Merge pull request #2538 from freqtrade/strategy_template

new-strategy / new-hyperopt - from templates
This commit is contained in:
hroff-1902
2019-11-24 15:21:23 +03:00
committed by GitHub
46 changed files with 1124 additions and 203 deletions

View File

@@ -37,7 +37,11 @@ ARGS_LIST_TIMEFRAMES = ["exchange", "print_one_column"]
ARGS_LIST_PAIRS = ["exchange", "print_list", "list_pairs_print_json", "print_one_column",
"print_csv", "base_currencies", "quote_currencies", "list_pairs_all"]
ARGS_CREATE_USERDIR = ["user_data_dir"]
ARGS_CREATE_USERDIR = ["user_data_dir", "reset"]
ARGS_BUILD_STRATEGY = ["user_data_dir", "strategy", "template"]
ARGS_BUILD_HYPEROPT = ["user_data_dir", "hyperopt", "template"]
ARGS_DOWNLOAD_DATA = ["pairs", "pairs_file", "days", "download_trades", "exchange",
"timeframes", "erase"]
@@ -52,7 +56,7 @@ ARGS_PLOT_PROFIT = ["pairs", "timerange", "export", "exportfilename", "db_url",
NO_CONF_REQURIED = ["download-data", "list-timeframes", "list-markets", "list-pairs",
"plot-dataframe", "plot-profit"]
NO_CONF_ALLOWED = ["create-userdir", "list-exchanges"]
NO_CONF_ALLOWED = ["create-userdir", "list-exchanges", "new-hyperopt", "new-strategy"]
class Arguments:
@@ -117,6 +121,7 @@ class Arguments:
from freqtrade.optimize import start_backtesting, start_hyperopt, start_edge
from freqtrade.utils import (start_create_userdir, start_download_data,
start_list_exchanges, start_list_markets,
start_new_hyperopt, start_new_strategy,
start_list_timeframes, start_trading)
from freqtrade.plot.plot_utils import start_plot_dataframe, start_plot_profit
@@ -158,6 +163,18 @@ class Arguments:
create_userdir_cmd.set_defaults(func=start_create_userdir)
self._build_args(optionlist=ARGS_CREATE_USERDIR, parser=create_userdir_cmd)
# add new-strategy subcommand
build_strategy_cmd = subparsers.add_parser('new-strategy',
help="Create new strategy")
build_strategy_cmd.set_defaults(func=start_new_strategy)
self._build_args(optionlist=ARGS_BUILD_STRATEGY, parser=build_strategy_cmd)
# add new-hyperopt subcommand
build_hyperopt_cmd = subparsers.add_parser('new-hyperopt',
help="Create new hyperopt")
build_hyperopt_cmd.set_defaults(func=start_new_hyperopt)
self._build_args(optionlist=ARGS_BUILD_HYPEROPT, parser=build_hyperopt_cmd)
# Add list-exchanges subcommand
list_exchanges_cmd = subparsers.add_parser(
'list-exchanges',

View File

@@ -62,6 +62,11 @@ AVAILABLE_CLI_OPTIONS = {
help='Path to userdata directory.',
metavar='PATH',
),
"reset": Arg(
'--reset',
help='Reset sample files to their original state.',
action='store_true',
),
# Main options
"strategy": Arg(
'-s', '--strategy',
@@ -334,6 +339,14 @@ AVAILABLE_CLI_OPTIONS = {
help='Clean all existing data for the selected exchange/pairs/timeframes.',
action='store_true',
),
# Templating options
"template": Arg(
'--template',
help='Use a template which is either `minimal` or '
'`full` (containing multiple sample indicators). Default: `%(default)s`.',
choices=['full', 'minimal'],
default='full',
),
# Plot dataframe
"indicators1": Arg(
'--indicators1',

View File

@@ -1,8 +1,10 @@
import logging
from typing import Any, Dict, Optional
import shutil
from pathlib import Path
from typing import Any, Dict, Optional
from freqtrade import OperationalException
from freqtrade.constants import USER_DATA_FILES
logger = logging.getLogger(__name__)
@@ -31,7 +33,8 @@ def create_userdata_dir(directory: str, create_dir=False) -> Path:
:param create_dir: Create directory if it does not exist.
:return: Path object containing the directory
"""
sub_dirs = ["backtest_results", "data", "hyperopts", "hyperopt_results", "plot", "strategies", ]
sub_dirs = ["backtest_results", "data", "hyperopts", "hyperopt_results", "notebooks",
"plot", "strategies", ]
folder = Path(directory)
if not folder.is_dir():
if create_dir:
@@ -48,3 +51,26 @@ def create_userdata_dir(directory: str, create_dir=False) -> Path:
if not subfolder.is_dir():
subfolder.mkdir(parents=False)
return folder
def copy_sample_files(directory: Path, overwrite: bool = False) -> None:
"""
Copy files from templates to User data directory.
:param directory: Directory to copy data to
:param overwrite: Overwrite existing sample files
"""
if not directory.is_dir():
raise OperationalException(f"Directory `{directory}` does not exist.")
sourcedir = Path(__file__).parents[1] / "templates"
for source, target in USER_DATA_FILES.items():
targetdir = directory / target
if not targetdir.is_dir():
raise OperationalException(f"Directory `{targetdir}` does not exist.")
targetfile = targetdir / source
if targetfile.exists():
if not overwrite:
logger.warning(f"File `{targetfile}` exists already, not deploying sample file.")
continue
else:
logger.warning(f"File `{targetfile}` exists already, overwriting.")
shutil.copy(str(sourcedir / source), str(targetfile))

View File

@@ -22,6 +22,18 @@ AVAILABLE_PAIRLISTS = ['StaticPairList', 'VolumePairList', 'PrecisionFilter', 'P
DRY_RUN_WALLET = 999.9
MATH_CLOSE_PREC = 1e-14 # Precision used for float comparisons
USERPATH_HYPEROPTS = 'hyperopts'
USERPATH_STRATEGY = 'strategies'
# Soure files with destination directories within user-directory
USER_DATA_FILES = {
'sample_strategy.py': USERPATH_STRATEGY,
'sample_hyperopt_advanced.py': USERPATH_HYPEROPTS,
'sample_hyperopt_loss.py': USERPATH_HYPEROPTS,
'sample_hyperopt.py': USERPATH_HYPEROPTS,
'strategy_analysis_example.ipynb': 'notebooks',
}
TIMEFRAMES = [
'1m', '3m', '5m', '15m', '30m',
'1h', '2h', '4h', '6h', '8h', '12h',

View File

@@ -127,3 +127,16 @@ def round_dict(d, n):
def plural(num, singular: str, plural: str = None) -> str:
return singular if (num == 1 or num == -1) else plural or singular + 's'
def render_template(templatefile: str, arguments: dict = {}):
from jinja2 import Environment, PackageLoader, select_autoescape
env = Environment(
loader=PackageLoader('freqtrade', 'templates'),
autoescape=select_autoescape(['html', 'xml'])
)
template = env.get_template(templatefile)
return template.render(**arguments)

View File

@@ -8,7 +8,7 @@ from pathlib import Path
from typing import Optional, Dict
from freqtrade import OperationalException
from freqtrade.constants import DEFAULT_HYPEROPT_LOSS
from freqtrade.constants import DEFAULT_HYPEROPT_LOSS, USERPATH_HYPEROPTS
from freqtrade.optimize.hyperopt_interface import IHyperOpt
from freqtrade.optimize.hyperopt_loss_interface import IHyperOptLoss
from freqtrade.resolvers import IResolver
@@ -58,7 +58,7 @@ class HyperOptResolver(IResolver):
current_path = Path(__file__).parent.parent.joinpath('optimize').resolve()
abs_paths = self.build_search_paths(config, current_path=current_path,
user_subdir='hyperopts', extra_dir=extra_dir)
user_subdir=USERPATH_HYPEROPTS, extra_dir=extra_dir)
hyperopt = self._load_object(paths=abs_paths, object_type=IHyperOpt,
object_name=hyperopt_name, kwargs={'config': config})
@@ -110,7 +110,7 @@ class HyperOptLossResolver(IResolver):
current_path = Path(__file__).parent.parent.joinpath('optimize').resolve()
abs_paths = self.build_search_paths(config, current_path=current_path,
user_subdir='hyperopts', extra_dir=extra_dir)
user_subdir=USERPATH_HYPEROPTS, extra_dir=extra_dir)
hyperoptloss = self._load_object(paths=abs_paths, object_type=IHyperOptLoss,
object_name=hyper_loss_name)

View File

@@ -129,7 +129,8 @@ class StrategyResolver(IResolver):
current_path = Path(__file__).parent.parent.joinpath('strategy').resolve()
abs_paths = self.build_search_paths(config, current_path=current_path,
user_subdir='strategies', extra_dir=extra_dir)
user_subdir=constants.USERPATH_STRATEGY,
extra_dir=extra_dir)
if ":" in strategy_name:
logger.info("loading base64 encoded strategy")

View File

@@ -0,0 +1,127 @@
# pragma pylint: disable=missing-docstring, invalid-name, pointless-string-statement
# --- Do not remove these libs ---
from functools import reduce
from typing import Any, Callable, Dict, List
import numpy as np # noqa
import pandas as pd # noqa
from pandas import DataFrame
from skopt.space import Categorical, Dimension, Integer, Real # noqa
from freqtrade.optimize.hyperopt_interface import IHyperOpt
# --------------------------------
# Add your lib to import here
import talib.abstract as ta # noqa
import freqtrade.vendor.qtpylib.indicators as qtpylib
class {{ hyperopt }}(IHyperOpt):
"""
This is a Hyperopt template to get you started.
More information in https://github.com/freqtrade/freqtrade/blob/develop/docs/hyperopt.md
You should:
- Add any lib you need to build your hyperopt.
You must keep:
- The prototypes for the methods: populate_indicators, indicator_space, buy_strategy_generator.
The roi_space, generate_roi_table, stoploss_space methods are no longer required to be
copied in every custom hyperopt. However, you may override them if you need the
'roi' and the 'stoploss' spaces that differ from the defaults offered by Freqtrade.
Sample implementation of these methods can be found in
https://github.com/freqtrade/freqtrade/blob/develop/user_data/hyperopts/sample_hyperopt_advanced.py
"""
@staticmethod
def buy_strategy_generator(params: Dict[str, Any]) -> Callable:
"""
Define the buy strategy parameters to be used by Hyperopt.
"""
def populate_buy_trend(dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Buy strategy Hyperopt will build and use.
"""
conditions = []
# GUARDS AND TRENDS
{{ buy_guards | indent(12) }}
# TRIGGERS
if 'trigger' in params:
if params['trigger'] == 'bb_lower':
conditions.append(dataframe['close'] < dataframe['bb_lowerband'])
if params['trigger'] == 'macd_cross_signal':
conditions.append(qtpylib.crossed_above(
dataframe['macd'], dataframe['macdsignal']
))
if params['trigger'] == 'sar_reversal':
conditions.append(qtpylib.crossed_above(
dataframe['close'], dataframe['sar']
))
if conditions:
dataframe.loc[
reduce(lambda x, y: x & y, conditions),
'buy'] = 1
return dataframe
return populate_buy_trend
@staticmethod
def indicator_space() -> List[Dimension]:
"""
Define your Hyperopt space for searching buy strategy parameters.
"""
return [
{{ buy_space | indent(12) }}
]
@staticmethod
def sell_strategy_generator(params: Dict[str, Any]) -> Callable:
"""
Define the sell strategy parameters to be used by Hyperopt.
"""
def populate_sell_trend(dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Sell strategy Hyperopt will build and use.
"""
conditions = []
# GUARDS AND TRENDS
{{ sell_guards | indent(12) }}
# TRIGGERS
if 'sell-trigger' in params:
if params['sell-trigger'] == 'sell-bb_upper':
conditions.append(dataframe['close'] > dataframe['bb_upperband'])
if params['sell-trigger'] == 'sell-macd_cross_signal':
conditions.append(qtpylib.crossed_above(
dataframe['macdsignal'], dataframe['macd']
))
if params['sell-trigger'] == 'sell-sar_reversal':
conditions.append(qtpylib.crossed_above(
dataframe['sar'], dataframe['close']
))
if conditions:
dataframe.loc[
reduce(lambda x, y: x & y, conditions),
'sell'] = 1
return dataframe
return populate_sell_trend
@staticmethod
def sell_indicator_space() -> List[Dimension]:
"""
Define your Hyperopt space for searching sell strategy parameters.
"""
return [
{{ sell_space | indent(12) }}
]

View File

@@ -0,0 +1,138 @@
# pragma pylint: disable=missing-docstring, invalid-name, pointless-string-statement
# --- Do not remove these libs ---
import numpy as np # noqa
import pandas as pd # noqa
from pandas import DataFrame
from freqtrade.strategy.interface import IStrategy
# --------------------------------
# Add your lib to import here
import talib.abstract as ta
import freqtrade.vendor.qtpylib.indicators as qtpylib
class {{ strategy }}(IStrategy):
"""
This is a strategy template to get you started.
More information in https://github.com/freqtrade/freqtrade/blob/develop/docs/bot-optimization.md
You can:
:return: a Dataframe with all mandatory indicators for the strategies
- Rename the class name (Do not forget to update class_name)
- Add any methods you want to build your strategy
- Add any lib you need to build your strategy
You must keep:
- the lib in the section "Do not remove these libs"
- the prototype for the methods: minimal_roi, stoploss, populate_indicators, populate_buy_trend,
populate_sell_trend, hyperopt_space, buy_strategy_generator
"""
# Strategy interface version - allow new iterations of the strategy interface.
# Check the documentation or the Sample strategy to get the latest version.
INTERFACE_VERSION = 2
# Minimal ROI designed for the strategy.
# This attribute will be overridden if the config file contains "minimal_roi".
minimal_roi = {
"60": 0.01,
"30": 0.02,
"0": 0.04
}
# Optimal stoploss designed for the strategy.
# This attribute will be overridden if the config file contains "stoploss".
stoploss = -0.10
# Trailing stoploss
trailing_stop = False
# trailing_stop_positive = 0.01
# trailing_stop_positive_offset = 0.0 # Disabled / not configured
# Optimal ticker interval for the strategy.
ticker_interval = '5m'
# Run "populate_indicators()" only for new candle.
process_only_new_candles = False
# These values can be overridden in the "ask_strategy" section in the config.
use_sell_signal = True
sell_profit_only = False
ignore_roi_if_buy_signal = False
# Number of candles the strategy requires before producing valid signals
startup_candle_count: int = 20
# Optional order type mapping.
order_types = {
'buy': 'limit',
'sell': 'limit',
'stoploss': 'market',
'stoploss_on_exchange': False
}
# Optional order time in force.
order_time_in_force = {
'buy': 'gtc',
'sell': 'gtc'
}
def informative_pairs(self):
"""
Define additional, informative pair/interval combinations to be cached from the exchange.
These pair/interval combinations are non-tradeable, unless they are part
of the whitelist as well.
For more information, please consult the documentation
:return: List of tuples in the format (pair, interval)
Sample: return [("ETH/USDT", "5m"),
("BTC/USDT", "15m"),
]
"""
return []
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Adds several different TA indicators to the given DataFrame
Performance Note: For the best performance be frugal on the number of indicators
you are using. Let uncomment only the indicator you are using in your strategies
or your hyperopt configuration, otherwise you will waste your memory and CPU usage.
:param dataframe: Raw data from the exchange and parsed by parse_ticker_dataframe()
:param metadata: Additional information, like the currently traded pair
:return: a Dataframe with all mandatory indicators for the strategies
"""
{{ indicators | indent(8) }}
return dataframe
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Based on TA indicators, populates the buy signal for the given dataframe
:param dataframe: DataFrame populated with indicators
:param metadata: Additional information, like the currently traded pair
:return: DataFrame with buy column
"""
dataframe.loc[
(
{{ buy_trend | indent(16) }}
(dataframe['volume'] > 0) # Make sure Volume is not 0
),
'buy'] = 1
return dataframe
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Based on TA indicators, populates the sell signal for the given dataframe
:param dataframe: DataFrame populated with indicators
:param metadata: Additional information, like the currently traded pair
:return: DataFrame with buy column
"""
dataframe.loc[
(
{{ sell_trend | indent(16) }}
(dataframe['volume'] > 0) # Make sure Volume is not 0
),
'sell'] = 1
return dataframe

View File

@@ -0,0 +1,196 @@
# pragma pylint: disable=missing-docstring, invalid-name, pointless-string-statement
# --- Do not remove these libs ---
from functools import reduce
from typing import Any, Callable, Dict, List
import numpy as np # noqa
import pandas as pd # noqa
from pandas import DataFrame
from skopt.space import Categorical, Dimension, Integer, Real # noqa
from freqtrade.optimize.hyperopt_interface import IHyperOpt
# --------------------------------
# Add your lib to import here
import talib.abstract as ta # noqa
import freqtrade.vendor.qtpylib.indicators as qtpylib
class SampleHyperOpt(IHyperOpt):
"""
This is a sample Hyperopt to inspire you.
Feel free to customize it.
More information in https://github.com/freqtrade/freqtrade/blob/develop/docs/hyperopt.md
You should:
- Rename the class name to some unique name.
- Add any methods you want to build your hyperopt.
- Add any lib you need to build your hyperopt.
You must keep:
- The prototypes for the methods: populate_indicators, indicator_space, buy_strategy_generator.
The roi_space, generate_roi_table, stoploss_space methods are no longer required to be
copied in every custom hyperopt. However, you may override them if you need the
'roi' and the 'stoploss' spaces that differ from the defaults offered by Freqtrade.
Sample implementation of these methods can be found in
https://github.com/freqtrade/freqtrade/blob/develop/user_data/hyperopts/sample_hyperopt_advanced.py
"""
@staticmethod
def buy_strategy_generator(params: Dict[str, Any]) -> Callable:
"""
Define the buy strategy parameters to be used by Hyperopt.
"""
def populate_buy_trend(dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Buy strategy Hyperopt will build and use.
"""
conditions = []
# GUARDS AND TRENDS
if 'mfi-enabled' in params and params['mfi-enabled']:
conditions.append(dataframe['mfi'] < params['mfi-value'])
if 'fastd-enabled' in params and params['fastd-enabled']:
conditions.append(dataframe['fastd'] < params['fastd-value'])
if 'adx-enabled' in params and params['adx-enabled']:
conditions.append(dataframe['adx'] > params['adx-value'])
if 'rsi-enabled' in params and params['rsi-enabled']:
conditions.append(dataframe['rsi'] < params['rsi-value'])
# TRIGGERS
if 'trigger' in params:
if params['trigger'] == 'bb_lower':
conditions.append(dataframe['close'] < dataframe['bb_lowerband'])
if params['trigger'] == 'macd_cross_signal':
conditions.append(qtpylib.crossed_above(
dataframe['macd'], dataframe['macdsignal']
))
if params['trigger'] == 'sar_reversal':
conditions.append(qtpylib.crossed_above(
dataframe['close'], dataframe['sar']
))
if conditions:
dataframe.loc[
reduce(lambda x, y: x & y, conditions),
'buy'] = 1
return dataframe
return populate_buy_trend
@staticmethod
def indicator_space() -> List[Dimension]:
"""
Define your Hyperopt space for searching buy strategy parameters.
"""
return [
Integer(10, 25, name='mfi-value'),
Integer(15, 45, name='fastd-value'),
Integer(20, 50, name='adx-value'),
Integer(20, 40, name='rsi-value'),
Categorical([True, False], name='mfi-enabled'),
Categorical([True, False], name='fastd-enabled'),
Categorical([True, False], name='adx-enabled'),
Categorical([True, False], name='rsi-enabled'),
Categorical(['bb_lower', 'macd_cross_signal', 'sar_reversal'], name='trigger')
]
@staticmethod
def sell_strategy_generator(params: Dict[str, Any]) -> Callable:
"""
Define the sell strategy parameters to be used by Hyperopt.
"""
def populate_sell_trend(dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Sell strategy Hyperopt will build and use.
"""
conditions = []
# GUARDS AND TRENDS
if 'sell-mfi-enabled' in params and params['sell-mfi-enabled']:
conditions.append(dataframe['mfi'] > params['sell-mfi-value'])
if 'sell-fastd-enabled' in params and params['sell-fastd-enabled']:
conditions.append(dataframe['fastd'] > params['sell-fastd-value'])
if 'sell-adx-enabled' in params and params['sell-adx-enabled']:
conditions.append(dataframe['adx'] < params['sell-adx-value'])
if 'sell-rsi-enabled' in params and params['sell-rsi-enabled']:
conditions.append(dataframe['rsi'] > params['sell-rsi-value'])
# TRIGGERS
if 'sell-trigger' in params:
if params['sell-trigger'] == 'sell-bb_upper':
conditions.append(dataframe['close'] > dataframe['bb_upperband'])
if params['sell-trigger'] == 'sell-macd_cross_signal':
conditions.append(qtpylib.crossed_above(
dataframe['macdsignal'], dataframe['macd']
))
if params['sell-trigger'] == 'sell-sar_reversal':
conditions.append(qtpylib.crossed_above(
dataframe['sar'], dataframe['close']
))
if conditions:
dataframe.loc[
reduce(lambda x, y: x & y, conditions),
'sell'] = 1
return dataframe
return populate_sell_trend
@staticmethod
def sell_indicator_space() -> List[Dimension]:
"""
Define your Hyperopt space for searching sell strategy parameters.
"""
return [
Integer(75, 100, name='sell-mfi-value'),
Integer(50, 100, name='sell-fastd-value'),
Integer(50, 100, name='sell-adx-value'),
Integer(60, 100, name='sell-rsi-value'),
Categorical([True, False], name='sell-mfi-enabled'),
Categorical([True, False], name='sell-fastd-enabled'),
Categorical([True, False], name='sell-adx-enabled'),
Categorical([True, False], name='sell-rsi-enabled'),
Categorical(['sell-bb_upper',
'sell-macd_cross_signal',
'sell-sar_reversal'], name='sell-trigger')
]
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Based on TA indicators. Should be a copy of same method from strategy.
Must align to populate_indicators in this file.
Only used when --spaces does not include buy space.
"""
dataframe.loc[
(
(dataframe['close'] < dataframe['bb_lowerband']) &
(dataframe['mfi'] < 16) &
(dataframe['adx'] > 25) &
(dataframe['rsi'] < 21)
),
'buy'] = 1
return dataframe
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Based on TA indicators. Should be a copy of same method from strategy.
Must align to populate_indicators in this file.
Only used when --spaces does not include sell space.
"""
dataframe.loc[
(
(qtpylib.crossed_above(
dataframe['macdsignal'], dataframe['macd']
)) &
(dataframe['fastd'] > 54)
),
'sell'] = 1
return dataframe

View File

@@ -0,0 +1,271 @@
# pragma pylint: disable=missing-docstring, invalid-name, pointless-string-statement
# --- Do not remove these libs ---
from functools import reduce
from typing import Any, Callable, Dict, List
import numpy as np # noqa
import pandas as pd # noqa
from pandas import DataFrame
from skopt.space import Categorical, Dimension, Integer, Real # noqa
from freqtrade.optimize.hyperopt_interface import IHyperOpt
# --------------------------------
# Add your lib to import here
import talib.abstract as ta # noqa
import freqtrade.vendor.qtpylib.indicators as qtpylib
class AdvancedSampleHyperOpt(IHyperOpt):
"""
This is a sample hyperopt to inspire you.
Feel free to customize it.
More information in https://github.com/freqtrade/freqtrade/blob/develop/docs/hyperopt.md
You should:
- Rename the class name to some unique name.
- Add any methods you want to build your hyperopt.
- Add any lib you need to build your hyperopt.
You must keep:
- The prototypes for the methods: populate_indicators, indicator_space, buy_strategy_generator.
The roi_space, generate_roi_table, stoploss_space methods are no longer required to be
copied in every custom hyperopt. However, you may override them if you need the
'roi' and the 'stoploss' spaces that differ from the defaults offered by Freqtrade.
This sample illustrates how to override these methods.
"""
@staticmethod
def populate_indicators(dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
This method can also be loaded from the strategy, if it doesn't exist in the hyperopt class.
"""
dataframe['adx'] = ta.ADX(dataframe)
macd = ta.MACD(dataframe)
dataframe['macd'] = macd['macd']
dataframe['macdsignal'] = macd['macdsignal']
dataframe['mfi'] = ta.MFI(dataframe)
dataframe['rsi'] = ta.RSI(dataframe)
stoch_fast = ta.STOCHF(dataframe)
dataframe['fastd'] = stoch_fast['fastd']
dataframe['minus_di'] = ta.MINUS_DI(dataframe)
# Bollinger bands
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
dataframe['bb_lowerband'] = bollinger['lower']
dataframe['bb_upperband'] = bollinger['upper']
dataframe['sar'] = ta.SAR(dataframe)
return dataframe
@staticmethod
def buy_strategy_generator(params: Dict[str, Any]) -> Callable:
"""
Define the buy strategy parameters to be used by hyperopt
"""
def populate_buy_trend(dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Buy strategy Hyperopt will build and use
"""
conditions = []
# GUARDS AND TRENDS
if 'mfi-enabled' in params and params['mfi-enabled']:
conditions.append(dataframe['mfi'] < params['mfi-value'])
if 'fastd-enabled' in params and params['fastd-enabled']:
conditions.append(dataframe['fastd'] < params['fastd-value'])
if 'adx-enabled' in params and params['adx-enabled']:
conditions.append(dataframe['adx'] > params['adx-value'])
if 'rsi-enabled' in params and params['rsi-enabled']:
conditions.append(dataframe['rsi'] < params['rsi-value'])
# TRIGGERS
if 'trigger' in params:
if params['trigger'] == 'bb_lower':
conditions.append(dataframe['close'] < dataframe['bb_lowerband'])
if params['trigger'] == 'macd_cross_signal':
conditions.append(qtpylib.crossed_above(
dataframe['macd'], dataframe['macdsignal']
))
if params['trigger'] == 'sar_reversal':
conditions.append(qtpylib.crossed_above(
dataframe['close'], dataframe['sar']
))
if conditions:
dataframe.loc[
reduce(lambda x, y: x & y, conditions),
'buy'] = 1
return dataframe
return populate_buy_trend
@staticmethod
def indicator_space() -> List[Dimension]:
"""
Define your Hyperopt space for searching strategy parameters
"""
return [
Integer(10, 25, name='mfi-value'),
Integer(15, 45, name='fastd-value'),
Integer(20, 50, name='adx-value'),
Integer(20, 40, name='rsi-value'),
Categorical([True, False], name='mfi-enabled'),
Categorical([True, False], name='fastd-enabled'),
Categorical([True, False], name='adx-enabled'),
Categorical([True, False], name='rsi-enabled'),
Categorical(['bb_lower', 'macd_cross_signal', 'sar_reversal'], name='trigger')
]
@staticmethod
def sell_strategy_generator(params: Dict[str, Any]) -> Callable:
"""
Define the sell strategy parameters to be used by hyperopt
"""
def populate_sell_trend(dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Sell strategy Hyperopt will build and use
"""
# print(params)
conditions = []
# GUARDS AND TRENDS
if 'sell-mfi-enabled' in params and params['sell-mfi-enabled']:
conditions.append(dataframe['mfi'] > params['sell-mfi-value'])
if 'sell-fastd-enabled' in params and params['sell-fastd-enabled']:
conditions.append(dataframe['fastd'] > params['sell-fastd-value'])
if 'sell-adx-enabled' in params and params['sell-adx-enabled']:
conditions.append(dataframe['adx'] < params['sell-adx-value'])
if 'sell-rsi-enabled' in params and params['sell-rsi-enabled']:
conditions.append(dataframe['rsi'] > params['sell-rsi-value'])
# TRIGGERS
if 'sell-trigger' in params:
if params['sell-trigger'] == 'sell-bb_upper':
conditions.append(dataframe['close'] > dataframe['bb_upperband'])
if params['sell-trigger'] == 'sell-macd_cross_signal':
conditions.append(qtpylib.crossed_above(
dataframe['macdsignal'], dataframe['macd']
))
if params['sell-trigger'] == 'sell-sar_reversal':
conditions.append(qtpylib.crossed_above(
dataframe['sar'], dataframe['close']
))
if conditions:
dataframe.loc[
reduce(lambda x, y: x & y, conditions),
'sell'] = 1
return dataframe
return populate_sell_trend
@staticmethod
def sell_indicator_space() -> List[Dimension]:
"""
Define your Hyperopt space for searching sell strategy parameters
"""
return [
Integer(75, 100, name='sell-mfi-value'),
Integer(50, 100, name='sell-fastd-value'),
Integer(50, 100, name='sell-adx-value'),
Integer(60, 100, name='sell-rsi-value'),
Categorical([True, False], name='sell-mfi-enabled'),
Categorical([True, False], name='sell-fastd-enabled'),
Categorical([True, False], name='sell-adx-enabled'),
Categorical([True, False], name='sell-rsi-enabled'),
Categorical(['sell-bb_upper',
'sell-macd_cross_signal',
'sell-sar_reversal'], name='sell-trigger')
]
@staticmethod
def generate_roi_table(params: Dict) -> Dict[int, float]:
"""
Generate the ROI table that will be used by Hyperopt
This implementation generates the default legacy Freqtrade ROI tables.
Change it if you need different number of steps in the generated
ROI tables or other structure of the ROI tables.
Please keep it aligned with parameters in the 'roi' optimization
hyperspace defined by the roi_space method.
"""
roi_table = {}
roi_table[0] = params['roi_p1'] + params['roi_p2'] + params['roi_p3']
roi_table[params['roi_t3']] = params['roi_p1'] + params['roi_p2']
roi_table[params['roi_t3'] + params['roi_t2']] = params['roi_p1']
roi_table[params['roi_t3'] + params['roi_t2'] + params['roi_t1']] = 0
return roi_table
@staticmethod
def roi_space() -> List[Dimension]:
"""
Values to search for each ROI steps
Override it if you need some different ranges for the parameters in the
'roi' optimization hyperspace.
Please keep it aligned with the implementation of the
generate_roi_table method.
"""
return [
Integer(10, 120, name='roi_t1'),
Integer(10, 60, name='roi_t2'),
Integer(10, 40, name='roi_t3'),
Real(0.01, 0.04, name='roi_p1'),
Real(0.01, 0.07, name='roi_p2'),
Real(0.01, 0.20, name='roi_p3'),
]
@staticmethod
def stoploss_space() -> List[Dimension]:
"""
Stoploss Value to search
Override it if you need some different range for the parameter in the
'stoploss' optimization hyperspace.
"""
return [
Real(-0.5, -0.02, name='stoploss'),
]
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Based on TA indicators.
Can be a copy of the corresponding method from the strategy,
or will be loaded from the strategy.
Must align to populate_indicators used (either from this File, or from the strategy)
Only used when --spaces does not include buy
"""
dataframe.loc[
(
(dataframe['close'] < dataframe['bb_lowerband']) &
(dataframe['mfi'] < 16) &
(dataframe['adx'] > 25) &
(dataframe['rsi'] < 21)
),
'buy'] = 1
return dataframe
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Based on TA indicators.
Can be a copy of the corresponding method from the strategy,
or will be loaded from the strategy.
Must align to populate_indicators used (either from this File, or from the strategy)
Only used when --spaces does not include sell
"""
dataframe.loc[
(
(qtpylib.crossed_above(
dataframe['macdsignal'], dataframe['macd']
)) &
(dataframe['fastd'] > 54)
),
'sell'] = 1
return dataframe

View File

@@ -0,0 +1,47 @@
from math import exp
from datetime import datetime
from pandas import DataFrame
from freqtrade.optimize.hyperopt import IHyperOptLoss
# Define some constants:
# set TARGET_TRADES to suit your number concurrent trades so its realistic
# to the number of days
TARGET_TRADES = 600
# This is assumed to be expected avg profit * expected trade count.
# For example, for 0.35% avg per trade (or 0.0035 as ratio) and 1100 trades,
# self.expected_max_profit = 3.85
# Check that the reported Σ% values do not exceed this!
# Note, this is ratio. 3.85 stated above means 385Σ%.
EXPECTED_MAX_PROFIT = 3.0
# max average trade duration in minutes
# if eval ends with higher value, we consider it a failed eval
MAX_ACCEPTED_TRADE_DURATION = 300
class SampleHyperOptLoss(IHyperOptLoss):
"""
Defines the default loss function for hyperopt
This is intended to give you some inspiration for your own loss function.
The Function needs to return a number (float) - which becomes for better backtest results.
"""
@staticmethod
def hyperopt_loss_function(results: DataFrame, trade_count: int,
min_date: datetime, max_date: datetime,
*args, **kwargs) -> float:
"""
Objective function, returns smaller number for better results
"""
total_profit = results.profit_percent.sum()
trade_duration = results.trade_duration.mean()
trade_loss = 1 - 0.25 * exp(-(trade_count - TARGET_TRADES) ** 2 / 10 ** 5.8)
profit_loss = max(0, 1 - total_profit / EXPECTED_MAX_PROFIT)
duration_loss = 0.4 * min(trade_duration / MAX_ACCEPTED_TRADE_DURATION, 1)
result = trade_loss + profit_loss + duration_loss
return result

View File

@@ -0,0 +1,303 @@
# pragma pylint: disable=missing-docstring, invalid-name, pointless-string-statement
# --- Do not remove these libs ---
import numpy as np # noqa
import pandas as pd # noqa
from pandas import DataFrame
from freqtrade.strategy.interface import IStrategy
# --------------------------------
# Add your lib to import here
import talib.abstract as ta
import freqtrade.vendor.qtpylib.indicators as qtpylib
# This class is a sample. Feel free to customize it.
class SampleStrategy(IStrategy):
"""
This is a sample strategy to inspire you.
More information in https://github.com/freqtrade/freqtrade/blob/develop/docs/bot-optimization.md
You can:
:return: a Dataframe with all mandatory indicators for the strategies
- Rename the class name (Do not forget to update class_name)
- Add any methods you want to build your strategy
- Add any lib you need to build your strategy
You must keep:
- the lib in the section "Do not remove these libs"
- the prototype for the methods: minimal_roi, stoploss, populate_indicators, populate_buy_trend,
populate_sell_trend, hyperopt_space, buy_strategy_generator
"""
# Strategy interface version - allow new iterations of the strategy interface.
# Check the documentation or the Sample strategy to get the latest version.
INTERFACE_VERSION = 2
# Minimal ROI designed for the strategy.
# This attribute will be overridden if the config file contains "minimal_roi".
minimal_roi = {
"60": 0.01,
"30": 0.02,
"0": 0.04
}
# Optimal stoploss designed for the strategy.
# This attribute will be overridden if the config file contains "stoploss".
stoploss = -0.10
# Trailing stoploss
trailing_stop = False
# trailing_stop_positive = 0.01
# trailing_stop_positive_offset = 0.0 # Disabled / not configured
# Optimal ticker interval for the strategy.
ticker_interval = '5m'
# Run "populate_indicators()" only for new candle.
process_only_new_candles = False
# These values can be overridden in the "ask_strategy" section in the config.
use_sell_signal = True
sell_profit_only = False
ignore_roi_if_buy_signal = False
# Number of candles the strategy requires before producing valid signals
startup_candle_count: int = 20
# Optional order type mapping.
order_types = {
'buy': 'limit',
'sell': 'limit',
'stoploss': 'market',
'stoploss_on_exchange': False
}
# Optional order time in force.
order_time_in_force = {
'buy': 'gtc',
'sell': 'gtc'
}
def informative_pairs(self):
"""
Define additional, informative pair/interval combinations to be cached from the exchange.
These pair/interval combinations are non-tradeable, unless they are part
of the whitelist as well.
For more information, please consult the documentation
:return: List of tuples in the format (pair, interval)
Sample: return [("ETH/USDT", "5m"),
("BTC/USDT", "15m"),
]
"""
return []
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Adds several different TA indicators to the given DataFrame
Performance Note: For the best performance be frugal on the number of indicators
you are using. Let uncomment only the indicator you are using in your strategies
or your hyperopt configuration, otherwise you will waste your memory and CPU usage.
:param dataframe: Raw data from the exchange and parsed by parse_ticker_dataframe()
:param metadata: Additional information, like the currently traded pair
:return: a Dataframe with all mandatory indicators for the strategies
"""
# Momentum Indicators
# ------------------------------------
# RSI
dataframe['rsi'] = ta.RSI(dataframe)
# ADX
dataframe['adx'] = ta.ADX(dataframe)
# # Aroon, Aroon Oscillator
# aroon = ta.AROON(dataframe)
# dataframe['aroonup'] = aroon['aroonup']
# dataframe['aroondown'] = aroon['aroondown']
# dataframe['aroonosc'] = ta.AROONOSC(dataframe)
# # Awesome oscillator
# dataframe['ao'] = qtpylib.awesome_oscillator(dataframe)
# # Commodity Channel Index: values Oversold:<-100, Overbought:>100
# dataframe['cci'] = ta.CCI(dataframe)
# MACD
macd = ta.MACD(dataframe)
dataframe['macd'] = macd['macd']
dataframe['macdsignal'] = macd['macdsignal']
dataframe['macdhist'] = macd['macdhist']
# MFI
dataframe['mfi'] = ta.MFI(dataframe)
# # Minus Directional Indicator / Movement
# dataframe['minus_dm'] = ta.MINUS_DM(dataframe)
# dataframe['minus_di'] = ta.MINUS_DI(dataframe)
# # Plus Directional Indicator / Movement
# dataframe['plus_dm'] = ta.PLUS_DM(dataframe)
# dataframe['plus_di'] = ta.PLUS_DI(dataframe)
# dataframe['minus_di'] = ta.MINUS_DI(dataframe)
# # ROC
# dataframe['roc'] = ta.ROC(dataframe)
# # Inverse Fisher transform on RSI, values [-1.0, 1.0] (https://goo.gl/2JGGoy)
# rsi = 0.1 * (dataframe['rsi'] - 50)
# dataframe['fisher_rsi'] = (np.exp(2 * rsi) - 1) / (np.exp(2 * rsi) + 1)
# # Inverse Fisher transform on RSI normalized, value [0.0, 100.0] (https://goo.gl/2JGGoy)
# dataframe['fisher_rsi_norma'] = 50 * (dataframe['fisher_rsi'] + 1)
# # Stoch
# stoch = ta.STOCH(dataframe)
# dataframe['slowd'] = stoch['slowd']
# dataframe['slowk'] = stoch['slowk']
# Stoch fast
stoch_fast = ta.STOCHF(dataframe)
dataframe['fastd'] = stoch_fast['fastd']
dataframe['fastk'] = stoch_fast['fastk']
# # Stoch RSI
# stoch_rsi = ta.STOCHRSI(dataframe)
# dataframe['fastd_rsi'] = stoch_rsi['fastd']
# dataframe['fastk_rsi'] = stoch_rsi['fastk']
# Overlap Studies
# ------------------------------------
# Bollinger bands
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
dataframe['bb_lowerband'] = bollinger['lower']
dataframe['bb_middleband'] = bollinger['mid']
dataframe['bb_upperband'] = bollinger['upper']
# # EMA - Exponential Moving Average
# dataframe['ema3'] = ta.EMA(dataframe, timeperiod=3)
# dataframe['ema5'] = ta.EMA(dataframe, timeperiod=5)
# dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10)
# dataframe['ema50'] = ta.EMA(dataframe, timeperiod=50)
# dataframe['ema100'] = ta.EMA(dataframe, timeperiod=100)
# # SMA - Simple Moving Average
# dataframe['sma'] = ta.SMA(dataframe, timeperiod=40)
# SAR Parabol
dataframe['sar'] = ta.SAR(dataframe)
# TEMA - Triple Exponential Moving Average
dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9)
# Cycle Indicator
# ------------------------------------
# Hilbert Transform Indicator - SineWave
hilbert = ta.HT_SINE(dataframe)
dataframe['htsine'] = hilbert['sine']
dataframe['htleadsine'] = hilbert['leadsine']
# Pattern Recognition - Bullish candlestick patterns
# ------------------------------------
# # Hammer: values [0, 100]
# dataframe['CDLHAMMER'] = ta.CDLHAMMER(dataframe)
# # Inverted Hammer: values [0, 100]
# dataframe['CDLINVERTEDHAMMER'] = ta.CDLINVERTEDHAMMER(dataframe)
# # Dragonfly Doji: values [0, 100]
# dataframe['CDLDRAGONFLYDOJI'] = ta.CDLDRAGONFLYDOJI(dataframe)
# # Piercing Line: values [0, 100]
# dataframe['CDLPIERCING'] = ta.CDLPIERCING(dataframe) # values [0, 100]
# # Morningstar: values [0, 100]
# dataframe['CDLMORNINGSTAR'] = ta.CDLMORNINGSTAR(dataframe) # values [0, 100]
# # Three White Soldiers: values [0, 100]
# dataframe['CDL3WHITESOLDIERS'] = ta.CDL3WHITESOLDIERS(dataframe) # values [0, 100]
# Pattern Recognition - Bearish candlestick patterns
# ------------------------------------
# # Hanging Man: values [0, 100]
# dataframe['CDLHANGINGMAN'] = ta.CDLHANGINGMAN(dataframe)
# # Shooting Star: values [0, 100]
# dataframe['CDLSHOOTINGSTAR'] = ta.CDLSHOOTINGSTAR(dataframe)
# # Gravestone Doji: values [0, 100]
# dataframe['CDLGRAVESTONEDOJI'] = ta.CDLGRAVESTONEDOJI(dataframe)
# # Dark Cloud Cover: values [0, 100]
# dataframe['CDLDARKCLOUDCOVER'] = ta.CDLDARKCLOUDCOVER(dataframe)
# # Evening Doji Star: values [0, 100]
# dataframe['CDLEVENINGDOJISTAR'] = ta.CDLEVENINGDOJISTAR(dataframe)
# # Evening Star: values [0, 100]
# dataframe['CDLEVENINGSTAR'] = ta.CDLEVENINGSTAR(dataframe)
# Pattern Recognition - Bullish/Bearish candlestick patterns
# ------------------------------------
# # Three Line Strike: values [0, -100, 100]
# dataframe['CDL3LINESTRIKE'] = ta.CDL3LINESTRIKE(dataframe)
# # Spinning Top: values [0, -100, 100]
# dataframe['CDLSPINNINGTOP'] = ta.CDLSPINNINGTOP(dataframe) # values [0, -100, 100]
# # Engulfing: values [0, -100, 100]
# dataframe['CDLENGULFING'] = ta.CDLENGULFING(dataframe) # values [0, -100, 100]
# # Harami: values [0, -100, 100]
# dataframe['CDLHARAMI'] = ta.CDLHARAMI(dataframe) # values [0, -100, 100]
# # Three Outside Up/Down: values [0, -100, 100]
# dataframe['CDL3OUTSIDE'] = ta.CDL3OUTSIDE(dataframe) # values [0, -100, 100]
# # Three Inside Up/Down: values [0, -100, 100]
# dataframe['CDL3INSIDE'] = ta.CDL3INSIDE(dataframe) # values [0, -100, 100]
# # Chart type
# # ------------------------------------
# # Heikinashi stategy
# heikinashi = qtpylib.heikinashi(dataframe)
# dataframe['ha_open'] = heikinashi['open']
# dataframe['ha_close'] = heikinashi['close']
# dataframe['ha_high'] = heikinashi['high']
# dataframe['ha_low'] = heikinashi['low']
# Retrieve best bid and best ask from the orderbook
# ------------------------------------
"""
# first check if dataprovider is available
if self.dp:
if self.dp.runmode in ('live', 'dry_run'):
ob = self.dp.orderbook(metadata['pair'], 1)
dataframe['best_bid'] = ob['bids'][0][0]
dataframe['best_ask'] = ob['asks'][0][0]
"""
return dataframe
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Based on TA indicators, populates the buy signal for the given dataframe
:param dataframe: DataFrame populated with indicators
:param metadata: Additional information, like the currently traded pair
:return: DataFrame with buy column
"""
dataframe.loc[
(
(qtpylib.crossed_above(dataframe['rsi'], 30)) & # Signal: RSI crosses above 30
(dataframe['tema'] <= dataframe['bb_middleband']) & # Guard: tema below BB middle
(dataframe['tema'] > dataframe['tema'].shift(1)) & # Guard: tema is raising
(dataframe['volume'] > 0) # Make sure Volume is not 0
),
'buy'] = 1
return dataframe
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Based on TA indicators, populates the sell signal for the given dataframe
:param dataframe: DataFrame populated with indicators
:param metadata: Additional information, like the currently traded pair
:return: DataFrame with buy column
"""
dataframe.loc[
(
(qtpylib.crossed_above(dataframe['rsi'], 70)) & # Signal: RSI crosses above 70
(dataframe['tema'] > dataframe['bb_middleband']) & # Guard: tema above BB middle
(dataframe['tema'] < dataframe['tema'].shift(1)) & # Guard: tema is falling
(dataframe['volume'] > 0) # Make sure Volume is not 0
),
'sell'] = 1
return dataframe

View File

@@ -0,0 +1,315 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Strategy analysis example\n",
"\n",
"Debugging a strategy can be time-consuming. FreqTrade offers helper functions to visualize raw data."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from pathlib import Path\n",
"# Customize these according to your needs.\n",
"\n",
"# Define some constants\n",
"timeframe = \"5m\"\n",
"# Name of the strategy class\n",
"strategy_name = 'SampleStrategy'\n",
"# Path to user data\n",
"user_data_dir = Path('user_data')\n",
"# Location of the strategy\n",
"strategy_location = user_data_dir / 'strategies'\n",
"# Location of the data\n",
"data_location = Path(user_data_dir, 'data', 'binance')\n",
"# Pair to analyze - Only use one pair here\n",
"pair = \"BTC_USDT\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Load data using values set above\n",
"from freqtrade.data.history import load_pair_history\n",
"\n",
"candles = load_pair_history(datadir=data_location,\n",
" timeframe=timeframe,\n",
" pair=pair)\n",
"\n",
"# Confirm success\n",
"print(\"Loaded \" + str(len(candles)) + f\" rows of data for {pair} from {data_location}\")\n",
"candles.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Load and run strategy\n",
"* Rerun each time the strategy file is changed"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Load strategy using values set above\n",
"from freqtrade.resolvers import StrategyResolver\n",
"strategy = StrategyResolver({'strategy': strategy_name,\n",
" 'user_data_dir': user_data_dir,\n",
" 'strategy_path': strategy_location}).strategy\n",
"\n",
"# Generate buy/sell signals using strategy\n",
"df = strategy.analyze_ticker(candles, {'pair': pair})\n",
"df.tail()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Display the trade details\n",
"\n",
"* Note that using `data.head()` would also work, however most indicators have some \"startup\" data at the top of the dataframe.\n",
"* Some possible problems\n",
" * Columns with NaN values at the end of the dataframe\n",
" * Columns used in `crossed*()` functions with completely different units\n",
"* Comparison with full backtest\n",
" * having 200 buy signals as output for one pair from `analyze_ticker()` does not necessarily mean that 200 trades will be made during backtesting.\n",
" * Assuming you use only one condition such as, `df['rsi'] < 30` as buy condition, this will generate multiple \"buy\" signals for each pair in sequence (until rsi returns > 29). The bot will only buy on the first of these signals (and also only if a trade-slot (\"max_open_trades\") is still available), or on one of the middle signals, as soon as a \"slot\" becomes available. \n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Report results\n",
"print(f\"Generated {df['buy'].sum()} buy signals\")\n",
"data = df.set_index('date', drop=False)\n",
"data.tail()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Load existing objects into a Jupyter notebook\n",
"\n",
"The following cells assume that you have already generated data using the cli. \n",
"They will allow you to drill deeper into your results, and perform analysis which otherwise would make the output very difficult to digest due to information overload."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Load backtest results to pandas dataframe\n",
"\n",
"Analyze a trades dataframe (also used below for plotting)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from freqtrade.data.btanalysis import load_backtest_data\n",
"\n",
"# Load backtest results\n",
"trades = load_backtest_data(user_data_dir / \"backtest_results/backtest-result.json\")\n",
"\n",
"# Show value-counts per pair\n",
"trades.groupby(\"pair\")[\"sell_reason\"].value_counts()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Load live trading results into a pandas dataframe\n",
"\n",
"In case you did already some trading and want to analyze your performance"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from freqtrade.data.btanalysis import load_trades_from_db\n",
"\n",
"# Fetch trades from database\n",
"trades = load_trades_from_db(\"sqlite:///tradesv3.sqlite\")\n",
"\n",
"# Display results\n",
"trades.groupby(\"pair\")[\"sell_reason\"].value_counts()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Analyze the loaded trades for trade parallelism\n",
"This can be useful to find the best `max_open_trades` parameter, when used with backtesting in conjunction with `--disable-max-market-positions`.\n",
"\n",
"`analyze_trade_parallelism()` returns a timeseries dataframe with an \"open_trades\" column, specifying the number of open trades for each candle."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from freqtrade.data.btanalysis import analyze_trade_parallelism\n",
"\n",
"# Analyze the above\n",
"parallel_trades = analyze_trade_parallelism(trades, '5m')\n",
"\n",
"\n",
"parallel_trades.plot()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Plot results\n",
"\n",
"Freqtrade offers interactive plotting capabilities based on plotly."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from freqtrade.plot.plotting import generate_candlestick_graph\n",
"# Limit graph period to keep plotly quick and reactive\n",
"\n",
"data_red = data['2019-06-01':'2019-06-10']\n",
"# Generate candlestick graph\n",
"graph = generate_candlestick_graph(pair=pair,\n",
" data=data_red,\n",
" trades=trades,\n",
" indicators1=['sma20', 'ema50', 'ema55'],\n",
" indicators2=['rsi', 'macd', 'macdsignal', 'macdhist']\n",
" )\n",
"\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Show graph inline\n",
"# graph.show()\n",
"\n",
"# Render graph in a seperate window\n",
"graph.show(renderer=\"browser\")\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Feel free to submit an issue or Pull Request enhancing this document if you would like to share ideas on how to best analyze the data."
]
}
],
"metadata": {
"file_extension": ".py",
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.4"
},
"mimetype": "text/x-python",
"name": "python",
"npconvert_exporter": "python",
"pygments_lexer": "ipython3",
"toc": {
"base_numbering": 1,
"nav_menu": {},
"number_sections": true,
"sideBar": true,
"skip_h1_title": false,
"title_cell": "Table of Contents",
"title_sidebar": "Contents",
"toc_cell": false,
"toc_position": {},
"toc_section_display": true,
"toc_window_display": false
},
"varInspector": {
"cols": {
"lenName": 16,
"lenType": 16,
"lenVar": 40
},
"kernels_config": {
"python": {
"delete_cmd_postfix": "",
"delete_cmd_prefix": "del ",
"library": "var_list.py",
"varRefreshCmd": "print(var_dic_list())"
},
"r": {
"delete_cmd_postfix": ") ",
"delete_cmd_prefix": "rm(",
"library": "var_list.r",
"varRefreshCmd": "cat(var_dic_list()) "
}
},
"types_to_exclude": [
"module",
"function",
"builtin_function_or_method",
"instance",
"_Feature"
],
"window_display": false
},
"version": 3
},
"nbformat": 4,
"nbformat_minor": 4
}

View File

@@ -0,0 +1,3 @@
(qtpylib.crossed_above(dataframe['rsi'], 30)) & # Signal: RSI crosses above 30
(dataframe['tema'] <= dataframe['bb_middleband']) & # Guard: tema below BB middle
(dataframe['tema'] > dataframe['tema'].shift(1)) & # Guard: tema is raising

View File

@@ -0,0 +1 @@
(qtpylib.crossed_above(dataframe['rsi'], 30)) & # Signal: RSI crosses above 30

View File

@@ -0,0 +1,8 @@
if params.get('mfi-enabled'):
conditions.append(dataframe['mfi'] < params['mfi-value'])
if params.get('fastd-enabled'):
conditions.append(dataframe['fastd'] < params['fastd-value'])
if params.get('adx-enabled'):
conditions.append(dataframe['adx'] > params['adx-value'])
if params.get('rsi-enabled'):
conditions.append(dataframe['rsi'] < params['rsi-value'])

View File

@@ -0,0 +1,2 @@
if params.get('rsi-enabled'):
conditions.append(dataframe['rsi'] < params['rsi-value'])

View File

@@ -0,0 +1,9 @@
Integer(10, 25, name='mfi-value'),
Integer(15, 45, name='fastd-value'),
Integer(20, 50, name='adx-value'),
Integer(20, 40, name='rsi-value'),
Categorical([True, False], name='mfi-enabled'),
Categorical([True, False], name='fastd-enabled'),
Categorical([True, False], name='adx-enabled'),
Categorical([True, False], name='rsi-enabled'),
Categorical(['bb_lower', 'macd_cross_signal', 'sar_reversal'], name='trigger')

View File

@@ -0,0 +1,3 @@
Integer(20, 40, name='rsi-value'),
Categorical([True, False], name='rsi-enabled'),
Categorical(['bb_lower', 'macd_cross_signal', 'sar_reversal'], name='trigger')

View File

@@ -0,0 +1,8 @@
if params.get('sell-mfi-enabled'):
conditions.append(dataframe['mfi'] > params['sell-mfi-value'])
if params.get('sell-fastd-enabled'):
conditions.append(dataframe['fastd'] > params['sell-fastd-value'])
if params.get('sell-adx-enabled'):
conditions.append(dataframe['adx'] < params['sell-adx-value'])
if params.get('sell-rsi-enabled'):
conditions.append(dataframe['rsi'] > params['sell-rsi-value'])

View File

@@ -0,0 +1,2 @@
if params.get('sell-rsi-enabled'):
conditions.append(dataframe['rsi'] > params['sell-rsi-value'])

View File

@@ -0,0 +1,11 @@
Integer(75, 100, name='sell-mfi-value'),
Integer(50, 100, name='sell-fastd-value'),
Integer(50, 100, name='sell-adx-value'),
Integer(60, 100, name='sell-rsi-value'),
Categorical([True, False], name='sell-mfi-enabled'),
Categorical([True, False], name='sell-fastd-enabled'),
Categorical([True, False], name='sell-adx-enabled'),
Categorical([True, False], name='sell-rsi-enabled'),
Categorical(['sell-bb_upper',
'sell-macd_cross_signal',
'sell-sar_reversal'], name='sell-trigger')

View File

@@ -0,0 +1,5 @@
Integer(60, 100, name='sell-rsi-value'),
Categorical([True, False], name='sell-rsi-enabled'),
Categorical(['sell-bb_upper',
'sell-macd_cross_signal',
'sell-sar_reversal'], name='sell-trigger')

View File

@@ -0,0 +1,161 @@
# Momentum Indicators
# ------------------------------------
# RSI
dataframe['rsi'] = ta.RSI(dataframe)
# ADX
dataframe['adx'] = ta.ADX(dataframe)
# # Aroon, Aroon Oscillator
# aroon = ta.AROON(dataframe)
# dataframe['aroonup'] = aroon['aroonup']
# dataframe['aroondown'] = aroon['aroondown']
# dataframe['aroonosc'] = ta.AROONOSC(dataframe)
# # Awesome oscillator
# dataframe['ao'] = qtpylib.awesome_oscillator(dataframe)
# # Commodity Channel Index: values Oversold:<-100, Overbought:>100
# dataframe['cci'] = ta.CCI(dataframe)
# MACD
macd = ta.MACD(dataframe)
dataframe['macd'] = macd['macd']
dataframe['macdsignal'] = macd['macdsignal']
dataframe['macdhist'] = macd['macdhist']
# MFI
dataframe['mfi'] = ta.MFI(dataframe)
# # Minus Directional Indicator / Movement
# dataframe['minus_dm'] = ta.MINUS_DM(dataframe)
# dataframe['minus_di'] = ta.MINUS_DI(dataframe)
# # Plus Directional Indicator / Movement
# dataframe['plus_dm'] = ta.PLUS_DM(dataframe)
# dataframe['plus_di'] = ta.PLUS_DI(dataframe)
# dataframe['minus_di'] = ta.MINUS_DI(dataframe)
# # ROC
# dataframe['roc'] = ta.ROC(dataframe)
# # Inverse Fisher transform on RSI, values [-1.0, 1.0] (https://goo.gl/2JGGoy)
# rsi = 0.1 * (dataframe['rsi'] - 50)
# dataframe['fisher_rsi'] = (np.exp(2 * rsi) - 1) / (np.exp(2 * rsi) + 1)
# # Inverse Fisher transform on RSI normalized, value [0.0, 100.0] (https://goo.gl/2JGGoy)
# dataframe['fisher_rsi_norma'] = 50 * (dataframe['fisher_rsi'] + 1)
# # Stoch
# stoch = ta.STOCH(dataframe)
# dataframe['slowd'] = stoch['slowd']
# dataframe['slowk'] = stoch['slowk']
# Stoch fast
stoch_fast = ta.STOCHF(dataframe)
dataframe['fastd'] = stoch_fast['fastd']
dataframe['fastk'] = stoch_fast['fastk']
# # Stoch RSI
# stoch_rsi = ta.STOCHRSI(dataframe)
# dataframe['fastd_rsi'] = stoch_rsi['fastd']
# dataframe['fastk_rsi'] = stoch_rsi['fastk']
# Overlap Studies
# ------------------------------------
# Bollinger bands
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
dataframe['bb_lowerband'] = bollinger['lower']
dataframe['bb_middleband'] = bollinger['mid']
dataframe['bb_upperband'] = bollinger['upper']
# # EMA - Exponential Moving Average
# dataframe['ema3'] = ta.EMA(dataframe, timeperiod=3)
# dataframe['ema5'] = ta.EMA(dataframe, timeperiod=5)
# dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10)
# dataframe['ema50'] = ta.EMA(dataframe, timeperiod=50)
# dataframe['ema100'] = ta.EMA(dataframe, timeperiod=100)
# # SMA - Simple Moving Average
# dataframe['sma'] = ta.SMA(dataframe, timeperiod=40)
# SAR Parabol
dataframe['sar'] = ta.SAR(dataframe)
# TEMA - Triple Exponential Moving Average
dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9)
# Cycle Indicator
# ------------------------------------
# Hilbert Transform Indicator - SineWave
hilbert = ta.HT_SINE(dataframe)
dataframe['htsine'] = hilbert['sine']
dataframe['htleadsine'] = hilbert['leadsine']
# Pattern Recognition - Bullish candlestick patterns
# ------------------------------------
# # Hammer: values [0, 100]
# dataframe['CDLHAMMER'] = ta.CDLHAMMER(dataframe)
# # Inverted Hammer: values [0, 100]
# dataframe['CDLINVERTEDHAMMER'] = ta.CDLINVERTEDHAMMER(dataframe)
# # Dragonfly Doji: values [0, 100]
# dataframe['CDLDRAGONFLYDOJI'] = ta.CDLDRAGONFLYDOJI(dataframe)
# # Piercing Line: values [0, 100]
# dataframe['CDLPIERCING'] = ta.CDLPIERCING(dataframe) # values [0, 100]
# # Morningstar: values [0, 100]
# dataframe['CDLMORNINGSTAR'] = ta.CDLMORNINGSTAR(dataframe) # values [0, 100]
# # Three White Soldiers: values [0, 100]
# dataframe['CDL3WHITESOLDIERS'] = ta.CDL3WHITESOLDIERS(dataframe) # values [0, 100]
# Pattern Recognition - Bearish candlestick patterns
# ------------------------------------
# # Hanging Man: values [0, 100]
# dataframe['CDLHANGINGMAN'] = ta.CDLHANGINGMAN(dataframe)
# # Shooting Star: values [0, 100]
# dataframe['CDLSHOOTINGSTAR'] = ta.CDLSHOOTINGSTAR(dataframe)
# # Gravestone Doji: values [0, 100]
# dataframe['CDLGRAVESTONEDOJI'] = ta.CDLGRAVESTONEDOJI(dataframe)
# # Dark Cloud Cover: values [0, 100]
# dataframe['CDLDARKCLOUDCOVER'] = ta.CDLDARKCLOUDCOVER(dataframe)
# # Evening Doji Star: values [0, 100]
# dataframe['CDLEVENINGDOJISTAR'] = ta.CDLEVENINGDOJISTAR(dataframe)
# # Evening Star: values [0, 100]
# dataframe['CDLEVENINGSTAR'] = ta.CDLEVENINGSTAR(dataframe)
# Pattern Recognition - Bullish/Bearish candlestick patterns
# ------------------------------------
# # Three Line Strike: values [0, -100, 100]
# dataframe['CDL3LINESTRIKE'] = ta.CDL3LINESTRIKE(dataframe)
# # Spinning Top: values [0, -100, 100]
# dataframe['CDLSPINNINGTOP'] = ta.CDLSPINNINGTOP(dataframe) # values [0, -100, 100]
# # Engulfing: values [0, -100, 100]
# dataframe['CDLENGULFING'] = ta.CDLENGULFING(dataframe) # values [0, -100, 100]
# # Harami: values [0, -100, 100]
# dataframe['CDLHARAMI'] = ta.CDLHARAMI(dataframe) # values [0, -100, 100]
# # Three Outside Up/Down: values [0, -100, 100]
# dataframe['CDL3OUTSIDE'] = ta.CDL3OUTSIDE(dataframe) # values [0, -100, 100]
# # Three Inside Up/Down: values [0, -100, 100]
# dataframe['CDL3INSIDE'] = ta.CDL3INSIDE(dataframe) # values [0, -100, 100]
# # Chart type
# # ------------------------------------
# # Heikinashi stategy
# heikinashi = qtpylib.heikinashi(dataframe)
# dataframe['ha_open'] = heikinashi['open']
# dataframe['ha_close'] = heikinashi['close']
# dataframe['ha_high'] = heikinashi['high']
# dataframe['ha_low'] = heikinashi['low']
# Retrieve best bid and best ask from the orderbook
# ------------------------------------
"""
# first check if dataprovider is available
if self.dp:
if self.dp.runmode in ('live', 'dry_run'):
ob = self.dp.orderbook(metadata['pair'], 1)
dataframe['best_bid'] = ob['bids'][0][0]
dataframe['best_ask'] = ob['asks'][0][0]
"""

View File

@@ -0,0 +1,17 @@
# Momentum Indicators
# ------------------------------------
# RSI
dataframe['rsi'] = ta.RSI(dataframe)
# Retrieve best bid and best ask from the orderbook
# ------------------------------------
"""
# first check if dataprovider is available
if self.dp:
if self.dp.runmode in ('live', 'dry_run'):
ob = self.dp.orderbook(metadata['pair'], 1)
dataframe['best_bid'] = ob['bids'][0][0]
dataframe['best_ask'] = ob['asks'][0][0]
"""

View File

@@ -0,0 +1,3 @@
(qtpylib.crossed_above(dataframe['rsi'], 70)) & # Signal: RSI crosses above 70
(dataframe['tema'] > dataframe['bb_middleband']) & # Guard: tema above BB middle
(dataframe['tema'] < dataframe['tema'].shift(1)) & # Guard: tema is falling

View File

@@ -0,0 +1 @@
(qtpylib.crossed_above(dataframe['rsi'], 70)) & # Signal: RSI crosses above 70

View File

@@ -1,3 +1,4 @@
import csv
import logging
import sys
from collections import OrderedDict
@@ -5,19 +6,21 @@ from pathlib import Path
from typing import Any, Dict, List
import arrow
import csv
import rapidjson
from tabulate import tabulate
from freqtrade import OperationalException
from freqtrade.configuration import Configuration, TimeRange, remove_credentials
from freqtrade.configuration.directory_operations import create_userdata_dir
from freqtrade.configuration import (Configuration, TimeRange,
remove_credentials)
from freqtrade.configuration.directory_operations import (copy_sample_files,
create_userdata_dir)
from freqtrade.constants import USERPATH_HYPEROPTS, USERPATH_STRATEGY
from freqtrade.data.history import (convert_trades_to_ohlcv,
refresh_backtest_ohlcv_data,
refresh_backtest_trades_data)
from freqtrade.exchange import (available_exchanges, ccxt_exchanges, market_is_active,
symbol_is_pair)
from freqtrade.misc import plural
from freqtrade.exchange import (available_exchanges, ccxt_exchanges,
market_is_active, symbol_is_pair)
from freqtrade.misc import plural, render_template
from freqtrade.resolvers import ExchangeResolver
from freqtrade.state import RunMode
@@ -81,12 +84,95 @@ def start_create_userdir(args: Dict[str, Any]) -> None:
:return: None
"""
if "user_data_dir" in args and args["user_data_dir"]:
create_userdata_dir(args["user_data_dir"], create_dir=True)
userdir = create_userdata_dir(args["user_data_dir"], create_dir=True)
copy_sample_files(userdir, overwrite=args["reset"])
else:
logger.warning("`create-userdir` requires --userdir to be set.")
sys.exit(1)
def deploy_new_strategy(strategy_name, strategy_path: Path, subtemplate: str):
"""
Deploy new strategy from template to strategy_path
"""
indicators = render_template(templatefile=f"subtemplates/indicators_{subtemplate}.j2",)
buy_trend = render_template(templatefile=f"subtemplates/buy_trend_{subtemplate}.j2",)
sell_trend = render_template(templatefile=f"subtemplates/sell_trend_{subtemplate}.j2",)
strategy_text = render_template(templatefile='base_strategy.py.j2',
arguments={"strategy": strategy_name,
"indicators": indicators,
"buy_trend": buy_trend,
"sell_trend": sell_trend,
})
logger.info(f"Writing strategy to `{strategy_path}`.")
strategy_path.write_text(strategy_text)
def start_new_strategy(args: Dict[str, Any]) -> None:
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
if "strategy" in args and args["strategy"]:
if args["strategy"] == "DefaultStrategy":
raise OperationalException("DefaultStrategy is not allowed as name.")
new_path = config['user_data_dir'] / USERPATH_STRATEGY / (args["strategy"] + ".py")
if new_path.exists():
raise OperationalException(f"`{new_path}` already exists. "
"Please choose another Strategy Name.")
deploy_new_strategy(args['strategy'], new_path, args['template'])
else:
raise OperationalException("`new-strategy` requires --strategy to be set.")
def deploy_new_hyperopt(hyperopt_name, hyperopt_path: Path, subtemplate: str):
"""
Deploys a new hyperopt template to hyperopt_path
"""
buy_guards = render_template(
templatefile=f"subtemplates/hyperopt_buy_guards_{subtemplate}.j2",)
sell_guards = render_template(
templatefile=f"subtemplates/hyperopt_sell_guards_{subtemplate}.j2",)
buy_space = render_template(
templatefile=f"subtemplates/hyperopt_buy_space_{subtemplate}.j2",)
sell_space = render_template(
templatefile=f"subtemplates/hyperopt_sell_space_{subtemplate}.j2",)
strategy_text = render_template(templatefile='base_hyperopt.py.j2',
arguments={"hyperopt": hyperopt_name,
"buy_guards": buy_guards,
"sell_guards": sell_guards,
"buy_space": buy_space,
"sell_space": sell_space,
})
logger.info(f"Writing hyperopt to `{hyperopt_path}`.")
hyperopt_path.write_text(strategy_text)
def start_new_hyperopt(args: Dict[str, Any]) -> None:
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
if "hyperopt" in args and args["hyperopt"]:
if args["hyperopt"] == "DefaultHyperopt":
raise OperationalException("DefaultHyperopt is not allowed as name.")
new_path = config['user_data_dir'] / USERPATH_HYPEROPTS / (args["hyperopt"] + ".py")
if new_path.exists():
raise OperationalException(f"`{new_path}` already exists. "
"Please choose another Strategy Name.")
deploy_new_hyperopt(args['hyperopt'], new_path, args['template'])
else:
raise OperationalException("`new-hyperopt` requires --hyperopt to be set.")
def start_download_data(args: Dict[str, Any]) -> None:
"""
Download data (former download_backtest_data.py script)