
|
||||
print_colorized = config.get('print_colorized', False)
|
||||
print_json = config.get('print_json', False)
|
||||
no_details = config.get('hyperopt_list_no_details', False)
|
||||
no_header = False
|
||||
|
||||
trials_file = (config['user_data_dir'] /
|
||||
'hyperopt_results' / 'hyperopt_results.pickle')
|
||||
|
||||
# Previous evaluations
|
||||
trials = Hyperopt.load_previous_results(trials_file)
|
||||
total_epochs = len(trials)
|
||||
|
||||
trials = _hyperopt_filter_trials(trials, only_best, only_profitable)
|
||||
|
||||
# TODO: fetch the interval for epochs to print from the cli option
|
||||
epoch_start, epoch_stop = 0, None
|
||||
|
||||
if print_colorized:
|
||||
colorama_init(autoreset=True)
|
||||
|
||||
try:
|
||||
# Human-friendly indexes used here (starting from 1)
|
||||
for val in trials[epoch_start:epoch_stop]:
|
||||
Hyperopt.print_results_explanation(val, total_epochs, not only_best, print_colorized)
|
||||
|
||||
except KeyboardInterrupt:
|
||||
print('User interrupted..')
|
||||
|
||||
if trials and not no_details:
|
||||
sorted_trials = sorted(trials, key=itemgetter('loss'))
|
||||
results = sorted_trials[0]
|
||||
Hyperopt.print_epoch_details(results, total_epochs, print_json, no_header)
|
||||
|
||||
|
||||
def start_hyperopt_show(args: Dict[str, Any]) -> None:
|
||||
"""
|
||||
Show details of a hyperopt epoch previously evaluated
|
||||
"""
|
||||
from freqtrade.optimize.hyperopt import Hyperopt
|
||||
|
||||
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
|
||||
|
||||
only_best = config.get('hyperopt_list_best', False)
|
||||
only_profitable = config.get('hyperopt_list_profitable', False)
|
||||
no_header = config.get('hyperopt_show_no_header', False)
|
||||
|
||||
trials_file = (config['user_data_dir'] /
|
||||
'hyperopt_results' / 'hyperopt_results.pickle')
|
||||
|
||||
# Previous evaluations
|
||||
trials = Hyperopt.load_previous_results(trials_file)
|
||||
total_epochs = len(trials)
|
||||
|
||||
trials = _hyperopt_filter_trials(trials, only_best, only_profitable)
|
||||
trials_epochs = len(trials)
|
||||
|
||||
n = config.get('hyperopt_show_index', -1)
|
||||
if n > trials_epochs:
|
||||
raise OperationalException(
|
||||
f"The index of the epoch to show should be less than {trials_epochs + 1}.")
|
||||
if n < -trials_epochs:
|
||||
raise OperationalException(
|
||||
f"The index of the epoch to show should be greater than {-trials_epochs - 1}.")
|
||||
|
||||
# Translate epoch index from human-readable format to pythonic
|
||||
if n > 0:
|
||||
n -= 1
|
||||
|
||||
print_json = config.get('print_json', False)
|
||||
|
||||
if trials:
|
||||
val = trials[n]
|
||||
Hyperopt.print_epoch_details(val, total_epochs, print_json, no_header,
|
||||
header_str="Epoch details")
|
||||
|
||||
|
||||
def _hyperopt_filter_trials(trials: List, only_best: bool, only_profitable: bool) -> List:
|
||||
"""
|
||||
Filter our items from the list of hyperopt results
|
||||
"""
|
||||
if only_best:
|
||||
trials = [x for x in trials if x['is_best']]
|
||||
if only_profitable:
|
||||
trials = [x for x in trials if x['results_metrics']['profit'] > 0]
|
||||
|
||||
logger.info(f"{len(trials)} " +
|
||||
("best " if only_best else "") +
|
||||
("profitable " if only_profitable else "") +
|
||||
"epochs found.")
|
||||
|
||||
return trials
|
156
freqtrade/commands/list_commands.py
Normal file
156
freqtrade/commands/list_commands.py
Normal file
@@ -0,0 +1,156 @@
|
||||
import csv
|
||||
import logging
|
||||
import sys
|
||||
from collections import OrderedDict
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict
|
||||
|
||||
import rapidjson
|
||||
from tabulate import tabulate
|
||||
|
||||
from freqtrade.configuration import setup_utils_configuration
|
||||
from freqtrade.constants import USERPATH_STRATEGY
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.exchange import (available_exchanges, ccxt_exchanges,
|
||||
market_is_active, symbol_is_pair)
|
||||
from freqtrade.misc import plural
|
||||
from freqtrade.resolvers import ExchangeResolver, StrategyResolver
|
||||
from freqtrade.state import RunMode
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def start_list_exchanges(args: Dict[str, Any]) -> None:
|
||||
"""
|
||||
Print available exchanges
|
||||
:param args: Cli args from Arguments()
|
||||
:return: None
|
||||
"""
|
||||
exchanges = ccxt_exchanges() if args['list_exchanges_all'] else available_exchanges()
|
||||
if args['print_one_column']:
|
||||
print('\n'.join(exchanges))
|
||||
else:
|
||||
if args['list_exchanges_all']:
|
||||
print(f"All exchanges supported by the ccxt library: {', '.join(exchanges)}")
|
||||
else:
|
||||
print(f"Exchanges available for Freqtrade: {', '.join(exchanges)}")
|
||||
|
||||
|
||||
def start_list_strategies(args: Dict[str, Any]) -> None:
|
||||
"""
|
||||
Print Strategies available in a directory
|
||||
"""
|
||||
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
|
||||
|
||||
directory = Path(config.get('strategy_path', config['user_data_dir'] / USERPATH_STRATEGY))
|
||||
strategies = StrategyResolver.search_all_objects(directory)
|
||||
# Sort alphabetically
|
||||
strategies = sorted(strategies, key=lambda x: x['name'])
|
||||
strats_to_print = [{'name': s['name'], 'location': s['location'].name} for s in strategies]
|
||||
|
||||
if args['print_one_column']:
|
||||
print('\n'.join([s['name'] for s in strategies]))
|
||||
else:
|
||||
print(tabulate(strats_to_print, headers='keys', tablefmt='pipe'))
|
||||
|
||||
|
||||
def start_list_timeframes(args: Dict[str, Any]) -> None:
|
||||
"""
|
||||
Print ticker intervals (timeframes) available on Exchange
|
||||
"""
|
||||
config = setup_utils_configuration(args, RunMode.UTIL_EXCHANGE)
|
||||
# Do not use ticker_interval set in the config
|
||||
config['ticker_interval'] = None
|
||||
|
||||
# Init exchange
|
||||
exchange = ExchangeResolver.load_exchange(config['exchange']['name'], config, validate=False)
|
||||
|
||||
if args['print_one_column']:
|
||||
print('\n'.join(exchange.timeframes))
|
||||
else:
|
||||
print(f"Timeframes available for the exchange `{exchange.name}`: "
|
||||
f"{', '.join(exchange.timeframes)}")
|
||||
|
||||
|
||||
def start_list_markets(args: Dict[str, Any], pairs_only: bool = False) -> None:
|
||||
"""
|
||||
Print pairs/markets on the exchange
|
||||
:param args: Cli args from Arguments()
|
||||
:param pairs_only: if True print only pairs, otherwise print all instruments (markets)
|
||||
:return: None
|
||||
"""
|
||||
config = setup_utils_configuration(args, RunMode.UTIL_EXCHANGE)
|
||||
|
||||
# Init exchange
|
||||
exchange = ExchangeResolver.load_exchange(config['exchange']['name'], config, validate=False)
|
||||
|
||||
# By default only active pairs/markets are to be shown
|
||||
active_only = not args.get('list_pairs_all', False)
|
||||
|
||||
base_currencies = args.get('base_currencies', [])
|
||||
quote_currencies = args.get('quote_currencies', [])
|
||||
|
||||
try:
|
||||
pairs = exchange.get_markets(base_currencies=base_currencies,
|
||||
quote_currencies=quote_currencies,
|
||||
pairs_only=pairs_only,
|
||||
active_only=active_only)
|
||||
# Sort the pairs/markets by symbol
|
||||
pairs = OrderedDict(sorted(pairs.items()))
|
||||
except Exception as e:
|
||||
raise OperationalException(f"Cannot get markets. Reason: {e}") from e
|
||||
|
||||
else:
|
||||
summary_str = ((f"Exchange {exchange.name} has {len(pairs)} ") +
|
||||
("active " if active_only else "") +
|
||||
(plural(len(pairs), "pair" if pairs_only else "market")) +
|
||||
(f" with {', '.join(base_currencies)} as base "
|
||||
f"{plural(len(base_currencies), 'currency', 'currencies')}"
|
||||
if base_currencies else "") +
|
||||
(" and" if base_currencies and quote_currencies else "") +
|
||||
(f" with {', '.join(quote_currencies)} as quote "
|
||||
f"{plural(len(quote_currencies), 'currency', 'currencies')}"
|
||||
if quote_currencies else ""))
|
||||
|
||||
headers = ["Id", "Symbol", "Base", "Quote", "Active",
|
||||
*(['Is pair'] if not pairs_only else [])]
|
||||
|
||||
tabular_data = []
|
||||
for _, v in pairs.items():
|
||||
tabular_data.append({'Id': v['id'], 'Symbol': v['symbol'],
|
||||
'Base': v['base'], 'Quote': v['quote'],
|
||||
'Active': market_is_active(v),
|
||||
**({'Is pair': symbol_is_pair(v['symbol'])}
|
||||
if not pairs_only else {})})
|
||||
|
||||
if (args.get('print_one_column', False) or
|
||||
args.get('list_pairs_print_json', False) or
|
||||
args.get('print_csv', False)):
|
||||
# Print summary string in the log in case of machine-readable
|
||||
# regular formats.
|
||||
logger.info(f"{summary_str}.")
|
||||
else:
|
||||
# Print empty string separating leading logs and output in case of
|
||||
# human-readable formats.
|
||||
print()
|
||||
|
||||
if len(pairs):
|
||||
if args.get('print_list', False):
|
||||
# print data as a list, with human-readable summary
|
||||
print(f"{summary_str}: {', '.join(pairs.keys())}.")
|
||||
elif args.get('print_one_column', False):
|
||||
print('\n'.join(pairs.keys()))
|
||||
elif args.get('list_pairs_print_json', False):
|
||||
print(rapidjson.dumps(list(pairs.keys()), default=str))
|
||||
elif args.get('print_csv', False):
|
||||
writer = csv.DictWriter(sys.stdout, fieldnames=headers)
|
||||
writer.writeheader()
|
||||
writer.writerows(tabular_data)
|
||||
else:
|
||||
# print data as a table, with the human-readable summary
|
||||
print(f"{summary_str}:")
|
||||
print(tabulate(tabular_data, headers='keys', tablefmt='pipe'))
|
||||
elif not (args.get('print_one_column', False) or
|
||||
args.get('list_pairs_print_json', False) or
|
||||
args.get('print_csv', False)):
|
||||
print(f"{summary_str}.")
|
102
freqtrade/commands/optimize_commands.py
Normal file
102
freqtrade/commands/optimize_commands.py
Normal file
@@ -0,0 +1,102 @@
|
||||
import logging
|
||||
from typing import Any, Dict
|
||||
|
||||
from freqtrade import constants
|
||||
from freqtrade.configuration import setup_utils_configuration
|
||||
from freqtrade.exceptions import DependencyException, OperationalException
|
||||
from freqtrade.state import RunMode
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def setup_optimize_configuration(args: Dict[str, Any], method: RunMode) -> Dict[str, Any]:
|
||||
"""
|
||||
Prepare the configuration for the Hyperopt module
|
||||
:param args: Cli args from Arguments()
|
||||
:return: Configuration
|
||||
"""
|
||||
config = setup_utils_configuration(args, method)
|
||||
|
||||
if method == RunMode.BACKTEST:
|
||||
if config['stake_amount'] == constants.UNLIMITED_STAKE_AMOUNT:
|
||||
raise DependencyException('stake amount could not be "%s" for backtesting' %
|
||||
constants.UNLIMITED_STAKE_AMOUNT)
|
||||
|
||||
return config
|
||||
|
||||
|
||||
def start_backtesting(args: Dict[str, Any]) -> None:
|
||||
"""
|
||||
Start Backtesting script
|
||||
:param args: Cli args from Arguments()
|
||||
:return: None
|
||||
"""
|
||||
# Import here to avoid loading backtesting module when it's not used
|
||||
from freqtrade.optimize.backtesting import Backtesting
|
||||
|
||||
# Initialize configuration
|
||||
config = setup_optimize_configuration(args, RunMode.BACKTEST)
|
||||
|
||||
logger.info('Starting freqtrade in Backtesting mode')
|
||||
|
||||
# Initialize backtesting object
|
||||
backtesting = Backtesting(config)
|
||||
backtesting.start()
|
||||
|
||||
|
||||
def start_hyperopt(args: Dict[str, Any]) -> None:
|
||||
"""
|
||||
Start hyperopt script
|
||||
:param args: Cli args from Arguments()
|
||||
:return: None
|
||||
"""
|
||||
# Import here to avoid loading hyperopt module when it's not used
|
||||
try:
|
||||
from filelock import FileLock, Timeout
|
||||
from freqtrade.optimize.hyperopt import Hyperopt
|
||||
except ImportError as e:
|
||||
raise OperationalException(
|
||||
f"{e}. Please ensure that the hyperopt dependencies are installed.") from e
|
||||
# Initialize configuration
|
||||
config = setup_optimize_configuration(args, RunMode.HYPEROPT)
|
||||
|
||||
logger.info('Starting freqtrade in Hyperopt mode')
|
||||
|
||||
lock = FileLock(Hyperopt.get_lock_filename(config))
|
||||
|
||||
try:
|
||||
with lock.acquire(timeout=1):
|
||||
|
||||
# Remove noisy log messages
|
||||
logging.getLogger('hyperopt.tpe').setLevel(logging.WARNING)
|
||||
logging.getLogger('filelock').setLevel(logging.WARNING)
|
||||
|
||||
# Initialize backtesting object
|
||||
hyperopt = Hyperopt(config)
|
||||
hyperopt.start()
|
||||
|
||||
except Timeout:
|
||||
logger.info("Another running instance of freqtrade Hyperopt detected.")
|
||||
logger.info("Simultaneous execution of multiple Hyperopt commands is not supported. "
|
||||
"Hyperopt module is resource hungry. Please run your Hyperopt sequentially "
|
||||
"or on separate machines.")
|
||||
logger.info("Quitting now.")
|
||||
# TODO: return False here in order to help freqtrade to exit
|
||||
# with non-zero exit code...
|
||||
# Same in Edge and Backtesting start() functions.
|
||||
|
||||
|
||||
def start_edge(args: Dict[str, Any]) -> None:
|
||||
"""
|
||||
Start Edge script
|
||||
:param args: Cli args from Arguments()
|
||||
:return: None
|
||||
"""
|
||||
from freqtrade.optimize.edge_cli import EdgeCli
|
||||
# Initialize configuration
|
||||
config = setup_optimize_configuration(args, RunMode.EDGE)
|
||||
logger.info('Starting freqtrade in Edge mode')
|
||||
|
||||
# Initialize Edge object
|
||||
edge_cli = EdgeCli(config)
|
||||
edge_cli.start()
|
42
freqtrade/commands/pairlist_commands.py
Normal file
42
freqtrade/commands/pairlist_commands.py
Normal file
@@ -0,0 +1,42 @@
|
||||
import logging
|
||||
from typing import Any, Dict
|
||||
|
||||
import rapidjson
|
||||
|
||||
from freqtrade.configuration import setup_utils_configuration
|
||||
from freqtrade.resolvers import ExchangeResolver
|
||||
from freqtrade.state import RunMode
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def start_test_pairlist(args: Dict[str, Any]) -> None:
|
||||
"""
|
||||
Test Pairlist configuration
|
||||
"""
|
||||
from freqtrade.pairlist.pairlistmanager import PairListManager
|
||||
config = setup_utils_configuration(args, RunMode.UTIL_EXCHANGE)
|
||||
|
||||
exchange = ExchangeResolver.load_exchange(config['exchange']['name'], config, validate=False)
|
||||
|
||||
quote_currencies = args.get('quote_currencies')
|
||||
if not quote_currencies:
|
||||
quote_currencies = [config.get('stake_currency')]
|
||||
results = {}
|
||||
for curr in quote_currencies:
|
||||
config['stake_currency'] = curr
|
||||
# Do not use ticker_interval set in the config
|
||||
pairlists = PairListManager(exchange, config)
|
||||
pairlists.refresh_pairlist()
|
||||
results[curr] = pairlists.whitelist
|
||||
|
||||
for curr, pairlist in results.items():
|
||||
if not args.get('print_one_column', False):
|
||||
print(f"Pairs for {curr}: ")
|
||||
|
||||
if args.get('print_one_column', False):
|
||||
print('\n'.join(pairlist))
|
||||
elif args.get('list_pairs_print_json', False):
|
||||
print(rapidjson.dumps(list(pairlist), default=str))
|
||||
else:
|
||||
print(pairlist)
|
@@ -1,8 +1,8 @@
|
||||
from typing import Any, Dict
|
||||
|
||||
from freqtrade.configuration import setup_utils_configuration
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.state import RunMode
|
||||
from freqtrade.utils import setup_utils_configuration
|
||||
|
||||
|
||||
def validate_plot_args(args: Dict[str, Any]):
|
25
freqtrade/commands/trade_commands.py
Normal file
25
freqtrade/commands/trade_commands.py
Normal file
@@ -0,0 +1,25 @@
|
||||
import logging
|
||||
|
||||
from typing import Any, Dict
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def start_trading(args: Dict[str, Any]) -> int:
|
||||
"""
|
||||
Main entry point for trading mode
|
||||
"""
|
||||
from freqtrade.worker import Worker
|
||||
# Load and run worker
|
||||
worker = None
|
||||
try:
|
||||
worker = Worker(args)
|
||||
worker.run()
|
||||
except KeyboardInterrupt:
|
||||
logger.info('SIGINT received, aborting ...')
|
||||
finally:
|
||||
if worker:
|
||||
logger.info("worker found ... calling exit")
|
||||
worker.exit()
|
||||
return 0
|
@@ -1,5 +1,7 @@
|
||||
from freqtrade.configuration.arguments import Arguments # noqa: F401
|
||||
from freqtrade.configuration.check_exchange import check_exchange, remove_credentials # noqa: F401
|
||||
from freqtrade.configuration.timerange import TimeRange # noqa: F401
|
||||
from freqtrade.configuration.configuration import Configuration # noqa: F401
|
||||
from freqtrade.configuration.config_validation import validate_config_consistency # noqa: F401
|
||||
# flake8: noqa: F401
|
||||
|
||||
from freqtrade.configuration.config_setup import setup_utils_configuration
|
||||
from freqtrade.configuration.check_exchange import check_exchange, remove_credentials
|
||||
from freqtrade.configuration.timerange import TimeRange
|
||||
from freqtrade.configuration.configuration import Configuration
|
||||
from freqtrade.configuration.config_validation import validate_config_consistency
|
||||
|
25
freqtrade/configuration/config_setup.py
Normal file
25
freqtrade/configuration/config_setup.py
Normal file
@@ -0,0 +1,25 @@
|
||||
import logging
|
||||
from typing import Any, Dict
|
||||
|
||||
from .config_validation import validate_config_consistency
|
||||
from .configuration import Configuration
|
||||
from .check_exchange import remove_credentials
|
||||
from freqtrade.state import RunMode
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def setup_utils_configuration(args: Dict[str, Any], method: RunMode) -> Dict[str, Any]:
|
||||
"""
|
||||
Prepare the configuration for utils subcommands
|
||||
:param args: Cli args from Arguments()
|
||||
:return: Configuration
|
||||
"""
|
||||
configuration = Configuration(args, method)
|
||||
config = configuration.get_config()
|
||||
|
||||
# Ensure we do not use Exchange credentials
|
||||
remove_credentials(config)
|
||||
validate_config_consistency(config)
|
||||
|
||||
return config
|
@@ -1,465 +1 @@
|
||||
# pragma pylint: disable=W0603
|
||||
""" Edge positioning package """
|
||||
import logging
|
||||
from typing import Any, Dict, NamedTuple
|
||||
|
||||
import arrow
|
||||
import numpy as np
|
||||
import utils_find_1st as utf1st
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade import constants
|
||||
from freqtrade.configuration import TimeRange
|
||||
from freqtrade.data import history
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.strategy.interface import SellType
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class PairInfo(NamedTuple):
|
||||
stoploss: float
|
||||
winrate: float
|
||||
risk_reward_ratio: float
|
||||
required_risk_reward: float
|
||||
expectancy: float
|
||||
nb_trades: int
|
||||
avg_trade_duration: float
|
||||
|
||||
|
||||
class Edge:
|
||||
"""
|
||||
Calculates Win Rate, Risk Reward Ratio, Expectancy
|
||||
against historical data for a give set of markets and a strategy
|
||||
it then adjusts stoploss and position size accordingly
|
||||
and force it into the strategy
|
||||
Author: https://github.com/mishaker
|
||||
"""
|
||||
|
||||
config: Dict = {}
|
||||
_cached_pairs: Dict[str, Any] = {} # Keeps a list of pairs
|
||||
|
||||
def __init__(self, config: Dict[str, Any], exchange, strategy) -> None:
|
||||
|
||||
self.config = config
|
||||
self.exchange = exchange
|
||||
self.strategy = strategy
|
||||
|
||||
self.edge_config = self.config.get('edge', {})
|
||||
self._cached_pairs: Dict[str, Any] = {} # Keeps a list of pairs
|
||||
self._final_pairs: list = []
|
||||
|
||||
# checking max_open_trades. it should be -1 as with Edge
|
||||
# the number of trades is determined by position size
|
||||
if self.config['max_open_trades'] != float('inf'):
|
||||
logger.critical('max_open_trades should be -1 in config !')
|
||||
|
||||
if self.config['stake_amount'] != constants.UNLIMITED_STAKE_AMOUNT:
|
||||
raise OperationalException('Edge works only with unlimited stake amount')
|
||||
|
||||
# Deprecated capital_available_percentage. Will use tradable_balance_ratio in the future.
|
||||
self._capital_percentage: float = self.edge_config.get(
|
||||
'capital_available_percentage', self.config['tradable_balance_ratio'])
|
||||
self._allowed_risk: float = self.edge_config.get('allowed_risk')
|
||||
self._since_number_of_days: int = self.edge_config.get('calculate_since_number_of_days', 14)
|
||||
self._last_updated: int = 0 # Timestamp of pairs last updated time
|
||||
self._refresh_pairs = True
|
||||
|
||||
self._stoploss_range_min = float(self.edge_config.get('stoploss_range_min', -0.01))
|
||||
self._stoploss_range_max = float(self.edge_config.get('stoploss_range_max', -0.05))
|
||||
self._stoploss_range_step = float(self.edge_config.get('stoploss_range_step', -0.001))
|
||||
|
||||
# calculating stoploss range
|
||||
self._stoploss_range = np.arange(
|
||||
self._stoploss_range_min,
|
||||
self._stoploss_range_max,
|
||||
self._stoploss_range_step
|
||||
)
|
||||
|
||||
self._timerange: TimeRange = TimeRange.parse_timerange("%s-" % arrow.now().shift(
|
||||
days=-1 * self._since_number_of_days).format('YYYYMMDD'))
|
||||
if config.get('fee'):
|
||||
self.fee = config['fee']
|
||||
else:
|
||||
self.fee = self.exchange.get_fee(symbol=self.config['exchange']['pair_whitelist'][0])
|
||||
|
||||
def calculate(self) -> bool:
|
||||
pairs = self.config['exchange']['pair_whitelist']
|
||||
heartbeat = self.edge_config.get('process_throttle_secs')
|
||||
|
||||
if (self._last_updated > 0) and (
|
||||
self._last_updated + heartbeat > arrow.utcnow().timestamp):
|
||||
return False
|
||||
|
||||
data: Dict[str, Any] = {}
|
||||
logger.info('Using stake_currency: %s ...', self.config['stake_currency'])
|
||||
logger.info('Using local backtesting data (using whitelist in given config) ...')
|
||||
|
||||
if self._refresh_pairs:
|
||||
history.refresh_data(
|
||||
datadir=self.config['datadir'],
|
||||
pairs=pairs,
|
||||
exchange=self.exchange,
|
||||
timeframe=self.strategy.ticker_interval,
|
||||
timerange=self._timerange,
|
||||
)
|
||||
|
||||
data = history.load_data(
|
||||
datadir=self.config['datadir'],
|
||||
pairs=pairs,
|
||||
timeframe=self.strategy.ticker_interval,
|
||||
timerange=self._timerange,
|
||||
startup_candles=self.strategy.startup_candle_count,
|
||||
data_format=self.config.get('dataformat_ohlcv', 'json'),
|
||||
)
|
||||
|
||||
if not data:
|
||||
# Reinitializing cached pairs
|
||||
self._cached_pairs = {}
|
||||
logger.critical("No data found. Edge is stopped ...")
|
||||
return False
|
||||
|
||||
preprocessed = self.strategy.tickerdata_to_dataframe(data)
|
||||
|
||||
# Print timeframe
|
||||
min_date, max_date = history.get_timerange(preprocessed)
|
||||
logger.info(
|
||||
'Measuring data from %s up to %s (%s days) ...',
|
||||
min_date.isoformat(),
|
||||
max_date.isoformat(),
|
||||
(max_date - min_date).days
|
||||
)
|
||||
headers = ['date', 'buy', 'open', 'close', 'sell', 'high', 'low']
|
||||
|
||||
trades: list = []
|
||||
for pair, pair_data in preprocessed.items():
|
||||
# Sorting dataframe by date and reset index
|
||||
pair_data = pair_data.sort_values(by=['date'])
|
||||
pair_data = pair_data.reset_index(drop=True)
|
||||
|
||||
ticker_data = self.strategy.advise_sell(
|
||||
self.strategy.advise_buy(pair_data, {'pair': pair}), {'pair': pair})[headers].copy()
|
||||
|
||||
trades += self._find_trades_for_stoploss_range(ticker_data, pair, self._stoploss_range)
|
||||
|
||||
# If no trade found then exit
|
||||
if len(trades) == 0:
|
||||
logger.info("No trades found.")
|
||||
return False
|
||||
|
||||
# Fill missing, calculable columns, profit, duration , abs etc.
|
||||
trades_df = self._fill_calculable_fields(DataFrame(trades))
|
||||
self._cached_pairs = self._process_expectancy(trades_df)
|
||||
self._last_updated = arrow.utcnow().timestamp
|
||||
|
||||
return True
|
||||
|
||||
def stake_amount(self, pair: str, free_capital: float,
|
||||
total_capital: float, capital_in_trade: float) -> float:
|
||||
stoploss = self.stoploss(pair)
|
||||
available_capital = (total_capital + capital_in_trade) * self._capital_percentage
|
||||
allowed_capital_at_risk = available_capital * self._allowed_risk
|
||||
max_position_size = abs(allowed_capital_at_risk / stoploss)
|
||||
position_size = min(max_position_size, free_capital)
|
||||
if pair in self._cached_pairs:
|
||||
logger.info(
|
||||
'winrate: %s, expectancy: %s, position size: %s, pair: %s,'
|
||||
' capital in trade: %s, free capital: %s, total capital: %s,'
|
||||
' stoploss: %s, available capital: %s.',
|
||||
self._cached_pairs[pair].winrate,
|
||||
self._cached_pairs[pair].expectancy,
|
||||
position_size, pair,
|
||||
capital_in_trade, free_capital, total_capital,
|
||||
stoploss, available_capital
|
||||
)
|
||||
return round(position_size, 15)
|
||||
|
||||
def stoploss(self, pair: str) -> float:
|
||||
if pair in self._cached_pairs:
|
||||
return self._cached_pairs[pair].stoploss
|
||||
else:
|
||||
logger.warning('tried to access stoploss of a non-existing pair, '
|
||||
'strategy stoploss is returned instead.')
|
||||
return self.strategy.stoploss
|
||||
|
||||
def adjust(self, pairs) -> list:
|
||||
"""
|
||||
Filters out and sorts "pairs" according to Edge calculated pairs
|
||||
"""
|
||||
final = []
|
||||
for pair, info in self._cached_pairs.items():
|
||||
if info.expectancy > float(self.edge_config.get('minimum_expectancy', 0.2)) and \
|
||||
info.winrate > float(self.edge_config.get('minimum_winrate', 0.60)) and \
|
||||
pair in pairs:
|
||||
final.append(pair)
|
||||
|
||||
if self._final_pairs != final:
|
||||
self._final_pairs = final
|
||||
if self._final_pairs:
|
||||
logger.info(
|
||||
'Minimum expectancy and minimum winrate are met only for %s,'
|
||||
' so other pairs are filtered out.',
|
||||
self._final_pairs
|
||||
)
|
||||
else:
|
||||
logger.info(
|
||||
'Edge removed all pairs as no pair with minimum expectancy '
|
||||
'and minimum winrate was found !'
|
||||
)
|
||||
|
||||
return self._final_pairs
|
||||
|
||||
def accepted_pairs(self) -> list:
|
||||
"""
|
||||
return a list of accepted pairs along with their winrate, expectancy and stoploss
|
||||
"""
|
||||
final = []
|
||||
for pair, info in self._cached_pairs.items():
|
||||
if info.expectancy > float(self.edge_config.get('minimum_expectancy', 0.2)) and \
|
||||
info.winrate > float(self.edge_config.get('minimum_winrate', 0.60)):
|
||||
final.append({
|
||||
'Pair': pair,
|
||||
'Winrate': info.winrate,
|
||||
'Expectancy': info.expectancy,
|
||||
'Stoploss': info.stoploss,
|
||||
})
|
||||
return final
|
||||
|
||||
def _fill_calculable_fields(self, result: DataFrame) -> DataFrame:
|
||||
"""
|
||||
The result frame contains a number of columns that are calculable
|
||||
from other columns. These are left blank till all rows are added,
|
||||
to be populated in single vector calls.
|
||||
|
||||
Columns to be populated are:
|
||||
- Profit
|
||||
- trade duration
|
||||
- profit abs
|
||||
:param result Dataframe
|
||||
:return: result Dataframe
|
||||
"""
|
||||
|
||||
# stake and fees
|
||||
# stake = 0.015
|
||||
# 0.05% is 0.0005
|
||||
# fee = 0.001
|
||||
|
||||
# we set stake amount to an arbitrary amount.
|
||||
# as it doesn't change the calculation.
|
||||
# all returned values are relative. they are percentages.
|
||||
stake = 0.015
|
||||
fee = self.fee
|
||||
open_fee = fee / 2
|
||||
close_fee = fee / 2
|
||||
|
||||
result['trade_duration'] = result['close_time'] - result['open_time']
|
||||
|
||||
result['trade_duration'] = result['trade_duration'].map(
|
||||
lambda x: int(x.total_seconds() / 60))
|
||||
|
||||
# Spends, Takes, Profit, Absolute Profit
|
||||
|
||||
# Buy Price
|
||||
result['buy_vol'] = stake / result['open_rate'] # How many target are we buying
|
||||
result['buy_fee'] = stake * open_fee
|
||||
result['buy_spend'] = stake + result['buy_fee'] # How much we're spending
|
||||
|
||||
# Sell price
|
||||
result['sell_sum'] = result['buy_vol'] * result['close_rate']
|
||||
result['sell_fee'] = result['sell_sum'] * close_fee
|
||||
result['sell_take'] = result['sell_sum'] - result['sell_fee']
|
||||
|
||||
# profit_percent
|
||||
result['profit_percent'] = (result['sell_take'] - result['buy_spend']) / result['buy_spend']
|
||||
|
||||
# Absolute profit
|
||||
result['profit_abs'] = result['sell_take'] - result['buy_spend']
|
||||
|
||||
return result
|
||||
|
||||
def _process_expectancy(self, results: DataFrame) -> Dict[str, Any]:
|
||||
"""
|
||||
This calculates WinRate, Required Risk Reward, Risk Reward and Expectancy of all pairs
|
||||
The calulation will be done per pair and per strategy.
|
||||
"""
|
||||
# Removing pairs having less than min_trades_number
|
||||
min_trades_number = self.edge_config.get('min_trade_number', 10)
|
||||
results = results.groupby(['pair', 'stoploss']).filter(lambda x: len(x) > min_trades_number)
|
||||
###################################
|
||||
|
||||
# Removing outliers (Only Pumps) from the dataset
|
||||
# The method to detect outliers is to calculate standard deviation
|
||||
# Then every value more than (standard deviation + 2*average) is out (pump)
|
||||
#
|
||||
# Removing Pumps
|
||||
if self.edge_config.get('remove_pumps', False):
|
||||
results = results.groupby(['pair', 'stoploss']).apply(
|
||||
lambda x: x[x['profit_abs'] < 2 * x['profit_abs'].std() + x['profit_abs'].mean()])
|
||||
##########################################################################
|
||||
|
||||
# Removing trades having a duration more than X minutes (set in config)
|
||||
max_trade_duration = self.edge_config.get('max_trade_duration_minute', 1440)
|
||||
results = results[results.trade_duration < max_trade_duration]
|
||||
#######################################################################
|
||||
|
||||
if results.empty:
|
||||
return {}
|
||||
|
||||
groupby_aggregator = {
|
||||
'profit_abs': [
|
||||
('nb_trades', 'count'), # number of all trades
|
||||
('profit_sum', lambda x: x[x > 0].sum()), # cumulative profit of all winning trades
|
||||
('loss_sum', lambda x: abs(x[x < 0].sum())), # cumulative loss of all losing trades
|
||||
('nb_win_trades', lambda x: x[x > 0].count()) # number of winning trades
|
||||
],
|
||||
'trade_duration': [('avg_trade_duration', 'mean')]
|
||||
}
|
||||
|
||||
# Group by (pair and stoploss) by applying above aggregator
|
||||
df = results.groupby(['pair', 'stoploss'])['profit_abs', 'trade_duration'].agg(
|
||||
groupby_aggregator).reset_index(col_level=1)
|
||||
|
||||
# Dropping level 0 as we don't need it
|
||||
df.columns = df.columns.droplevel(0)
|
||||
|
||||
# Calculating number of losing trades, average win and average loss
|
||||
df['nb_loss_trades'] = df['nb_trades'] - df['nb_win_trades']
|
||||
df['average_win'] = df['profit_sum'] / df['nb_win_trades']
|
||||
df['average_loss'] = df['loss_sum'] / df['nb_loss_trades']
|
||||
|
||||
# Win rate = number of profitable trades / number of trades
|
||||
df['winrate'] = df['nb_win_trades'] / df['nb_trades']
|
||||
|
||||
# risk_reward_ratio = average win / average loss
|
||||
df['risk_reward_ratio'] = df['average_win'] / df['average_loss']
|
||||
|
||||
# required_risk_reward = (1 / winrate) - 1
|
||||
df['required_risk_reward'] = (1 / df['winrate']) - 1
|
||||
|
||||
# expectancy = (risk_reward_ratio * winrate) - (lossrate)
|
||||
df['expectancy'] = (df['risk_reward_ratio'] * df['winrate']) - (1 - df['winrate'])
|
||||
|
||||
# sort by expectancy and stoploss
|
||||
df = df.sort_values(by=['expectancy', 'stoploss'], ascending=False).groupby(
|
||||
'pair').first().sort_values(by=['expectancy'], ascending=False).reset_index()
|
||||
|
||||
final = {}
|
||||
for x in df.itertuples():
|
||||
final[x.pair] = PairInfo(
|
||||
x.stoploss,
|
||||
x.winrate,
|
||||
x.risk_reward_ratio,
|
||||
x.required_risk_reward,
|
||||
x.expectancy,
|
||||
x.nb_trades,
|
||||
x.avg_trade_duration
|
||||
)
|
||||
|
||||
# Returning a list of pairs in order of "expectancy"
|
||||
return final
|
||||
|
||||
def _find_trades_for_stoploss_range(self, ticker_data, pair, stoploss_range):
|
||||
buy_column = ticker_data['buy'].values
|
||||
sell_column = ticker_data['sell'].values
|
||||
date_column = ticker_data['date'].values
|
||||
ohlc_columns = ticker_data[['open', 'high', 'low', 'close']].values
|
||||
|
||||
result: list = []
|
||||
for stoploss in stoploss_range:
|
||||
result += self._detect_next_stop_or_sell_point(
|
||||
buy_column, sell_column, date_column, ohlc_columns, round(stoploss, 6), pair
|
||||
)
|
||||
|
||||
return result
|
||||
|
||||
def _detect_next_stop_or_sell_point(self, buy_column, sell_column, date_column,
|
||||
ohlc_columns, stoploss, pair):
|
||||
"""
|
||||
Iterate through ohlc_columns in order to find the next trade
|
||||
Next trade opens from the first buy signal noticed to
|
||||
The sell or stoploss signal after it.
|
||||
It then cuts OHLC, buy_column, sell_column and date_column.
|
||||
Cut from (the exit trade index) + 1.
|
||||
|
||||
Author: https://github.com/mishaker
|
||||
"""
|
||||
|
||||
result: list = []
|
||||
start_point = 0
|
||||
|
||||
while True:
|
||||
open_trade_index = utf1st.find_1st(buy_column, 1, utf1st.cmp_equal)
|
||||
|
||||
# Return empty if we don't find trade entry (i.e. buy==1) or
|
||||
# we find a buy but at the end of array
|
||||
if open_trade_index == -1 or open_trade_index == len(buy_column) - 1:
|
||||
break
|
||||
else:
|
||||
# When a buy signal is seen,
|
||||
# trade opens in reality on the next candle
|
||||
open_trade_index += 1
|
||||
|
||||
stop_price_percentage = stoploss + 1
|
||||
open_price = ohlc_columns[open_trade_index, 0]
|
||||
stop_price = (open_price * stop_price_percentage)
|
||||
|
||||
# Searching for the index where stoploss is hit
|
||||
stop_index = utf1st.find_1st(
|
||||
ohlc_columns[open_trade_index:, 2], stop_price, utf1st.cmp_smaller)
|
||||
|
||||
# If we don't find it then we assume stop_index will be far in future (infinite number)
|
||||
if stop_index == -1:
|
||||
stop_index = float('inf')
|
||||
|
||||
# Searching for the index where sell is hit
|
||||
sell_index = utf1st.find_1st(sell_column[open_trade_index:], 1, utf1st.cmp_equal)
|
||||
|
||||
# If we don't find it then we assume sell_index will be far in future (infinite number)
|
||||
if sell_index == -1:
|
||||
sell_index = float('inf')
|
||||
|
||||
# Check if we don't find any stop or sell point (in that case trade remains open)
|
||||
# It is not interesting for Edge to consider it so we simply ignore the trade
|
||||
# And stop iterating there is no more entry
|
||||
if stop_index == sell_index == float('inf'):
|
||||
break
|
||||
|
||||
if stop_index <= sell_index:
|
||||
exit_index = open_trade_index + stop_index
|
||||
exit_type = SellType.STOP_LOSS
|
||||
exit_price = stop_price
|
||||
elif stop_index > sell_index:
|
||||
# If exit is SELL then we exit at the next candle
|
||||
exit_index = open_trade_index + sell_index + 1
|
||||
|
||||
# Check if we have the next candle
|
||||
if len(ohlc_columns) - 1 < exit_index:
|
||||
break
|
||||
|
||||
exit_type = SellType.SELL_SIGNAL
|
||||
exit_price = ohlc_columns[exit_index, 0]
|
||||
|
||||
trade = {'pair': pair,
|
||||
'stoploss': stoploss,
|
||||
'profit_percent': '',
|
||||
'profit_abs': '',
|
||||
'open_time': date_column[open_trade_index],
|
||||
'close_time': date_column[exit_index],
|
||||
'open_index': start_point + open_trade_index,
|
||||
'close_index': start_point + exit_index,
|
||||
'trade_duration': '',
|
||||
'open_rate': round(open_price, 15),
|
||||
'close_rate': round(exit_price, 15),
|
||||
'exit_type': exit_type
|
||||
}
|
||||
|
||||
result.append(trade)
|
||||
|
||||
# Giving a view of exit_index till the end of array
|
||||
buy_column = buy_column[exit_index:]
|
||||
sell_column = sell_column[exit_index:]
|
||||
date_column = date_column[exit_index:]
|
||||
ohlc_columns = ohlc_columns[exit_index:]
|
||||
start_point += exit_index
|
||||
|
||||
return result
|
||||
from .edge_positioning import Edge, PairInfo # noqa: F401
|
||||
|
465
freqtrade/edge/edge_positioning.py
Normal file
465
freqtrade/edge/edge_positioning.py
Normal file
@@ -0,0 +1,465 @@
|
||||
# pragma pylint: disable=W0603
|
||||
""" Edge positioning package """
|
||||
import logging
|
||||
from typing import Any, Dict, NamedTuple
|
||||
|
||||
import arrow
|
||||
import numpy as np
|
||||
import utils_find_1st as utf1st
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade import constants
|
||||
from freqtrade.configuration import TimeRange
|
||||
from freqtrade.data import history
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.strategy.interface import SellType
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class PairInfo(NamedTuple):
|
||||
stoploss: float
|
||||
winrate: float
|
||||
risk_reward_ratio: float
|
||||
required_risk_reward: float
|
||||
expectancy: float
|
||||
nb_trades: int
|
||||
avg_trade_duration: float
|
||||
|
||||
|
||||
class Edge:
|
||||
"""
|
||||
Calculates Win Rate, Risk Reward Ratio, Expectancy
|
||||
against historical data for a give set of markets and a strategy
|
||||
it then adjusts stoploss and position size accordingly
|
||||
and force it into the strategy
|
||||
Author: https://github.com/mishaker
|
||||
"""
|
||||
|
||||
config: Dict = {}
|
||||
_cached_pairs: Dict[str, Any] = {} # Keeps a list of pairs
|
||||
|
||||
def __init__(self, config: Dict[str, Any], exchange, strategy) -> None:
|
||||
|
||||
self.config = config
|
||||
self.exchange = exchange
|
||||
self.strategy = strategy
|
||||
|
||||
self.edge_config = self.config.get('edge', {})
|
||||
self._cached_pairs: Dict[str, Any] = {} # Keeps a list of pairs
|
||||
self._final_pairs: list = []
|
||||
|
||||
# checking max_open_trades. it should be -1 as with Edge
|
||||
# the number of trades is determined by position size
|
||||
if self.config['max_open_trades'] != float('inf'):
|
||||
logger.critical('max_open_trades should be -1 in config !')
|
||||
|
||||
if self.config['stake_amount'] != constants.UNLIMITED_STAKE_AMOUNT:
|
||||
raise OperationalException('Edge works only with unlimited stake amount')
|
||||
|
||||
# Deprecated capital_available_percentage. Will use tradable_balance_ratio in the future.
|
||||
self._capital_percentage: float = self.edge_config.get(
|
||||
'capital_available_percentage', self.config['tradable_balance_ratio'])
|
||||
self._allowed_risk: float = self.edge_config.get('allowed_risk')
|
||||
self._since_number_of_days: int = self.edge_config.get('calculate_since_number_of_days', 14)
|
||||
self._last_updated: int = 0 # Timestamp of pairs last updated time
|
||||
self._refresh_pairs = True
|
||||
|
||||
self._stoploss_range_min = float(self.edge_config.get('stoploss_range_min', -0.01))
|
||||
self._stoploss_range_max = float(self.edge_config.get('stoploss_range_max', -0.05))
|
||||
self._stoploss_range_step = float(self.edge_config.get('stoploss_range_step', -0.001))
|
||||
|
||||
# calculating stoploss range
|
||||
self._stoploss_range = np.arange(
|
||||
self._stoploss_range_min,
|
||||
self._stoploss_range_max,
|
||||
self._stoploss_range_step
|
||||
)
|
||||
|
||||
self._timerange: TimeRange = TimeRange.parse_timerange("%s-" % arrow.now().shift(
|
||||
days=-1 * self._since_number_of_days).format('YYYYMMDD'))
|
||||
if config.get('fee'):
|
||||
self.fee = config['fee']
|
||||
else:
|
||||
self.fee = self.exchange.get_fee(symbol=self.config['exchange']['pair_whitelist'][0])
|
||||
|
||||
def calculate(self) -> bool:
|
||||
pairs = self.config['exchange']['pair_whitelist']
|
||||
heartbeat = self.edge_config.get('process_throttle_secs')
|
||||
|
||||
if (self._last_updated > 0) and (
|
||||
self._last_updated + heartbeat > arrow.utcnow().timestamp):
|
||||
return False
|
||||
|
||||
data: Dict[str, Any] = {}
|
||||
logger.info('Using stake_currency: %s ...', self.config['stake_currency'])
|
||||
logger.info('Using local backtesting data (using whitelist in given config) ...')
|
||||
|
||||
if self._refresh_pairs:
|
||||
history.refresh_data(
|
||||
datadir=self.config['datadir'],
|
||||
pairs=pairs,
|
||||
exchange=self.exchange,
|
||||
timeframe=self.strategy.ticker_interval,
|
||||
timerange=self._timerange,
|
||||
)
|
||||
|
||||
data = history.load_data(
|
||||
datadir=self.config['datadir'],
|
||||
pairs=pairs,
|
||||
timeframe=self.strategy.ticker_interval,
|
||||
timerange=self._timerange,
|
||||
startup_candles=self.strategy.startup_candle_count,
|
||||
data_format=self.config.get('dataformat_ohlcv', 'json'),
|
||||
)
|
||||
|
||||
if not data:
|
||||
# Reinitializing cached pairs
|
||||
self._cached_pairs = {}
|
||||
logger.critical("No data found. Edge is stopped ...")
|
||||
return False
|
||||
|
||||
preprocessed = self.strategy.tickerdata_to_dataframe(data)
|
||||
|
||||
# Print timeframe
|
||||
min_date, max_date = history.get_timerange(preprocessed)
|
||||
logger.info(
|
||||
'Measuring data from %s up to %s (%s days) ...',
|
||||
min_date.isoformat(),
|
||||
max_date.isoformat(),
|
||||
(max_date - min_date).days
|
||||
)
|
||||
headers = ['date', 'buy', 'open', 'close', 'sell', 'high', 'low']
|
||||
|
||||
trades: list = []
|
||||
for pair, pair_data in preprocessed.items():
|
||||
# Sorting dataframe by date and reset index
|
||||
pair_data = pair_data.sort_values(by=['date'])
|
||||
pair_data = pair_data.reset_index(drop=True)
|
||||
|
||||
ticker_data = self.strategy.advise_sell(
|
||||
self.strategy.advise_buy(pair_data, {'pair': pair}), {'pair': pair})[headers].copy()
|
||||
|
||||
trades += self._find_trades_for_stoploss_range(ticker_data, pair, self._stoploss_range)
|
||||
|
||||
# If no trade found then exit
|
||||
if len(trades) == 0:
|
||||
logger.info("No trades found.")
|
||||
return False
|
||||
|
||||
# Fill missing, calculable columns, profit, duration , abs etc.
|
||||
trades_df = self._fill_calculable_fields(DataFrame(trades))
|
||||
self._cached_pairs = self._process_expectancy(trades_df)
|
||||
self._last_updated = arrow.utcnow().timestamp
|
||||
|
||||
return True
|
||||
|
||||
def stake_amount(self, pair: str, free_capital: float,
|
||||
total_capital: float, capital_in_trade: float) -> float:
|
||||
stoploss = self.stoploss(pair)
|
||||
available_capital = (total_capital + capital_in_trade) * self._capital_percentage
|
||||
allowed_capital_at_risk = available_capital * self._allowed_risk
|
||||
max_position_size = abs(allowed_capital_at_risk / stoploss)
|
||||
position_size = min(max_position_size, free_capital)
|
||||
if pair in self._cached_pairs:
|
||||
logger.info(
|
||||
'winrate: %s, expectancy: %s, position size: %s, pair: %s,'
|
||||
' capital in trade: %s, free capital: %s, total capital: %s,'
|
||||
' stoploss: %s, available capital: %s.',
|
||||
self._cached_pairs[pair].winrate,
|
||||
self._cached_pairs[pair].expectancy,
|
||||
position_size, pair,
|
||||
capital_in_trade, free_capital, total_capital,
|
||||
stoploss, available_capital
|
||||
)
|
||||
return round(position_size, 15)
|
||||
|
||||
def stoploss(self, pair: str) -> float:
|
||||
if pair in self._cached_pairs:
|
||||
return self._cached_pairs[pair].stoploss
|
||||
else:
|
||||
logger.warning('tried to access stoploss of a non-existing pair, '
|
||||
'strategy stoploss is returned instead.')
|
||||
return self.strategy.stoploss
|
||||
|
||||
def adjust(self, pairs) -> list:
|
||||
"""
|
||||
Filters out and sorts "pairs" according to Edge calculated pairs
|
||||
"""
|
||||
final = []
|
||||
for pair, info in self._cached_pairs.items():
|
||||
if info.expectancy > float(self.edge_config.get('minimum_expectancy', 0.2)) and \
|
||||
info.winrate > float(self.edge_config.get('minimum_winrate', 0.60)) and \
|
||||
pair in pairs:
|
||||
final.append(pair)
|
||||
|
||||
if self._final_pairs != final:
|
||||
self._final_pairs = final
|
||||
if self._final_pairs:
|
||||
logger.info(
|
||||
'Minimum expectancy and minimum winrate are met only for %s,'
|
||||
' so other pairs are filtered out.',
|
||||
self._final_pairs
|
||||
)
|
||||
else:
|
||||
logger.info(
|
||||
'Edge removed all pairs as no pair with minimum expectancy '
|
||||
'and minimum winrate was found !'
|
||||
)
|
||||
|
||||
return self._final_pairs
|
||||
|
||||
def accepted_pairs(self) -> list:
|
||||
"""
|
||||
return a list of accepted pairs along with their winrate, expectancy and stoploss
|
||||
"""
|
||||
final = []
|
||||
for pair, info in self._cached_pairs.items():
|
||||
if info.expectancy > float(self.edge_config.get('minimum_expectancy', 0.2)) and \
|
||||
info.winrate > float(self.edge_config.get('minimum_winrate', 0.60)):
|
||||
final.append({
|
||||
'Pair': pair,
|
||||
'Winrate': info.winrate,
|
||||
'Expectancy': info.expectancy,
|
||||
'Stoploss': info.stoploss,
|
||||
})
|
||||
return final
|
||||
|
||||
def _fill_calculable_fields(self, result: DataFrame) -> DataFrame:
|
||||
"""
|
||||
The result frame contains a number of columns that are calculable
|
||||
from other columns. These are left blank till all rows are added,
|
||||
to be populated in single vector calls.
|
||||
|
||||
Columns to be populated are:
|
||||
- Profit
|
||||
- trade duration
|
||||
- profit abs
|
||||
:param result Dataframe
|
||||
:return: result Dataframe
|
||||
"""
|
||||
|
||||
# stake and fees
|
||||
# stake = 0.015
|
||||
# 0.05% is 0.0005
|
||||
# fee = 0.001
|
||||
|
||||
# we set stake amount to an arbitrary amount.
|
||||
# as it doesn't change the calculation.
|
||||
# all returned values are relative. they are percentages.
|
||||
stake = 0.015
|
||||
fee = self.fee
|
||||
open_fee = fee / 2
|
||||
close_fee = fee / 2
|
||||
|
||||
result['trade_duration'] = result['close_time'] - result['open_time']
|
||||
|
||||
result['trade_duration'] = result['trade_duration'].map(
|
||||
lambda x: int(x.total_seconds() / 60))
|
||||
|
||||
# Spends, Takes, Profit, Absolute Profit
|
||||
|
||||
# Buy Price
|
||||
result['buy_vol'] = stake / result['open_rate'] # How many target are we buying
|
||||
result['buy_fee'] = stake * open_fee
|
||||
result['buy_spend'] = stake + result['buy_fee'] # How much we're spending
|
||||
|
||||
# Sell price
|
||||
result['sell_sum'] = result['buy_vol'] * result['close_rate']
|
||||
result['sell_fee'] = result['sell_sum'] * close_fee
|
||||
result['sell_take'] = result['sell_sum'] - result['sell_fee']
|
||||
|
||||
# profit_percent
|
||||
result['profit_percent'] = (result['sell_take'] - result['buy_spend']) / result['buy_spend']
|
||||
|
||||
# Absolute profit
|
||||
result['profit_abs'] = result['sell_take'] - result['buy_spend']
|
||||
|
||||
return result
|
||||
|
||||
def _process_expectancy(self, results: DataFrame) -> Dict[str, Any]:
|
||||
"""
|
||||
This calculates WinRate, Required Risk Reward, Risk Reward and Expectancy of all pairs
|
||||
The calulation will be done per pair and per strategy.
|
||||
"""
|
||||
# Removing pairs having less than min_trades_number
|
||||
min_trades_number = self.edge_config.get('min_trade_number', 10)
|
||||
results = results.groupby(['pair', 'stoploss']).filter(lambda x: len(x) > min_trades_number)
|
||||
###################################
|
||||
|
||||
# Removing outliers (Only Pumps) from the dataset
|
||||
# The method to detect outliers is to calculate standard deviation
|
||||
# Then every value more than (standard deviation + 2*average) is out (pump)
|
||||
#
|
||||
# Removing Pumps
|
||||
if self.edge_config.get('remove_pumps', False):
|
||||
results = results.groupby(['pair', 'stoploss']).apply(
|
||||
lambda x: x[x['profit_abs'] < 2 * x['profit_abs'].std() + x['profit_abs'].mean()])
|
||||
##########################################################################
|
||||
|
||||
# Removing trades having a duration more than X minutes (set in config)
|
||||
max_trade_duration = self.edge_config.get('max_trade_duration_minute', 1440)
|
||||
results = results[results.trade_duration < max_trade_duration]
|
||||
#######################################################################
|
||||
|
||||
if results.empty:
|
||||
return {}
|
||||
|
||||
groupby_aggregator = {
|
||||
'profit_abs': [
|
||||
('nb_trades', 'count'), # number of all trades
|
||||
('profit_sum', lambda x: x[x > 0].sum()), # cumulative profit of all winning trades
|
||||
('loss_sum', lambda x: abs(x[x < 0].sum())), # cumulative loss of all losing trades
|
||||
('nb_win_trades', lambda x: x[x > 0].count()) # number of winning trades
|
||||
],
|
||||
'trade_duration': [('avg_trade_duration', 'mean')]
|
||||
}
|
||||
|
||||
# Group by (pair and stoploss) by applying above aggregator
|
||||
df = results.groupby(['pair', 'stoploss'])['profit_abs', 'trade_duration'].agg(
|
||||
groupby_aggregator).reset_index(col_level=1)
|
||||
|
||||
# Dropping level 0 as we don't need it
|
||||
df.columns = df.columns.droplevel(0)
|
||||
|
||||
# Calculating number of losing trades, average win and average loss
|
||||
df['nb_loss_trades'] = df['nb_trades'] - df['nb_win_trades']
|
||||
df['average_win'] = df['profit_sum'] / df['nb_win_trades']
|
||||
df['average_loss'] = df['loss_sum'] / df['nb_loss_trades']
|
||||
|
||||
# Win rate = number of profitable trades / number of trades
|
||||
df['winrate'] = df['nb_win_trades'] / df['nb_trades']
|
||||
|
||||
# risk_reward_ratio = average win / average loss
|
||||
df['risk_reward_ratio'] = df['average_win'] / df['average_loss']
|
||||
|
||||
# required_risk_reward = (1 / winrate) - 1
|
||||
df['required_risk_reward'] = (1 / df['winrate']) - 1
|
||||
|
||||
# expectancy = (risk_reward_ratio * winrate) - (lossrate)
|
||||
df['expectancy'] = (df['risk_reward_ratio'] * df['winrate']) - (1 - df['winrate'])
|
||||
|
||||
# sort by expectancy and stoploss
|
||||
df = df.sort_values(by=['expectancy', 'stoploss'], ascending=False).groupby(
|
||||
'pair').first().sort_values(by=['expectancy'], ascending=False).reset_index()
|
||||
|
||||
final = {}
|
||||
for x in df.itertuples():
|
||||
final[x.pair] = PairInfo(
|
||||
x.stoploss,
|
||||
x.winrate,
|
||||
x.risk_reward_ratio,
|
||||
x.required_risk_reward,
|
||||
x.expectancy,
|
||||
x.nb_trades,
|
||||
x.avg_trade_duration
|
||||
)
|
||||
|
||||
# Returning a list of pairs in order of "expectancy"
|
||||
return final
|
||||
|
||||
def _find_trades_for_stoploss_range(self, ticker_data, pair, stoploss_range):
|
||||
buy_column = ticker_data['buy'].values
|
||||
sell_column = ticker_data['sell'].values
|
||||
date_column = ticker_data['date'].values
|
||||
ohlc_columns = ticker_data[['open', 'high', 'low', 'close']].values
|
||||
|
||||
result: list = []
|
||||
for stoploss in stoploss_range:
|
||||
result += self._detect_next_stop_or_sell_point(
|
||||
buy_column, sell_column, date_column, ohlc_columns, round(stoploss, 6), pair
|
||||
)
|
||||
|
||||
return result
|
||||
|
||||
def _detect_next_stop_or_sell_point(self, buy_column, sell_column, date_column,
|
||||
ohlc_columns, stoploss, pair):
|
||||
"""
|
||||
Iterate through ohlc_columns in order to find the next trade
|
||||
Next trade opens from the first buy signal noticed to
|
||||
The sell or stoploss signal after it.
|
||||
It then cuts OHLC, buy_column, sell_column and date_column.
|
||||
Cut from (the exit trade index) + 1.
|
||||
|
||||
Author: https://github.com/mishaker
|
||||
"""
|
||||
|
||||
result: list = []
|
||||
start_point = 0
|
||||
|
||||
while True:
|
||||
open_trade_index = utf1st.find_1st(buy_column, 1, utf1st.cmp_equal)
|
||||
|
||||
# Return empty if we don't find trade entry (i.e. buy==1) or
|
||||
# we find a buy but at the end of array
|
||||
if open_trade_index == -1 or open_trade_index == len(buy_column) - 1:
|
||||
break
|
||||
else:
|
||||
# When a buy signal is seen,
|
||||
# trade opens in reality on the next candle
|
||||
open_trade_index += 1
|
||||
|
||||
stop_price_percentage = stoploss + 1
|
||||
open_price = ohlc_columns[open_trade_index, 0]
|
||||
stop_price = (open_price * stop_price_percentage)
|
||||
|
||||
# Searching for the index where stoploss is hit
|
||||
stop_index = utf1st.find_1st(
|
||||
ohlc_columns[open_trade_index:, 2], stop_price, utf1st.cmp_smaller)
|
||||
|
||||
# If we don't find it then we assume stop_index will be far in future (infinite number)
|
||||
if stop_index == -1:
|
||||
stop_index = float('inf')
|
||||
|
||||
# Searching for the index where sell is hit
|
||||
sell_index = utf1st.find_1st(sell_column[open_trade_index:], 1, utf1st.cmp_equal)
|
||||
|
||||
# If we don't find it then we assume sell_index will be far in future (infinite number)
|
||||
if sell_index == -1:
|
||||
sell_index = float('inf')
|
||||
|
||||
# Check if we don't find any stop or sell point (in that case trade remains open)
|
||||
# It is not interesting for Edge to consider it so we simply ignore the trade
|
||||
# And stop iterating there is no more entry
|
||||
if stop_index == sell_index == float('inf'):
|
||||
break
|
||||
|
||||
if stop_index <= sell_index:
|
||||
exit_index = open_trade_index + stop_index
|
||||
exit_type = SellType.STOP_LOSS
|
||||
exit_price = stop_price
|
||||
elif stop_index > sell_index:
|
||||
# If exit is SELL then we exit at the next candle
|
||||
exit_index = open_trade_index + sell_index + 1
|
||||
|
||||
# Check if we have the next candle
|
||||
if len(ohlc_columns) - 1 < exit_index:
|
||||
break
|
||||
|
||||
exit_type = SellType.SELL_SIGNAL
|
||||
exit_price = ohlc_columns[exit_index, 0]
|
||||
|
||||
trade = {'pair': pair,
|
||||
'stoploss': stoploss,
|
||||
'profit_percent': '',
|
||||
'profit_abs': '',
|
||||
'open_time': date_column[open_trade_index],
|
||||
'close_time': date_column[exit_index],
|
||||
'open_index': start_point + open_trade_index,
|
||||
'close_index': start_point + exit_index,
|
||||
'trade_duration': '',
|
||||
'open_rate': round(open_price, 15),
|
||||
'close_rate': round(exit_price, 15),
|
||||
'exit_type': exit_type
|
||||
}
|
||||
|
||||
result.append(trade)
|
||||
|
||||
# Giving a view of exit_index till the end of array
|
||||
buy_column = buy_column[exit_index:]
|
||||
sell_column = sell_column[exit_index:]
|
||||
date_column = date_column[exit_index:]
|
||||
ohlc_columns = ohlc_columns[exit_index:]
|
||||
start_point += exit_index
|
||||
|
||||
return result
|
@@ -7,6 +7,7 @@ import traceback
|
||||
from datetime import datetime
|
||||
from math import isclose
|
||||
from os import getpid
|
||||
from threading import Lock
|
||||
from typing import Any, Dict, List, Optional, Tuple
|
||||
|
||||
import arrow
|
||||
@@ -27,7 +28,6 @@ from freqtrade.state import State
|
||||
from freqtrade.strategy.interface import IStrategy, SellType
|
||||
from freqtrade.wallets import Wallets
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@@ -92,6 +92,8 @@ class FreqtradeBot:
|
||||
# the initial state of the bot.
|
||||
# Keep this at the end of this initialization method.
|
||||
self.rpc: RPCManager = RPCManager(self)
|
||||
# Protect sell-logic from forcesell and viceversa
|
||||
self._sell_lock = Lock()
|
||||
|
||||
def cleanup(self) -> None:
|
||||
"""
|
||||
@@ -132,8 +134,12 @@ class FreqtradeBot:
|
||||
self.dataprovider.refresh(self._create_pair_whitelist(self.active_pair_whitelist),
|
||||
self.strategy.informative_pairs())
|
||||
|
||||
# First process current opened trades (positions)
|
||||
self.exit_positions(trades)
|
||||
# Protect from collisions with forcesell.
|
||||
# Without this, freqtrade my try to recreate stoploss_on_exchange orders
|
||||
# while selling is in process, since telegram messages arrive in an different thread.
|
||||
with self._sell_lock:
|
||||
# First process current opened trades (positions)
|
||||
self.exit_positions(trades)
|
||||
|
||||
# Then looking for buy opportunities
|
||||
if self.get_free_open_trades():
|
||||
@@ -218,7 +224,7 @@ class FreqtradeBot:
|
||||
|
||||
return trades_created
|
||||
|
||||
def get_target_bid(self, pair: str, tick: Dict = None) -> float:
|
||||
def get_buy_rate(self, pair: str, tick: Dict = None) -> float:
|
||||
"""
|
||||
Calculates bid target between current ask price and last price
|
||||
:return: float: Price
|
||||
@@ -435,7 +441,7 @@ class FreqtradeBot:
|
||||
buy_limit_requested = price
|
||||
else:
|
||||
# Calculate price
|
||||
buy_limit_requested = self.get_target_bid(pair)
|
||||
buy_limit_requested = self.get_buy_rate(pair)
|
||||
|
||||
min_stake_amount = self._get_min_pair_stake_amount(pair, buy_limit_requested)
|
||||
if min_stake_amount is not None and min_stake_amount > stake_amount:
|
||||
@@ -748,8 +754,8 @@ class FreqtradeBot:
|
||||
Check and execute sell
|
||||
"""
|
||||
should_sell = self.strategy.should_sell(
|
||||
trade, sell_rate, datetime.utcnow(), buy, sell,
|
||||
force_stoploss=self.edge.stoploss(trade.pair) if self.edge else 0
|
||||
trade, sell_rate, datetime.utcnow(), buy, sell,
|
||||
force_stoploss=self.edge.stoploss(trade.pair) if self.edge else 0
|
||||
)
|
||||
|
||||
if should_sell.sell_flag:
|
||||
|
@@ -14,7 +14,7 @@ if sys.version_info < (3, 6):
|
||||
import logging
|
||||
from typing import Any, List
|
||||
|
||||
from freqtrade.configuration import Arguments
|
||||
from freqtrade.commands import Arguments
|
||||
|
||||
|
||||
logger = logging.getLogger('freqtrade')
|
||||
|
@@ -1,102 +0,0 @@
|
||||
import logging
|
||||
from typing import Any, Dict
|
||||
|
||||
from freqtrade import constants
|
||||
from freqtrade.exceptions import DependencyException, OperationalException
|
||||
from freqtrade.state import RunMode
|
||||
from freqtrade.utils import setup_utils_configuration
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def setup_configuration(args: Dict[str, Any], method: RunMode) -> Dict[str, Any]:
|
||||
"""
|
||||
Prepare the configuration for the Hyperopt module
|
||||
:param args: Cli args from Arguments()
|
||||
:return: Configuration
|
||||
"""
|
||||
config = setup_utils_configuration(args, method)
|
||||
|
||||
if method == RunMode.BACKTEST:
|
||||
if config['stake_amount'] == constants.UNLIMITED_STAKE_AMOUNT:
|
||||
raise DependencyException('stake amount could not be "%s" for backtesting' %
|
||||
constants.UNLIMITED_STAKE_AMOUNT)
|
||||
|
||||
return config
|
||||
|
||||
|
||||
def start_backtesting(args: Dict[str, Any]) -> None:
|
||||
"""
|
||||
Start Backtesting script
|
||||
:param args: Cli args from Arguments()
|
||||
:return: None
|
||||
"""
|
||||
# Import here to avoid loading backtesting module when it's not used
|
||||
from freqtrade.optimize.backtesting import Backtesting
|
||||
|
||||
# Initialize configuration
|
||||
config = setup_configuration(args, RunMode.BACKTEST)
|
||||
|
||||
logger.info('Starting freqtrade in Backtesting mode')
|
||||
|
||||
# Initialize backtesting object
|
||||
backtesting = Backtesting(config)
|
||||
backtesting.start()
|
||||
|
||||
|
||||
def start_hyperopt(args: Dict[str, Any]) -> None:
|
||||
"""
|
||||
Start hyperopt script
|
||||
:param args: Cli args from Arguments()
|
||||
:return: None
|
||||
"""
|
||||
# Import here to avoid loading hyperopt module when it's not used
|
||||
try:
|
||||
from filelock import FileLock, Timeout
|
||||
from freqtrade.optimize.hyperopt import Hyperopt
|
||||
except ImportError as e:
|
||||
raise OperationalException(
|
||||
f"{e}. Please ensure that the hyperopt dependencies are installed.") from e
|
||||
# Initialize configuration
|
||||
config = setup_configuration(args, RunMode.HYPEROPT)
|
||||
|
||||
logger.info('Starting freqtrade in Hyperopt mode')
|
||||
|
||||
lock = FileLock(Hyperopt.get_lock_filename(config))
|
||||
|
||||
try:
|
||||
with lock.acquire(timeout=1):
|
||||
|
||||
# Remove noisy log messages
|
||||
logging.getLogger('hyperopt.tpe').setLevel(logging.WARNING)
|
||||
logging.getLogger('filelock').setLevel(logging.WARNING)
|
||||
|
||||
# Initialize backtesting object
|
||||
hyperopt = Hyperopt(config)
|
||||
hyperopt.start()
|
||||
|
||||
except Timeout:
|
||||
logger.info("Another running instance of freqtrade Hyperopt detected.")
|
||||
logger.info("Simultaneous execution of multiple Hyperopt commands is not supported. "
|
||||
"Hyperopt module is resource hungry. Please run your Hyperopt sequentially "
|
||||
"or on separate machines.")
|
||||
logger.info("Quitting now.")
|
||||
# TODO: return False here in order to help freqtrade to exit
|
||||
# with non-zero exit code...
|
||||
# Same in Edge and Backtesting start() functions.
|
||||
|
||||
|
||||
def start_edge(args: Dict[str, Any]) -> None:
|
||||
"""
|
||||
Start Edge script
|
||||
:param args: Cli args from Arguments()
|
||||
:return: None
|
||||
"""
|
||||
from freqtrade.optimize.edge_cli import EdgeCli
|
||||
# Initialize configuration
|
||||
config = setup_configuration(args, RunMode.EDGE)
|
||||
logger.info('Starting freqtrade in Edge mode')
|
||||
|
||||
# Initialize Edge object
|
||||
edge_cli = EdgeCli(config)
|
||||
edge_cli.start()
|
||||
|
@@ -281,30 +281,28 @@ class Backtesting:
|
||||
return bt_res
|
||||
return None
|
||||
|
||||
def backtest(self, args: Dict) -> DataFrame:
|
||||
def backtest(self, processed: Dict, stake_amount: float,
|
||||
start_date, end_date,
|
||||
max_open_trades: int = 0, position_stacking: bool = False) -> DataFrame:
|
||||
"""
|
||||
Implements backtesting functionality
|
||||
Implement backtesting functionality
|
||||
|
||||
NOTE: This method is used by Hyperopt at each iteration. Please keep it optimized.
|
||||
Of course try to not have ugly code. By some accessor are sometime slower than functions.
|
||||
Avoid, logging on this method
|
||||
Avoid extensive logging in this method and functions it calls.
|
||||
|
||||
:param args: a dict containing:
|
||||
stake_amount: btc amount to use for each trade
|
||||
processed: a processed dictionary with format {pair, data}
|
||||
max_open_trades: maximum number of concurrent trades (default: 0, disabled)
|
||||
position_stacking: do we allow position stacking? (default: False)
|
||||
:return: DataFrame
|
||||
:param processed: a processed dictionary with format {pair, data}
|
||||
:param stake_amount: amount to use for each trade
|
||||
:param start_date: backtesting timerange start datetime
|
||||
:param end_date: backtesting timerange end datetime
|
||||
:param max_open_trades: maximum number of concurrent trades, <= 0 means unlimited
|
||||
:param position_stacking: do we allow position stacking?
|
||||
:return: DataFrame with trades (results of backtesting)
|
||||
"""
|
||||
# Arguments are long and noisy, so this is commented out.
|
||||
# Uncomment if you need to debug the backtest() method.
|
||||
# logger.debug(f"Start backtest, args: {args}")
|
||||
processed = args['processed']
|
||||
stake_amount = args['stake_amount']
|
||||
max_open_trades = args.get('max_open_trades', 0)
|
||||
position_stacking = args.get('position_stacking', False)
|
||||
start_date = args['start_date']
|
||||
end_date = args['end_date']
|
||||
logger.debug(f"Run backtest, stake_amount: {stake_amount}, "
|
||||
f"start_date: {start_date}, end_date: {end_date}, "
|
||||
f"max_open_trades: {max_open_trades}, position_stacking: {position_stacking}"
|
||||
)
|
||||
trades = []
|
||||
trade_count_lock: Dict = {}
|
||||
|
||||
@@ -371,18 +369,21 @@ class Backtesting:
|
||||
|
||||
def start(self) -> None:
|
||||
"""
|
||||
Run a backtesting end-to-end
|
||||
Run backtesting end-to-end
|
||||
:return: None
|
||||
"""
|
||||
data: Dict[str, Any] = {}
|
||||
|
||||
logger.info('Using stake_currency: %s ...', self.config['stake_currency'])
|
||||
logger.info('Using stake_amount: %s ...', self.config['stake_amount'])
|
||||
|
||||
# Use max_open_trades in backtesting, except --disable-max-market-positions is set
|
||||
if self.config.get('use_max_market_positions', True):
|
||||
max_open_trades = self.config['max_open_trades']
|
||||
else:
|
||||
logger.info('Ignoring max_open_trades (--disable-max-market-positions was used) ...')
|
||||
max_open_trades = 0
|
||||
position_stacking = self.config.get('position_stacking', False)
|
||||
|
||||
data, timerange = self.load_bt_data()
|
||||
|
||||
@@ -405,14 +406,12 @@ class Backtesting:
|
||||
)
|
||||
# Execute backtest and print results
|
||||
all_results[self.strategy.get_strategy_name()] = self.backtest(
|
||||
{
|
||||
'stake_amount': self.config.get('stake_amount'),
|
||||
'processed': preprocessed,
|
||||
'max_open_trades': max_open_trades,
|
||||
'position_stacking': self.config.get('position_stacking', False),
|
||||
'start_date': min_date,
|
||||
'end_date': max_date,
|
||||
}
|
||||
processed=preprocessed,
|
||||
stake_amount=self.config['stake_amount'],
|
||||
start_date=min_date,
|
||||
end_date=max_date,
|
||||
max_open_trades=max_open_trades,
|
||||
position_stacking=position_stacking,
|
||||
)
|
||||
|
||||
for strategy, results in all_results.items():
|
||||
|
@@ -373,14 +373,12 @@ class Hyperopt:
|
||||
min_date, max_date = get_timerange(processed)
|
||||
|
||||
backtesting_results = self.backtesting.backtest(
|
||||
{
|
||||
'stake_amount': self.config['stake_amount'],
|
||||
'processed': processed,
|
||||
'max_open_trades': self.max_open_trades,
|
||||
'position_stacking': self.position_stacking,
|
||||
'start_date': min_date,
|
||||
'end_date': max_date,
|
||||
}
|
||||
processed=processed,
|
||||
stake_amount=self.config['stake_amount'],
|
||||
start_date=min_date,
|
||||
end_date=max_date,
|
||||
max_open_trades=self.max_open_trades,
|
||||
position_stacking=self.position_stacking,
|
||||
)
|
||||
return self._get_results_dict(backtesting_results, min_date, max_date,
|
||||
params_dict, params_details)
|
||||
|
@@ -70,7 +70,7 @@ def generate_text_table_sell_reason(data: Dict[str, Dict], results: DataFrame) -
|
||||
for reason, count in results['sell_reason'].value_counts().iteritems():
|
||||
result = results.loc[results['sell_reason'] == reason]
|
||||
profit = len(result[result['profit_abs'] >= 0])
|
||||
loss = len(result[results['profit_abs'] < 0])
|
||||
loss = len(result[result['profit_abs'] < 0])
|
||||
profit_mean = round(result['profit_percent'].mean() * 100.0, 2)
|
||||
tabular_data.append([reason.value, count, profit, loss, profit_mean])
|
||||
return tabulate(tabular_data, headers=headers, tablefmt="pipe")
|
||||
|
@@ -420,24 +420,27 @@ class RPC:
|
||||
if self._freqtrade.state != State.RUNNING:
|
||||
raise RPCException('trader is not running')
|
||||
|
||||
if trade_id == 'all':
|
||||
# Execute sell for all open orders
|
||||
for trade in Trade.get_open_trades():
|
||||
_exec_forcesell(trade)
|
||||
with self._freqtrade._sell_lock:
|
||||
if trade_id == 'all':
|
||||
# Execute sell for all open orders
|
||||
for trade in Trade.get_open_trades():
|
||||
_exec_forcesell(trade)
|
||||
Trade.session.flush()
|
||||
self._freqtrade.wallets.update()
|
||||
return {'result': 'Created sell orders for all open trades.'}
|
||||
|
||||
# Query for trade
|
||||
trade = Trade.get_trades(
|
||||
trade_filter=[Trade.id == trade_id, Trade.is_open.is_(True), ]
|
||||
).first()
|
||||
if not trade:
|
||||
logger.warning('forcesell: Invalid argument received')
|
||||
raise RPCException('invalid argument')
|
||||
|
||||
_exec_forcesell(trade)
|
||||
Trade.session.flush()
|
||||
return {'result': 'Created sell orders for all open trades.'}
|
||||
|
||||
# Query for trade
|
||||
trade = Trade.get_trades(
|
||||
trade_filter=[Trade.id == trade_id, Trade.is_open.is_(True), ]
|
||||
).first()
|
||||
if not trade:
|
||||
logger.warning('forcesell: Invalid argument received')
|
||||
raise RPCException('invalid argument')
|
||||
|
||||
_exec_forcesell(trade)
|
||||
Trade.session.flush()
|
||||
return {'result': f'Created sell order for trade {trade_id}.'}
|
||||
self._freqtrade.wallets.update()
|
||||
return {'result': f'Created sell order for trade {trade_id}.'}
|
||||
|
||||
def _rpc_forcebuy(self, pair: str, price: Optional[float]) -> Optional[Trade]:
|
||||
"""
|
||||
|
@@ -27,7 +27,8 @@ class SampleHyperOptLoss(IHyperOptLoss):
|
||||
Defines the default loss function for hyperopt
|
||||
This is intended to give you some inspiration for your own loss function.
|
||||
|
||||
The Function needs to return a number (float) - which becomes for better backtest results.
|
||||
The Function needs to return a number (float) - which becomes smaller for better backtest
|
||||
results.
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
|
@@ -1,505 +0,0 @@
|
||||
import csv
|
||||
import logging
|
||||
import sys
|
||||
from collections import OrderedDict
|
||||
from operator import itemgetter
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, List
|
||||
|
||||
import arrow
|
||||
import rapidjson
|
||||
from colorama import init as colorama_init
|
||||
from tabulate import tabulate
|
||||
|
||||
from freqtrade.configuration import (Configuration, TimeRange,
|
||||
remove_credentials,
|
||||
validate_config_consistency)
|
||||
from freqtrade.configuration.directory_operations import (copy_sample_files,
|
||||
create_userdata_dir)
|
||||
from freqtrade.constants import USERPATH_HYPEROPTS, USERPATH_STRATEGY
|
||||
from freqtrade.data.converter import (convert_ohlcv_format,
|
||||
convert_trades_format)
|
||||
from freqtrade.data.history import (convert_trades_to_ohlcv,
|
||||
refresh_backtest_ohlcv_data,
|
||||
refresh_backtest_trades_data)
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.exchange import (available_exchanges, ccxt_exchanges,
|
||||
market_is_active, symbol_is_pair)
|
||||
from freqtrade.misc import plural, render_template
|
||||
from freqtrade.resolvers import ExchangeResolver, StrategyResolver
|
||||
from freqtrade.state import RunMode
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def setup_utils_configuration(args: Dict[str, Any], method: RunMode) -> Dict[str, Any]:
|
||||
"""
|
||||
Prepare the configuration for utils subcommands
|
||||
:param args: Cli args from Arguments()
|
||||
:return: Configuration
|
||||
"""
|
||||
configuration = Configuration(args, method)
|
||||
config = configuration.get_config()
|
||||
|
||||
# Ensure we do not use Exchange credentials
|
||||
remove_credentials(config)
|
||||
validate_config_consistency(config)
|
||||
|
||||
return config
|
||||
|
||||
|
||||
def start_trading(args: Dict[str, Any]) -> int:
|
||||
"""
|
||||
Main entry point for trading mode
|
||||
"""
|
||||
from freqtrade.worker import Worker
|
||||
# Load and run worker
|
||||
worker = None
|
||||
try:
|
||||
worker = Worker(args)
|
||||
worker.run()
|
||||
except KeyboardInterrupt:
|
||||
logger.info('SIGINT received, aborting ...')
|
||||
finally:
|
||||
if worker:
|
||||
logger.info("worker found ... calling exit")
|
||||
worker.exit()
|
||||
return 0
|
||||
|
||||
|
||||
def start_list_exchanges(args: Dict[str, Any]) -> None:
|
||||
"""
|
||||
Print available exchanges
|
||||
:param args: Cli args from Arguments()
|
||||
:return: None
|
||||
"""
|
||||
exchanges = ccxt_exchanges() if args['list_exchanges_all'] else available_exchanges()
|
||||
if args['print_one_column']:
|
||||
print('\n'.join(exchanges))
|
||||
else:
|
||||
if args['list_exchanges_all']:
|
||||
print(f"All exchanges supported by the ccxt library: {', '.join(exchanges)}")
|
||||
else:
|
||||
print(f"Exchanges available for Freqtrade: {', '.join(exchanges)}")
|
||||
|
||||
|
||||
def start_create_userdir(args: Dict[str, Any]) -> None:
|
||||
"""
|
||||
Create "user_data" directory to contain user data strategies, hyperopt, ...)
|
||||
:param args: Cli args from Arguments()
|
||||
:return: None
|
||||
"""
|
||||
if "user_data_dir" in args and args["user_data_dir"]:
|
||||
userdir = create_userdata_dir(args["user_data_dir"], create_dir=True)
|
||||
copy_sample_files(userdir, overwrite=args["reset"])
|
||||
else:
|
||||
logger.warning("`create-userdir` requires --userdir to be set.")
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
def deploy_new_strategy(strategy_name, strategy_path: Path, subtemplate: str):
|
||||
"""
|
||||
Deploy new strategy from template to strategy_path
|
||||
"""
|
||||
indicators = render_template(templatefile=f"subtemplates/indicators_{subtemplate}.j2",)
|
||||
buy_trend = render_template(templatefile=f"subtemplates/buy_trend_{subtemplate}.j2",)
|
||||
sell_trend = render_template(templatefile=f"subtemplates/sell_trend_{subtemplate}.j2",)
|
||||
plot_config = render_template(templatefile=f"subtemplates/plot_config_{subtemplate}.j2",)
|
||||
|
||||
strategy_text = render_template(templatefile='base_strategy.py.j2',
|
||||
arguments={"strategy": strategy_name,
|
||||
"indicators": indicators,
|
||||
"buy_trend": buy_trend,
|
||||
"sell_trend": sell_trend,
|
||||
"plot_config": plot_config,
|
||||
})
|
||||
|
||||
logger.info(f"Writing strategy to `{strategy_path}`.")
|
||||
strategy_path.write_text(strategy_text)
|
||||
|
||||
|
||||
def start_new_strategy(args: Dict[str, Any]) -> None:
|
||||
|
||||
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
|
||||
|
||||
if "strategy" in args and args["strategy"]:
|
||||
if args["strategy"] == "DefaultStrategy":
|
||||
raise OperationalException("DefaultStrategy is not allowed as name.")
|
||||
|
||||
new_path = config['user_data_dir'] / USERPATH_STRATEGY / (args["strategy"] + ".py")
|
||||
|
||||
if new_path.exists():
|
||||
raise OperationalException(f"`{new_path}` already exists. "
|
||||
"Please choose another Strategy Name.")
|
||||
|
||||
deploy_new_strategy(args['strategy'], new_path, args['template'])
|
||||
|
||||
else:
|
||||
raise OperationalException("`new-strategy` requires --strategy to be set.")
|
||||
|
||||
|
||||
def deploy_new_hyperopt(hyperopt_name, hyperopt_path: Path, subtemplate: str):
|
||||
"""
|
||||
Deploys a new hyperopt template to hyperopt_path
|
||||
"""
|
||||
buy_guards = render_template(
|
||||
templatefile=f"subtemplates/hyperopt_buy_guards_{subtemplate}.j2",)
|
||||
sell_guards = render_template(
|
||||
templatefile=f"subtemplates/hyperopt_sell_guards_{subtemplate}.j2",)
|
||||
buy_space = render_template(
|
||||
templatefile=f"subtemplates/hyperopt_buy_space_{subtemplate}.j2",)
|
||||
sell_space = render_template(
|
||||
templatefile=f"subtemplates/hyperopt_sell_space_{subtemplate}.j2",)
|
||||
|
||||
strategy_text = render_template(templatefile='base_hyperopt.py.j2',
|
||||
arguments={"hyperopt": hyperopt_name,
|
||||
"buy_guards": buy_guards,
|
||||
"sell_guards": sell_guards,
|
||||
"buy_space": buy_space,
|
||||
"sell_space": sell_space,
|
||||
})
|
||||
|
||||
logger.info(f"Writing hyperopt to `{hyperopt_path}`.")
|
||||
hyperopt_path.write_text(strategy_text)
|
||||
|
||||
|
||||
def start_new_hyperopt(args: Dict[str, Any]) -> None:
|
||||
|
||||
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
|
||||
|
||||
if "hyperopt" in args and args["hyperopt"]:
|
||||
if args["hyperopt"] == "DefaultHyperopt":
|
||||
raise OperationalException("DefaultHyperopt is not allowed as name.")
|
||||
|
||||
new_path = config['user_data_dir'] / USERPATH_HYPEROPTS / (args["hyperopt"] + ".py")
|
||||
|
||||
if new_path.exists():
|
||||
raise OperationalException(f"`{new_path}` already exists. "
|
||||
"Please choose another Strategy Name.")
|
||||
deploy_new_hyperopt(args['hyperopt'], new_path, args['template'])
|
||||
else:
|
||||
raise OperationalException("`new-hyperopt` requires --hyperopt to be set.")
|
||||
|
||||
|
||||
def start_download_data(args: Dict[str, Any]) -> None:
|
||||
"""
|
||||
Download data (former download_backtest_data.py script)
|
||||
"""
|
||||
config = setup_utils_configuration(args, RunMode.UTIL_EXCHANGE)
|
||||
|
||||
timerange = TimeRange()
|
||||
if 'days' in config:
|
||||
time_since = arrow.utcnow().shift(days=-config['days']).strftime("%Y%m%d")
|
||||
timerange = TimeRange.parse_timerange(f'{time_since}-')
|
||||
|
||||
if 'pairs' not in config:
|
||||
raise OperationalException(
|
||||
"Downloading data requires a list of pairs. "
|
||||
"Please check the documentation on how to configure this.")
|
||||
|
||||
logger.info(f'About to download pairs: {config["pairs"]}, '
|
||||
f'intervals: {config["timeframes"]} to {config["datadir"]}')
|
||||
|
||||
pairs_not_available: List[str] = []
|
||||
|
||||
# Init exchange
|
||||
exchange = ExchangeResolver.load_exchange(config['exchange']['name'], config)
|
||||
try:
|
||||
|
||||
if config.get('download_trades'):
|
||||
pairs_not_available = refresh_backtest_trades_data(
|
||||
exchange, pairs=config["pairs"], datadir=config['datadir'],
|
||||
timerange=timerange, erase=config.get("erase"),
|
||||
data_format=config['dataformat_trades'])
|
||||
|
||||
# Convert downloaded trade data to different timeframes
|
||||
convert_trades_to_ohlcv(
|
||||
pairs=config["pairs"], timeframes=config["timeframes"],
|
||||
datadir=config['datadir'], timerange=timerange, erase=config.get("erase"),
|
||||
data_format_ohlcv=config['dataformat_ohlcv'],
|
||||
data_format_trades=config['dataformat_trades'],
|
||||
)
|
||||
|
||||
else:
|
||||
pairs_not_available = refresh_backtest_ohlcv_data(
|
||||
exchange, pairs=config["pairs"], timeframes=config["timeframes"],
|
||||
datadir=config['datadir'], timerange=timerange, erase=config.get("erase"),
|
||||
data_format=config['dataformat_ohlcv'])
|
||||
|
||||
except KeyboardInterrupt:
|
||||
sys.exit("SIGINT received, aborting ...")
|
||||
|
||||
finally:
|
||||
if pairs_not_available:
|
||||
logger.info(f"Pairs [{','.join(pairs_not_available)}] not available "
|
||||
f"on exchange {exchange.name}.")
|
||||
|
||||
|
||||
def start_list_strategies(args: Dict[str, Any]) -> None:
|
||||
"""
|
||||
Print Strategies available in a directory
|
||||
"""
|
||||
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
|
||||
|
||||
directory = Path(config.get('strategy_path', config['user_data_dir'] / USERPATH_STRATEGY))
|
||||
strategies = StrategyResolver.search_all_objects(directory)
|
||||
# Sort alphabetically
|
||||
strategies = sorted(strategies, key=lambda x: x['name'])
|
||||
strats_to_print = [{'name': s['name'], 'location': s['location'].name} for s in strategies]
|
||||
|
||||
if args['print_one_column']:
|
||||
print('\n'.join([s['name'] for s in strategies]))
|
||||
else:
|
||||
print(tabulate(strats_to_print, headers='keys', tablefmt='pipe'))
|
||||
|
||||
|
||||
def start_convert_data(args: Dict[str, Any], ohlcv: bool = True) -> None:
|
||||
"""
|
||||
Convert data from one format to another
|
||||
"""
|
||||
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
|
||||
if ohlcv:
|
||||
convert_ohlcv_format(config,
|
||||
convert_from=args['format_from'], convert_to=args['format_to'],
|
||||
erase=args['erase'])
|
||||
else:
|
||||
convert_trades_format(config,
|
||||
convert_from=args['format_from'], convert_to=args['format_to'],
|
||||
erase=args['erase'])
|
||||
|
||||
|
||||
def start_list_timeframes(args: Dict[str, Any]) -> None:
|
||||
"""
|
||||
Print ticker intervals (timeframes) available on Exchange
|
||||
"""
|
||||
config = setup_utils_configuration(args, RunMode.UTIL_EXCHANGE)
|
||||
# Do not use ticker_interval set in the config
|
||||
config['ticker_interval'] = None
|
||||
|
||||
# Init exchange
|
||||
exchange = ExchangeResolver.load_exchange(config['exchange']['name'], config, validate=False)
|
||||
|
||||
if args['print_one_column']:
|
||||
print('\n'.join(exchange.timeframes))
|
||||
else:
|
||||
print(f"Timeframes available for the exchange `{exchange.name}`: "
|
||||
f"{', '.join(exchange.timeframes)}")
|
||||
|
||||
|
||||
def start_list_markets(args: Dict[str, Any], pairs_only: bool = False) -> None:
|
||||
"""
|
||||
Print pairs/markets on the exchange
|
||||
:param args: Cli args from Arguments()
|
||||
:param pairs_only: if True print only pairs, otherwise print all instruments (markets)
|
||||
:return: None
|
||||
"""
|
||||
config = setup_utils_configuration(args, RunMode.UTIL_EXCHANGE)
|
||||
|
||||
# Init exchange
|
||||
exchange = ExchangeResolver.load_exchange(config['exchange']['name'], config, validate=False)
|
||||
|
||||
# By default only active pairs/markets are to be shown
|
||||
active_only = not args.get('list_pairs_all', False)
|
||||
|
||||
base_currencies = args.get('base_currencies', [])
|
||||
quote_currencies = args.get('quote_currencies', [])
|
||||
|
||||
try:
|
||||
pairs = exchange.get_markets(base_currencies=base_currencies,
|
||||
quote_currencies=quote_currencies,
|
||||
pairs_only=pairs_only,
|
||||
active_only=active_only)
|
||||
# Sort the pairs/markets by symbol
|
||||
pairs = OrderedDict(sorted(pairs.items()))
|
||||
except Exception as e:
|
||||
raise OperationalException(f"Cannot get markets. Reason: {e}") from e
|
||||
|
||||
else:
|
||||
summary_str = ((f"Exchange {exchange.name} has {len(pairs)} ") +
|
||||
("active " if active_only else "") +
|
||||
(plural(len(pairs), "pair" if pairs_only else "market")) +
|
||||
(f" with {', '.join(base_currencies)} as base "
|
||||
f"{plural(len(base_currencies), 'currency', 'currencies')}"
|
||||
if base_currencies else "") +
|
||||
(" and" if base_currencies and quote_currencies else "") +
|
||||
(f" with {', '.join(quote_currencies)} as quote "
|
||||
f"{plural(len(quote_currencies), 'currency', 'currencies')}"
|
||||
if quote_currencies else ""))
|
||||
|
||||
headers = ["Id", "Symbol", "Base", "Quote", "Active",
|
||||
*(['Is pair'] if not pairs_only else [])]
|
||||
|
||||
tabular_data = []
|
||||
for _, v in pairs.items():
|
||||
tabular_data.append({'Id': v['id'], 'Symbol': v['symbol'],
|
||||
'Base': v['base'], 'Quote': v['quote'],
|
||||
'Active': market_is_active(v),
|
||||
**({'Is pair': symbol_is_pair(v['symbol'])}
|
||||
if not pairs_only else {})})
|
||||
|
||||
if (args.get('print_one_column', False) or
|
||||
args.get('list_pairs_print_json', False) or
|
||||
args.get('print_csv', False)):
|
||||
# Print summary string in the log in case of machine-readable
|
||||
# regular formats.
|
||||
logger.info(f"{summary_str}.")
|
||||
else:
|
||||
# Print empty string separating leading logs and output in case of
|
||||
# human-readable formats.
|
||||
print()
|
||||
|
||||
if len(pairs):
|
||||
if args.get('print_list', False):
|
||||
# print data as a list, with human-readable summary
|
||||
print(f"{summary_str}: {', '.join(pairs.keys())}.")
|
||||
elif args.get('print_one_column', False):
|
||||
print('\n'.join(pairs.keys()))
|
||||
elif args.get('list_pairs_print_json', False):
|
||||
print(rapidjson.dumps(list(pairs.keys()), default=str))
|
||||
elif args.get('print_csv', False):
|
||||
writer = csv.DictWriter(sys.stdout, fieldnames=headers)
|
||||
writer.writeheader()
|
||||
writer.writerows(tabular_data)
|
||||
else:
|
||||
# print data as a table, with the human-readable summary
|
||||
print(f"{summary_str}:")
|
||||
print(tabulate(tabular_data, headers='keys', tablefmt='pipe'))
|
||||
elif not (args.get('print_one_column', False) or
|
||||
args.get('list_pairs_print_json', False) or
|
||||
args.get('print_csv', False)):
|
||||
print(f"{summary_str}.")
|
||||
|
||||
|
||||
def start_test_pairlist(args: Dict[str, Any]) -> None:
|
||||
"""
|
||||
Test Pairlist configuration
|
||||
"""
|
||||
from freqtrade.pairlist.pairlistmanager import PairListManager
|
||||
config = setup_utils_configuration(args, RunMode.UTIL_EXCHANGE)
|
||||
|
||||
exchange = ExchangeResolver.load_exchange(config['exchange']['name'], config, validate=False)
|
||||
|
||||
quote_currencies = args.get('quote_currencies')
|
||||
if not quote_currencies:
|
||||
quote_currencies = [config.get('stake_currency')]
|
||||
results = {}
|
||||
for curr in quote_currencies:
|
||||
config['stake_currency'] = curr
|
||||
# Do not use ticker_interval set in the config
|
||||
pairlists = PairListManager(exchange, config)
|
||||
pairlists.refresh_pairlist()
|
||||
results[curr] = pairlists.whitelist
|
||||
|
||||
for curr, pairlist in results.items():
|
||||
if not args.get('print_one_column', False):
|
||||
print(f"Pairs for {curr}: ")
|
||||
|
||||
if args.get('print_one_column', False):
|
||||
print('\n'.join(pairlist))
|
||||
elif args.get('list_pairs_print_json', False):
|
||||
print(rapidjson.dumps(list(pairlist), default=str))
|
||||
else:
|
||||
print(pairlist)
|
||||
|
||||
|
||||
def start_hyperopt_list(args: Dict[str, Any]) -> None:
|
||||
"""
|
||||
List hyperopt epochs previously evaluated
|
||||
"""
|
||||
from freqtrade.optimize.hyperopt import Hyperopt
|
||||
|
||||
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
|
||||
|
||||
only_best = config.get('hyperopt_list_best', False)
|
||||
only_profitable = config.get('hyperopt_list_profitable', False)
|
||||
print_colorized = config.get('print_colorized', False)
|
||||
print_json = config.get('print_json', False)
|
||||
no_details = config.get('hyperopt_list_no_details', False)
|
||||
no_header = False
|
||||
|
||||
trials_file = (config['user_data_dir'] /
|
||||
'hyperopt_results' / 'hyperopt_results.pickle')
|
||||
|
||||
# Previous evaluations
|
||||
trials = Hyperopt.load_previous_results(trials_file)
|
||||
total_epochs = len(trials)
|
||||
|
||||
trials = _hyperopt_filter_trials(trials, only_best, only_profitable)
|
||||
|
||||
# TODO: fetch the interval for epochs to print from the cli option
|
||||
epoch_start, epoch_stop = 0, None
|
||||
|
||||
if print_colorized:
|
||||
colorama_init(autoreset=True)
|
||||
|
||||
try:
|
||||
# Human-friendly indexes used here (starting from 1)
|
||||
for val in trials[epoch_start:epoch_stop]:
|
||||
Hyperopt.print_results_explanation(val, total_epochs, not only_best, print_colorized)
|
||||
|
||||
except KeyboardInterrupt:
|
||||
print('User interrupted..')
|
||||
|
||||
if trials and not no_details:
|
||||
sorted_trials = sorted(trials, key=itemgetter('loss'))
|
||||
results = sorted_trials[0]
|
||||
Hyperopt.print_epoch_details(results, total_epochs, print_json, no_header)
|
||||
|
||||
|
||||
def start_hyperopt_show(args: Dict[str, Any]) -> None:
|
||||
"""
|
||||
Show details of a hyperopt epoch previously evaluated
|
||||
"""
|
||||
from freqtrade.optimize.hyperopt import Hyperopt
|
||||
|
||||
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
|
||||
|
||||
only_best = config.get('hyperopt_list_best', False)
|
||||
only_profitable = config.get('hyperopt_list_profitable', False)
|
||||
no_header = config.get('hyperopt_show_no_header', False)
|
||||
|
||||
trials_file = (config['user_data_dir'] /
|
||||
'hyperopt_results' / 'hyperopt_results.pickle')
|
||||
|
||||
# Previous evaluations
|
||||
trials = Hyperopt.load_previous_results(trials_file)
|
||||
total_epochs = len(trials)
|
||||
|
||||
trials = _hyperopt_filter_trials(trials, only_best, only_profitable)
|
||||
trials_epochs = len(trials)
|
||||
|
||||
n = config.get('hyperopt_show_index', -1)
|
||||
if n > trials_epochs:
|
||||
raise OperationalException(
|
||||
f"The index of the epoch to show should be less than {trials_epochs + 1}.")
|
||||
if n < -trials_epochs:
|
||||
raise OperationalException(
|
||||
f"The index of the epoch to show should be greater than {-trials_epochs - 1}.")
|
||||
|
||||
# Translate epoch index from human-readable format to pythonic
|
||||
if n > 0:
|
||||
n -= 1
|
||||
|
||||
print_json = config.get('print_json', False)
|
||||
|
||||
if trials:
|
||||
val = trials[n]
|
||||
Hyperopt.print_epoch_details(val, total_epochs, print_json, no_header,
|
||||
header_str="Epoch details")
|
||||
|
||||
|
||||
def _hyperopt_filter_trials(trials: List, only_best: bool, only_profitable: bool) -> List:
|
||||
"""
|
||||
Filter our items from the list of hyperopt results
|
||||
"""
|
||||
if only_best:
|
||||
trials = [x for x in trials if x['is_best']]
|
||||
if only_profitable:
|
||||
trials = [x for x in trials if x['results_metrics']['profit'] > 0]
|
||||
|
||||
logger.info(f"{len(trials)} " +
|
||||
("best " if only_best else "") +
|
||||
("profitable " if only_profitable else "") +
|
||||
"epochs found.")
|
||||
|
||||
return trials
|
Reference in New Issue
Block a user