From 3f2542fcbcf185ac61668f1394c781da5c7ef421 Mon Sep 17 00:00:00 2001 From: Matthias Date: Sun, 26 Jan 2020 10:44:42 +0100 Subject: [PATCH] Move edge-module out of __init__.py --- freqtrade/edge/__init__.py | 465 +---------------------------- freqtrade/edge/edge_positioning.py | 464 ++++++++++++++++++++++++++++ 2 files changed, 465 insertions(+), 464 deletions(-) create mode 100644 freqtrade/edge/edge_positioning.py diff --git a/freqtrade/edge/__init__.py b/freqtrade/edge/__init__.py index 15883357b..d275a80e3 100644 --- a/freqtrade/edge/__init__.py +++ b/freqtrade/edge/__init__.py @@ -1,464 +1 @@ -# pragma pylint: disable=W0603 -""" Edge positioning package """ -import logging -from typing import Any, Dict, NamedTuple - -import arrow -import numpy as np -import utils_find_1st as utf1st -from pandas import DataFrame - -from freqtrade import constants -from freqtrade.configuration import TimeRange -from freqtrade.data import history -from freqtrade.exceptions import OperationalException -from freqtrade.strategy.interface import SellType - -logger = logging.getLogger(__name__) - - -class PairInfo(NamedTuple): - stoploss: float - winrate: float - risk_reward_ratio: float - required_risk_reward: float - expectancy: float - nb_trades: int - avg_trade_duration: float - - -class Edge: - """ - Calculates Win Rate, Risk Reward Ratio, Expectancy - against historical data for a give set of markets and a strategy - it then adjusts stoploss and position size accordingly - and force it into the strategy - Author: https://github.com/mishaker - """ - - config: Dict = {} - _cached_pairs: Dict[str, Any] = {} # Keeps a list of pairs - - def __init__(self, config: Dict[str, Any], exchange, strategy) -> None: - - self.config = config - self.exchange = exchange - self.strategy = strategy - - self.edge_config = self.config.get('edge', {}) - self._cached_pairs: Dict[str, Any] = {} # Keeps a list of pairs - self._final_pairs: list = [] - - # checking max_open_trades. it should be -1 as with Edge - # the number of trades is determined by position size - if self.config['max_open_trades'] != float('inf'): - logger.critical('max_open_trades should be -1 in config !') - - if self.config['stake_amount'] != constants.UNLIMITED_STAKE_AMOUNT: - raise OperationalException('Edge works only with unlimited stake amount') - - # Deprecated capital_available_percentage. Will use tradable_balance_ratio in the future. - self._capital_percentage: float = self.edge_config.get( - 'capital_available_percentage', self.config['tradable_balance_ratio']) - self._allowed_risk: float = self.edge_config.get('allowed_risk') - self._since_number_of_days: int = self.edge_config.get('calculate_since_number_of_days', 14) - self._last_updated: int = 0 # Timestamp of pairs last updated time - self._refresh_pairs = True - - self._stoploss_range_min = float(self.edge_config.get('stoploss_range_min', -0.01)) - self._stoploss_range_max = float(self.edge_config.get('stoploss_range_max', -0.05)) - self._stoploss_range_step = float(self.edge_config.get('stoploss_range_step', -0.001)) - - # calculating stoploss range - self._stoploss_range = np.arange( - self._stoploss_range_min, - self._stoploss_range_max, - self._stoploss_range_step - ) - - self._timerange: TimeRange = TimeRange.parse_timerange("%s-" % arrow.now().shift( - days=-1 * self._since_number_of_days).format('YYYYMMDD')) - if config.get('fee'): - self.fee = config['fee'] - else: - self.fee = self.exchange.get_fee(symbol=self.config['exchange']['pair_whitelist'][0]) - - def calculate(self) -> bool: - pairs = self.config['exchange']['pair_whitelist'] - heartbeat = self.edge_config.get('process_throttle_secs') - - if (self._last_updated > 0) and ( - self._last_updated + heartbeat > arrow.utcnow().timestamp): - return False - - data: Dict[str, Any] = {} - logger.info('Using stake_currency: %s ...', self.config['stake_currency']) - logger.info('Using local backtesting data (using whitelist in given config) ...') - - if self._refresh_pairs: - history.refresh_data( - datadir=self.config['datadir'], - pairs=pairs, - exchange=self.exchange, - timeframe=self.strategy.ticker_interval, - timerange=self._timerange, - ) - - data = history.load_data( - datadir=self.config['datadir'], - pairs=pairs, - timeframe=self.strategy.ticker_interval, - timerange=self._timerange, - startup_candles=self.strategy.startup_candle_count, - ) - - if not data: - # Reinitializing cached pairs - self._cached_pairs = {} - logger.critical("No data found. Edge is stopped ...") - return False - - preprocessed = self.strategy.tickerdata_to_dataframe(data) - - # Print timeframe - min_date, max_date = history.get_timerange(preprocessed) - logger.info( - 'Measuring data from %s up to %s (%s days) ...', - min_date.isoformat(), - max_date.isoformat(), - (max_date - min_date).days - ) - headers = ['date', 'buy', 'open', 'close', 'sell', 'high', 'low'] - - trades: list = [] - for pair, pair_data in preprocessed.items(): - # Sorting dataframe by date and reset index - pair_data = pair_data.sort_values(by=['date']) - pair_data = pair_data.reset_index(drop=True) - - ticker_data = self.strategy.advise_sell( - self.strategy.advise_buy(pair_data, {'pair': pair}), {'pair': pair})[headers].copy() - - trades += self._find_trades_for_stoploss_range(ticker_data, pair, self._stoploss_range) - - # If no trade found then exit - if len(trades) == 0: - logger.info("No trades found.") - return False - - # Fill missing, calculable columns, profit, duration , abs etc. - trades_df = self._fill_calculable_fields(DataFrame(trades)) - self._cached_pairs = self._process_expectancy(trades_df) - self._last_updated = arrow.utcnow().timestamp - - return True - - def stake_amount(self, pair: str, free_capital: float, - total_capital: float, capital_in_trade: float) -> float: - stoploss = self.stoploss(pair) - available_capital = (total_capital + capital_in_trade) * self._capital_percentage - allowed_capital_at_risk = available_capital * self._allowed_risk - max_position_size = abs(allowed_capital_at_risk / stoploss) - position_size = min(max_position_size, free_capital) - if pair in self._cached_pairs: - logger.info( - 'winrate: %s, expectancy: %s, position size: %s, pair: %s,' - ' capital in trade: %s, free capital: %s, total capital: %s,' - ' stoploss: %s, available capital: %s.', - self._cached_pairs[pair].winrate, - self._cached_pairs[pair].expectancy, - position_size, pair, - capital_in_trade, free_capital, total_capital, - stoploss, available_capital - ) - return round(position_size, 15) - - def stoploss(self, pair: str) -> float: - if pair in self._cached_pairs: - return self._cached_pairs[pair].stoploss - else: - logger.warning('tried to access stoploss of a non-existing pair, ' - 'strategy stoploss is returned instead.') - return self.strategy.stoploss - - def adjust(self, pairs) -> list: - """ - Filters out and sorts "pairs" according to Edge calculated pairs - """ - final = [] - for pair, info in self._cached_pairs.items(): - if info.expectancy > float(self.edge_config.get('minimum_expectancy', 0.2)) and \ - info.winrate > float(self.edge_config.get('minimum_winrate', 0.60)) and \ - pair in pairs: - final.append(pair) - - if self._final_pairs != final: - self._final_pairs = final - if self._final_pairs: - logger.info( - 'Minimum expectancy and minimum winrate are met only for %s,' - ' so other pairs are filtered out.', - self._final_pairs - ) - else: - logger.info( - 'Edge removed all pairs as no pair with minimum expectancy ' - 'and minimum winrate was found !' - ) - - return self._final_pairs - - def accepted_pairs(self) -> list: - """ - return a list of accepted pairs along with their winrate, expectancy and stoploss - """ - final = [] - for pair, info in self._cached_pairs.items(): - if info.expectancy > float(self.edge_config.get('minimum_expectancy', 0.2)) and \ - info.winrate > float(self.edge_config.get('minimum_winrate', 0.60)): - final.append({ - 'Pair': pair, - 'Winrate': info.winrate, - 'Expectancy': info.expectancy, - 'Stoploss': info.stoploss, - }) - return final - - def _fill_calculable_fields(self, result: DataFrame) -> DataFrame: - """ - The result frame contains a number of columns that are calculable - from other columns. These are left blank till all rows are added, - to be populated in single vector calls. - - Columns to be populated are: - - Profit - - trade duration - - profit abs - :param result Dataframe - :return: result Dataframe - """ - - # stake and fees - # stake = 0.015 - # 0.05% is 0.0005 - # fee = 0.001 - - # we set stake amount to an arbitrary amount. - # as it doesn't change the calculation. - # all returned values are relative. they are percentages. - stake = 0.015 - fee = self.fee - open_fee = fee / 2 - close_fee = fee / 2 - - result['trade_duration'] = result['close_time'] - result['open_time'] - - result['trade_duration'] = result['trade_duration'].map( - lambda x: int(x.total_seconds() / 60)) - - # Spends, Takes, Profit, Absolute Profit - - # Buy Price - result['buy_vol'] = stake / result['open_rate'] # How many target are we buying - result['buy_fee'] = stake * open_fee - result['buy_spend'] = stake + result['buy_fee'] # How much we're spending - - # Sell price - result['sell_sum'] = result['buy_vol'] * result['close_rate'] - result['sell_fee'] = result['sell_sum'] * close_fee - result['sell_take'] = result['sell_sum'] - result['sell_fee'] - - # profit_percent - result['profit_percent'] = (result['sell_take'] - result['buy_spend']) / result['buy_spend'] - - # Absolute profit - result['profit_abs'] = result['sell_take'] - result['buy_spend'] - - return result - - def _process_expectancy(self, results: DataFrame) -> Dict[str, Any]: - """ - This calculates WinRate, Required Risk Reward, Risk Reward and Expectancy of all pairs - The calulation will be done per pair and per strategy. - """ - # Removing pairs having less than min_trades_number - min_trades_number = self.edge_config.get('min_trade_number', 10) - results = results.groupby(['pair', 'stoploss']).filter(lambda x: len(x) > min_trades_number) - ################################### - - # Removing outliers (Only Pumps) from the dataset - # The method to detect outliers is to calculate standard deviation - # Then every value more than (standard deviation + 2*average) is out (pump) - # - # Removing Pumps - if self.edge_config.get('remove_pumps', False): - results = results.groupby(['pair', 'stoploss']).apply( - lambda x: x[x['profit_abs'] < 2 * x['profit_abs'].std() + x['profit_abs'].mean()]) - ########################################################################## - - # Removing trades having a duration more than X minutes (set in config) - max_trade_duration = self.edge_config.get('max_trade_duration_minute', 1440) - results = results[results.trade_duration < max_trade_duration] - ####################################################################### - - if results.empty: - return {} - - groupby_aggregator = { - 'profit_abs': [ - ('nb_trades', 'count'), # number of all trades - ('profit_sum', lambda x: x[x > 0].sum()), # cumulative profit of all winning trades - ('loss_sum', lambda x: abs(x[x < 0].sum())), # cumulative loss of all losing trades - ('nb_win_trades', lambda x: x[x > 0].count()) # number of winning trades - ], - 'trade_duration': [('avg_trade_duration', 'mean')] - } - - # Group by (pair and stoploss) by applying above aggregator - df = results.groupby(['pair', 'stoploss'])['profit_abs', 'trade_duration'].agg( - groupby_aggregator).reset_index(col_level=1) - - # Dropping level 0 as we don't need it - df.columns = df.columns.droplevel(0) - - # Calculating number of losing trades, average win and average loss - df['nb_loss_trades'] = df['nb_trades'] - df['nb_win_trades'] - df['average_win'] = df['profit_sum'] / df['nb_win_trades'] - df['average_loss'] = df['loss_sum'] / df['nb_loss_trades'] - - # Win rate = number of profitable trades / number of trades - df['winrate'] = df['nb_win_trades'] / df['nb_trades'] - - # risk_reward_ratio = average win / average loss - df['risk_reward_ratio'] = df['average_win'] / df['average_loss'] - - # required_risk_reward = (1 / winrate) - 1 - df['required_risk_reward'] = (1 / df['winrate']) - 1 - - # expectancy = (risk_reward_ratio * winrate) - (lossrate) - df['expectancy'] = (df['risk_reward_ratio'] * df['winrate']) - (1 - df['winrate']) - - # sort by expectancy and stoploss - df = df.sort_values(by=['expectancy', 'stoploss'], ascending=False).groupby( - 'pair').first().sort_values(by=['expectancy'], ascending=False).reset_index() - - final = {} - for x in df.itertuples(): - final[x.pair] = PairInfo( - x.stoploss, - x.winrate, - x.risk_reward_ratio, - x.required_risk_reward, - x.expectancy, - x.nb_trades, - x.avg_trade_duration - ) - - # Returning a list of pairs in order of "expectancy" - return final - - def _find_trades_for_stoploss_range(self, ticker_data, pair, stoploss_range): - buy_column = ticker_data['buy'].values - sell_column = ticker_data['sell'].values - date_column = ticker_data['date'].values - ohlc_columns = ticker_data[['open', 'high', 'low', 'close']].values - - result: list = [] - for stoploss in stoploss_range: - result += self._detect_next_stop_or_sell_point( - buy_column, sell_column, date_column, ohlc_columns, round(stoploss, 6), pair - ) - - return result - - def _detect_next_stop_or_sell_point(self, buy_column, sell_column, date_column, - ohlc_columns, stoploss, pair): - """ - Iterate through ohlc_columns in order to find the next trade - Next trade opens from the first buy signal noticed to - The sell or stoploss signal after it. - It then cuts OHLC, buy_column, sell_column and date_column. - Cut from (the exit trade index) + 1. - - Author: https://github.com/mishaker - """ - - result: list = [] - start_point = 0 - - while True: - open_trade_index = utf1st.find_1st(buy_column, 1, utf1st.cmp_equal) - - # Return empty if we don't find trade entry (i.e. buy==1) or - # we find a buy but at the end of array - if open_trade_index == -1 or open_trade_index == len(buy_column) - 1: - break - else: - # When a buy signal is seen, - # trade opens in reality on the next candle - open_trade_index += 1 - - stop_price_percentage = stoploss + 1 - open_price = ohlc_columns[open_trade_index, 0] - stop_price = (open_price * stop_price_percentage) - - # Searching for the index where stoploss is hit - stop_index = utf1st.find_1st( - ohlc_columns[open_trade_index:, 2], stop_price, utf1st.cmp_smaller) - - # If we don't find it then we assume stop_index will be far in future (infinite number) - if stop_index == -1: - stop_index = float('inf') - - # Searching for the index where sell is hit - sell_index = utf1st.find_1st(sell_column[open_trade_index:], 1, utf1st.cmp_equal) - - # If we don't find it then we assume sell_index will be far in future (infinite number) - if sell_index == -1: - sell_index = float('inf') - - # Check if we don't find any stop or sell point (in that case trade remains open) - # It is not interesting for Edge to consider it so we simply ignore the trade - # And stop iterating there is no more entry - if stop_index == sell_index == float('inf'): - break - - if stop_index <= sell_index: - exit_index = open_trade_index + stop_index - exit_type = SellType.STOP_LOSS - exit_price = stop_price - elif stop_index > sell_index: - # If exit is SELL then we exit at the next candle - exit_index = open_trade_index + sell_index + 1 - - # Check if we have the next candle - if len(ohlc_columns) - 1 < exit_index: - break - - exit_type = SellType.SELL_SIGNAL - exit_price = ohlc_columns[exit_index, 0] - - trade = {'pair': pair, - 'stoploss': stoploss, - 'profit_percent': '', - 'profit_abs': '', - 'open_time': date_column[open_trade_index], - 'close_time': date_column[exit_index], - 'open_index': start_point + open_trade_index, - 'close_index': start_point + exit_index, - 'trade_duration': '', - 'open_rate': round(open_price, 15), - 'close_rate': round(exit_price, 15), - 'exit_type': exit_type - } - - result.append(trade) - - # Giving a view of exit_index till the end of array - buy_column = buy_column[exit_index:] - sell_column = sell_column[exit_index:] - date_column = date_column[exit_index:] - ohlc_columns = ohlc_columns[exit_index:] - start_point += exit_index - - return result +from .edge_positioning import Edge, PairInfo # noqa: F401 diff --git a/freqtrade/edge/edge_positioning.py b/freqtrade/edge/edge_positioning.py new file mode 100644 index 000000000..15883357b --- /dev/null +++ b/freqtrade/edge/edge_positioning.py @@ -0,0 +1,464 @@ +# pragma pylint: disable=W0603 +""" Edge positioning package """ +import logging +from typing import Any, Dict, NamedTuple + +import arrow +import numpy as np +import utils_find_1st as utf1st +from pandas import DataFrame + +from freqtrade import constants +from freqtrade.configuration import TimeRange +from freqtrade.data import history +from freqtrade.exceptions import OperationalException +from freqtrade.strategy.interface import SellType + +logger = logging.getLogger(__name__) + + +class PairInfo(NamedTuple): + stoploss: float + winrate: float + risk_reward_ratio: float + required_risk_reward: float + expectancy: float + nb_trades: int + avg_trade_duration: float + + +class Edge: + """ + Calculates Win Rate, Risk Reward Ratio, Expectancy + against historical data for a give set of markets and a strategy + it then adjusts stoploss and position size accordingly + and force it into the strategy + Author: https://github.com/mishaker + """ + + config: Dict = {} + _cached_pairs: Dict[str, Any] = {} # Keeps a list of pairs + + def __init__(self, config: Dict[str, Any], exchange, strategy) -> None: + + self.config = config + self.exchange = exchange + self.strategy = strategy + + self.edge_config = self.config.get('edge', {}) + self._cached_pairs: Dict[str, Any] = {} # Keeps a list of pairs + self._final_pairs: list = [] + + # checking max_open_trades. it should be -1 as with Edge + # the number of trades is determined by position size + if self.config['max_open_trades'] != float('inf'): + logger.critical('max_open_trades should be -1 in config !') + + if self.config['stake_amount'] != constants.UNLIMITED_STAKE_AMOUNT: + raise OperationalException('Edge works only with unlimited stake amount') + + # Deprecated capital_available_percentage. Will use tradable_balance_ratio in the future. + self._capital_percentage: float = self.edge_config.get( + 'capital_available_percentage', self.config['tradable_balance_ratio']) + self._allowed_risk: float = self.edge_config.get('allowed_risk') + self._since_number_of_days: int = self.edge_config.get('calculate_since_number_of_days', 14) + self._last_updated: int = 0 # Timestamp of pairs last updated time + self._refresh_pairs = True + + self._stoploss_range_min = float(self.edge_config.get('stoploss_range_min', -0.01)) + self._stoploss_range_max = float(self.edge_config.get('stoploss_range_max', -0.05)) + self._stoploss_range_step = float(self.edge_config.get('stoploss_range_step', -0.001)) + + # calculating stoploss range + self._stoploss_range = np.arange( + self._stoploss_range_min, + self._stoploss_range_max, + self._stoploss_range_step + ) + + self._timerange: TimeRange = TimeRange.parse_timerange("%s-" % arrow.now().shift( + days=-1 * self._since_number_of_days).format('YYYYMMDD')) + if config.get('fee'): + self.fee = config['fee'] + else: + self.fee = self.exchange.get_fee(symbol=self.config['exchange']['pair_whitelist'][0]) + + def calculate(self) -> bool: + pairs = self.config['exchange']['pair_whitelist'] + heartbeat = self.edge_config.get('process_throttle_secs') + + if (self._last_updated > 0) and ( + self._last_updated + heartbeat > arrow.utcnow().timestamp): + return False + + data: Dict[str, Any] = {} + logger.info('Using stake_currency: %s ...', self.config['stake_currency']) + logger.info('Using local backtesting data (using whitelist in given config) ...') + + if self._refresh_pairs: + history.refresh_data( + datadir=self.config['datadir'], + pairs=pairs, + exchange=self.exchange, + timeframe=self.strategy.ticker_interval, + timerange=self._timerange, + ) + + data = history.load_data( + datadir=self.config['datadir'], + pairs=pairs, + timeframe=self.strategy.ticker_interval, + timerange=self._timerange, + startup_candles=self.strategy.startup_candle_count, + ) + + if not data: + # Reinitializing cached pairs + self._cached_pairs = {} + logger.critical("No data found. Edge is stopped ...") + return False + + preprocessed = self.strategy.tickerdata_to_dataframe(data) + + # Print timeframe + min_date, max_date = history.get_timerange(preprocessed) + logger.info( + 'Measuring data from %s up to %s (%s days) ...', + min_date.isoformat(), + max_date.isoformat(), + (max_date - min_date).days + ) + headers = ['date', 'buy', 'open', 'close', 'sell', 'high', 'low'] + + trades: list = [] + for pair, pair_data in preprocessed.items(): + # Sorting dataframe by date and reset index + pair_data = pair_data.sort_values(by=['date']) + pair_data = pair_data.reset_index(drop=True) + + ticker_data = self.strategy.advise_sell( + self.strategy.advise_buy(pair_data, {'pair': pair}), {'pair': pair})[headers].copy() + + trades += self._find_trades_for_stoploss_range(ticker_data, pair, self._stoploss_range) + + # If no trade found then exit + if len(trades) == 0: + logger.info("No trades found.") + return False + + # Fill missing, calculable columns, profit, duration , abs etc. + trades_df = self._fill_calculable_fields(DataFrame(trades)) + self._cached_pairs = self._process_expectancy(trades_df) + self._last_updated = arrow.utcnow().timestamp + + return True + + def stake_amount(self, pair: str, free_capital: float, + total_capital: float, capital_in_trade: float) -> float: + stoploss = self.stoploss(pair) + available_capital = (total_capital + capital_in_trade) * self._capital_percentage + allowed_capital_at_risk = available_capital * self._allowed_risk + max_position_size = abs(allowed_capital_at_risk / stoploss) + position_size = min(max_position_size, free_capital) + if pair in self._cached_pairs: + logger.info( + 'winrate: %s, expectancy: %s, position size: %s, pair: %s,' + ' capital in trade: %s, free capital: %s, total capital: %s,' + ' stoploss: %s, available capital: %s.', + self._cached_pairs[pair].winrate, + self._cached_pairs[pair].expectancy, + position_size, pair, + capital_in_trade, free_capital, total_capital, + stoploss, available_capital + ) + return round(position_size, 15) + + def stoploss(self, pair: str) -> float: + if pair in self._cached_pairs: + return self._cached_pairs[pair].stoploss + else: + logger.warning('tried to access stoploss of a non-existing pair, ' + 'strategy stoploss is returned instead.') + return self.strategy.stoploss + + def adjust(self, pairs) -> list: + """ + Filters out and sorts "pairs" according to Edge calculated pairs + """ + final = [] + for pair, info in self._cached_pairs.items(): + if info.expectancy > float(self.edge_config.get('minimum_expectancy', 0.2)) and \ + info.winrate > float(self.edge_config.get('minimum_winrate', 0.60)) and \ + pair in pairs: + final.append(pair) + + if self._final_pairs != final: + self._final_pairs = final + if self._final_pairs: + logger.info( + 'Minimum expectancy and minimum winrate are met only for %s,' + ' so other pairs are filtered out.', + self._final_pairs + ) + else: + logger.info( + 'Edge removed all pairs as no pair with minimum expectancy ' + 'and minimum winrate was found !' + ) + + return self._final_pairs + + def accepted_pairs(self) -> list: + """ + return a list of accepted pairs along with their winrate, expectancy and stoploss + """ + final = [] + for pair, info in self._cached_pairs.items(): + if info.expectancy > float(self.edge_config.get('minimum_expectancy', 0.2)) and \ + info.winrate > float(self.edge_config.get('minimum_winrate', 0.60)): + final.append({ + 'Pair': pair, + 'Winrate': info.winrate, + 'Expectancy': info.expectancy, + 'Stoploss': info.stoploss, + }) + return final + + def _fill_calculable_fields(self, result: DataFrame) -> DataFrame: + """ + The result frame contains a number of columns that are calculable + from other columns. These are left blank till all rows are added, + to be populated in single vector calls. + + Columns to be populated are: + - Profit + - trade duration + - profit abs + :param result Dataframe + :return: result Dataframe + """ + + # stake and fees + # stake = 0.015 + # 0.05% is 0.0005 + # fee = 0.001 + + # we set stake amount to an arbitrary amount. + # as it doesn't change the calculation. + # all returned values are relative. they are percentages. + stake = 0.015 + fee = self.fee + open_fee = fee / 2 + close_fee = fee / 2 + + result['trade_duration'] = result['close_time'] - result['open_time'] + + result['trade_duration'] = result['trade_duration'].map( + lambda x: int(x.total_seconds() / 60)) + + # Spends, Takes, Profit, Absolute Profit + + # Buy Price + result['buy_vol'] = stake / result['open_rate'] # How many target are we buying + result['buy_fee'] = stake * open_fee + result['buy_spend'] = stake + result['buy_fee'] # How much we're spending + + # Sell price + result['sell_sum'] = result['buy_vol'] * result['close_rate'] + result['sell_fee'] = result['sell_sum'] * close_fee + result['sell_take'] = result['sell_sum'] - result['sell_fee'] + + # profit_percent + result['profit_percent'] = (result['sell_take'] - result['buy_spend']) / result['buy_spend'] + + # Absolute profit + result['profit_abs'] = result['sell_take'] - result['buy_spend'] + + return result + + def _process_expectancy(self, results: DataFrame) -> Dict[str, Any]: + """ + This calculates WinRate, Required Risk Reward, Risk Reward and Expectancy of all pairs + The calulation will be done per pair and per strategy. + """ + # Removing pairs having less than min_trades_number + min_trades_number = self.edge_config.get('min_trade_number', 10) + results = results.groupby(['pair', 'stoploss']).filter(lambda x: len(x) > min_trades_number) + ################################### + + # Removing outliers (Only Pumps) from the dataset + # The method to detect outliers is to calculate standard deviation + # Then every value more than (standard deviation + 2*average) is out (pump) + # + # Removing Pumps + if self.edge_config.get('remove_pumps', False): + results = results.groupby(['pair', 'stoploss']).apply( + lambda x: x[x['profit_abs'] < 2 * x['profit_abs'].std() + x['profit_abs'].mean()]) + ########################################################################## + + # Removing trades having a duration more than X minutes (set in config) + max_trade_duration = self.edge_config.get('max_trade_duration_minute', 1440) + results = results[results.trade_duration < max_trade_duration] + ####################################################################### + + if results.empty: + return {} + + groupby_aggregator = { + 'profit_abs': [ + ('nb_trades', 'count'), # number of all trades + ('profit_sum', lambda x: x[x > 0].sum()), # cumulative profit of all winning trades + ('loss_sum', lambda x: abs(x[x < 0].sum())), # cumulative loss of all losing trades + ('nb_win_trades', lambda x: x[x > 0].count()) # number of winning trades + ], + 'trade_duration': [('avg_trade_duration', 'mean')] + } + + # Group by (pair and stoploss) by applying above aggregator + df = results.groupby(['pair', 'stoploss'])['profit_abs', 'trade_duration'].agg( + groupby_aggregator).reset_index(col_level=1) + + # Dropping level 0 as we don't need it + df.columns = df.columns.droplevel(0) + + # Calculating number of losing trades, average win and average loss + df['nb_loss_trades'] = df['nb_trades'] - df['nb_win_trades'] + df['average_win'] = df['profit_sum'] / df['nb_win_trades'] + df['average_loss'] = df['loss_sum'] / df['nb_loss_trades'] + + # Win rate = number of profitable trades / number of trades + df['winrate'] = df['nb_win_trades'] / df['nb_trades'] + + # risk_reward_ratio = average win / average loss + df['risk_reward_ratio'] = df['average_win'] / df['average_loss'] + + # required_risk_reward = (1 / winrate) - 1 + df['required_risk_reward'] = (1 / df['winrate']) - 1 + + # expectancy = (risk_reward_ratio * winrate) - (lossrate) + df['expectancy'] = (df['risk_reward_ratio'] * df['winrate']) - (1 - df['winrate']) + + # sort by expectancy and stoploss + df = df.sort_values(by=['expectancy', 'stoploss'], ascending=False).groupby( + 'pair').first().sort_values(by=['expectancy'], ascending=False).reset_index() + + final = {} + for x in df.itertuples(): + final[x.pair] = PairInfo( + x.stoploss, + x.winrate, + x.risk_reward_ratio, + x.required_risk_reward, + x.expectancy, + x.nb_trades, + x.avg_trade_duration + ) + + # Returning a list of pairs in order of "expectancy" + return final + + def _find_trades_for_stoploss_range(self, ticker_data, pair, stoploss_range): + buy_column = ticker_data['buy'].values + sell_column = ticker_data['sell'].values + date_column = ticker_data['date'].values + ohlc_columns = ticker_data[['open', 'high', 'low', 'close']].values + + result: list = [] + for stoploss in stoploss_range: + result += self._detect_next_stop_or_sell_point( + buy_column, sell_column, date_column, ohlc_columns, round(stoploss, 6), pair + ) + + return result + + def _detect_next_stop_or_sell_point(self, buy_column, sell_column, date_column, + ohlc_columns, stoploss, pair): + """ + Iterate through ohlc_columns in order to find the next trade + Next trade opens from the first buy signal noticed to + The sell or stoploss signal after it. + It then cuts OHLC, buy_column, sell_column and date_column. + Cut from (the exit trade index) + 1. + + Author: https://github.com/mishaker + """ + + result: list = [] + start_point = 0 + + while True: + open_trade_index = utf1st.find_1st(buy_column, 1, utf1st.cmp_equal) + + # Return empty if we don't find trade entry (i.e. buy==1) or + # we find a buy but at the end of array + if open_trade_index == -1 or open_trade_index == len(buy_column) - 1: + break + else: + # When a buy signal is seen, + # trade opens in reality on the next candle + open_trade_index += 1 + + stop_price_percentage = stoploss + 1 + open_price = ohlc_columns[open_trade_index, 0] + stop_price = (open_price * stop_price_percentage) + + # Searching for the index where stoploss is hit + stop_index = utf1st.find_1st( + ohlc_columns[open_trade_index:, 2], stop_price, utf1st.cmp_smaller) + + # If we don't find it then we assume stop_index will be far in future (infinite number) + if stop_index == -1: + stop_index = float('inf') + + # Searching for the index where sell is hit + sell_index = utf1st.find_1st(sell_column[open_trade_index:], 1, utf1st.cmp_equal) + + # If we don't find it then we assume sell_index will be far in future (infinite number) + if sell_index == -1: + sell_index = float('inf') + + # Check if we don't find any stop or sell point (in that case trade remains open) + # It is not interesting for Edge to consider it so we simply ignore the trade + # And stop iterating there is no more entry + if stop_index == sell_index == float('inf'): + break + + if stop_index <= sell_index: + exit_index = open_trade_index + stop_index + exit_type = SellType.STOP_LOSS + exit_price = stop_price + elif stop_index > sell_index: + # If exit is SELL then we exit at the next candle + exit_index = open_trade_index + sell_index + 1 + + # Check if we have the next candle + if len(ohlc_columns) - 1 < exit_index: + break + + exit_type = SellType.SELL_SIGNAL + exit_price = ohlc_columns[exit_index, 0] + + trade = {'pair': pair, + 'stoploss': stoploss, + 'profit_percent': '', + 'profit_abs': '', + 'open_time': date_column[open_trade_index], + 'close_time': date_column[exit_index], + 'open_index': start_point + open_trade_index, + 'close_index': start_point + exit_index, + 'trade_duration': '', + 'open_rate': round(open_price, 15), + 'close_rate': round(exit_price, 15), + 'exit_type': exit_type + } + + result.append(trade) + + # Giving a view of exit_index till the end of array + buy_column = buy_column[exit_index:] + sell_column = sell_column[exit_index:] + date_column = date_column[exit_index:] + ohlc_columns = ohlc_columns[exit_index:] + start_point += exit_index + + return result