diff --git a/docs/backtesting.md b/docs/backtesting.md index 277b11083..c841899a7 100644 --- a/docs/backtesting.md +++ b/docs/backtesting.md @@ -165,10 +165,13 @@ A backtesting result will look like that: | Max open trades | 3 | | | | | Total trades | 429 | -| First trade | 2019-01-01 18:30:00 | -| First trade Pair | EOS/USDT | | Total Profit % | 152.41% | | Trades per day | 3.575 | +| | | +| Best Pair | LSK/BTC 26.26% | +| Worst Pair | ZEC/BTC -10.18% | +| Best Trade | LSK/BTC 4.25% | +| Worst Trade | ZEC/BTC -10.25% | | Best day | 25.27% | | Worst day | -30.67% | | Avg. Duration Winners | 4:23:00 | @@ -238,10 +241,13 @@ It contains some useful key metrics about performance of your strategy on backte | Max open trades | 3 | | | | | Total trades | 429 | -| First trade | 2019-01-01 18:30:00 | -| First trade Pair | EOS/USDT | | Total Profit % | 152.41% | | Trades per day | 3.575 | +| | | +| Best Pair | LSK/BTC 26.26% | +| Worst Pair | ZEC/BTC -10.18% | +| Best Trade | LSK/BTC 4.25% | +| Worst Trade | ZEC/BTC -10.25% | | Best day | 25.27% | | Worst day | -30.67% | | Avg. Duration Winners | 4:23:00 | @@ -258,10 +264,10 @@ It contains some useful key metrics about performance of your strategy on backte - `Backtesting from` / `Backtesting to`: Backtesting range (usually defined with the `--timerange` option). - `Max open trades`: Setting of `max_open_trades` (or `--max-open-trades`) - to clearly see settings for this. - `Total trades`: Identical to the total trades of the backtest output table. -- `First trade`: First trade entered. -- `First trade pair`: Which pair was part of the first trade. - `Total Profit %`: Total profit per stake amount. Aligned to the TOTAL column of the first table. - `Trades per day`: Total trades divided by the backtesting duration in days (this will give you information about how many trades to expect from the strategy). +- `Best Pair` / `Worst Pair`: Best and worst performing pair, and it's corresponding `Cum Profit %`. +- `Best Trade` / `Worst Trade`: Biggest winning trade and biggest losing trade - `Best day` / `Worst day`: Best and worst day based on daily profit. - `Avg. Duration Winners` / `Avg. Duration Loser`: Average durations for winning and losing trades. - `Max Drawdown`: Maximum drawdown experienced. For example, the value of 50% means that from highest to subsequent lowest point, a 50% drop was experienced). diff --git a/freqtrade/optimize/optimize_reports.py b/freqtrade/optimize/optimize_reports.py index 6aef031d3..b3799856e 100644 --- a/freqtrade/optimize/optimize_reports.py +++ b/freqtrade/optimize/optimize_reports.py @@ -256,13 +256,18 @@ def generate_backtest_stats(btdata: Dict[str, DataFrame], results=results.loc[results['open_at_end']], skip_nan=True) daily_stats = generate_daily_stats(results) - + best_pair = max([pair for pair in pair_results if pair['key'] != 'TOTAL'], + key=lambda x: x['profit_sum']) if len(pair_results) > 1 else None + worst_pair = min([pair for pair in pair_results if pair['key'] != 'TOTAL'], + key=lambda x: x['profit_sum']) if len(pair_results) > 1 else None results['open_timestamp'] = results['open_date'].astype(int64) // 1e6 results['close_timestamp'] = results['close_date'].astype(int64) // 1e6 backtest_days = (max_date - min_date).days strat_stats = { 'trades': results.to_dict(orient='records'), + 'best_pair': best_pair, + 'worst_pair': worst_pair, 'results_per_pair': pair_results, 'sell_reason_summary': sell_reason_stats, 'left_open_trades': left_open_results, @@ -395,17 +400,25 @@ def text_table_strategy(strategy_results, stake_currency: str) -> str: def text_table_add_metrics(strat_results: Dict) -> str: if len(strat_results['trades']) > 0: - min_trade = min(strat_results['trades'], key=lambda x: x['open_date']) + best_trade = max(strat_results['trades'], key=lambda x: x['profit_percent']) + worst_trade = min(strat_results['trades'], key=lambda x: x['profit_percent']) metrics = [ ('Backtesting from', strat_results['backtest_start'].strftime(DATETIME_PRINT_FORMAT)), ('Backtesting to', strat_results['backtest_end'].strftime(DATETIME_PRINT_FORMAT)), ('Max open trades', strat_results['max_open_trades']), ('', ''), # Empty line to improve readability ('Total trades', strat_results['total_trades']), - ('First trade', min_trade['open_date'].strftime(DATETIME_PRINT_FORMAT)), - ('First trade Pair', min_trade['pair']), ('Total Profit %', f"{round(strat_results['profit_total'] * 100, 2)}%"), ('Trades per day', strat_results['trades_per_day']), + ('', ''), # Empty line to improve readability + ('Best Pair', f"{strat_results['best_pair']['key']} " + f"{round(strat_results['best_pair']['profit_sum_pct'], 2)}%"), + ('Worst Pair', f"{strat_results['worst_pair']['key']} " + f"{round(strat_results['worst_pair']['profit_sum_pct'], 2)}%"), + ('Best trade', f"{best_trade['pair']} {round(best_trade['profit_percent'] * 100, 2)}%"), + ('Worst trade', f"{worst_trade['pair']} " + f"{round(worst_trade['profit_percent'] * 100, 2)}%"), + ('Best day', f"{round(strat_results['backtest_best_day'] * 100, 2)}%"), ('Worst day', f"{round(strat_results['backtest_worst_day'] * 100, 2)}%"), ('Days win/draw/lose', f"{strat_results['winning_days']} / "