use hyperopt to find optimal parameter values for indicators
This commit is contained in:
parent
d4f8b3ebbc
commit
1792e0fb9b
124
freqtrade/tests/test_hyperopt.py
Normal file
124
freqtrade/tests/test_hyperopt.py
Normal file
@ -0,0 +1,124 @@
|
||||
# pragma pylint: disable=missing-docstring
|
||||
import json
|
||||
import logging
|
||||
import os
|
||||
from functools import reduce
|
||||
|
||||
import pytest
|
||||
import arrow
|
||||
from pandas import DataFrame
|
||||
|
||||
import hyperopt.pyll.stochastic
|
||||
|
||||
from hyperopt import fmin, tpe, hp
|
||||
|
||||
from freqtrade.analyze import analyze_ticker
|
||||
from freqtrade.main import should_sell
|
||||
from freqtrade.persistence import Trade
|
||||
|
||||
logging.disable(logging.DEBUG) # disable debug logs that slow backtesting a lot
|
||||
|
||||
def print_results(results):
|
||||
print('Made {} buys. Average profit {:.2f}%. Total profit was {:.3f}. Average duration {:.1f} mins.'.format(
|
||||
len(results.index),
|
||||
results.profit.mean() * 100.0,
|
||||
results.profit.sum(),
|
||||
results.duration.mean() * 5
|
||||
))
|
||||
|
||||
@pytest.fixture
|
||||
def pairs():
|
||||
return ['btc-neo', 'btc-eth', 'btc-omg', 'btc-edg', 'btc-pay',
|
||||
'btc-pivx', 'btc-qtum', 'btc-mtl', 'btc-etc', 'btc-ltc']
|
||||
|
||||
@pytest.fixture
|
||||
def conf():
|
||||
return {
|
||||
"minimal_roi": {
|
||||
"50": 0.0,
|
||||
"40": 0.01,
|
||||
"30": 0.02,
|
||||
"0": 0.045
|
||||
},
|
||||
"stoploss": -0.40
|
||||
}
|
||||
|
||||
|
||||
def backtest(conf, pairs, mocker, buy_strategy):
|
||||
trades = []
|
||||
mocker.patch.dict('freqtrade.main._CONF', conf)
|
||||
for pair in pairs:
|
||||
with open('freqtrade/tests/testdata/'+pair+'.json') as data_file:
|
||||
data = json.load(data_file)
|
||||
|
||||
mocker.patch('freqtrade.analyze.get_ticker_history', return_value=data)
|
||||
mocker.patch('arrow.utcnow', return_value=arrow.get('2017-08-20T14:50:00'))
|
||||
mocker.patch('freqtrade.analyze.populate_buy_trend', side_effect=buy_strategy)
|
||||
ticker = analyze_ticker(pair)
|
||||
# for each buy point
|
||||
for index, row in ticker[ticker.buy == 1].iterrows():
|
||||
trade = Trade(
|
||||
open_rate=row['close'],
|
||||
open_date=arrow.get(row['date']).datetime,
|
||||
amount=1,
|
||||
)
|
||||
# calculate win/lose forwards from buy point
|
||||
for index2, row2 in ticker[index:].iterrows():
|
||||
if should_sell(trade, row2['close'], arrow.get(row2['date']).datetime):
|
||||
current_profit = (row2['close'] - trade.open_rate) / trade.open_rate
|
||||
|
||||
trades.append((pair, current_profit, index2 - index))
|
||||
break
|
||||
|
||||
labels = ['currency', 'profit', 'duration']
|
||||
results = DataFrame.from_records(trades, columns=labels)
|
||||
|
||||
print_results(results)
|
||||
if len(results.index) < 800:
|
||||
return 0
|
||||
return results.profit.sum() / results.duration.mean()
|
||||
|
||||
def buy_strategy_generator(params):
|
||||
print(params)
|
||||
def populate_buy_trend(dataframe: DataFrame) -> DataFrame:
|
||||
conditions = []
|
||||
conditions.append(dataframe['close'] < dataframe['sma'])
|
||||
conditions.append(dataframe['tema'] <= dataframe['blower'])
|
||||
if params['mfi']['enabled']:
|
||||
conditions.append(dataframe['mfi'] < params['mfi']['value'])
|
||||
if params['fastd']['enabled']:
|
||||
conditions.append(dataframe['fastd'] < params['fastd']['value'])
|
||||
if params['adx']['enabled']:
|
||||
conditions.append(dataframe['adx'] > params['adx']['value'])
|
||||
|
||||
dataframe.loc[
|
||||
reduce(lambda x, y: x & y, conditions),
|
||||
'buy'] = 1
|
||||
dataframe.loc[dataframe['buy'] == 1, 'buy_price'] = dataframe['close']
|
||||
|
||||
return dataframe
|
||||
return populate_buy_trend
|
||||
|
||||
@pytest.mark.skipif(not os.environ.get('BACKTEST', False), reason="BACKTEST not set")
|
||||
def test_hyperopt(conf, pairs, mocker):
|
||||
|
||||
def optimizer(params):
|
||||
return backtest(conf, pairs, mocker, buy_strategy_generator(params))
|
||||
|
||||
space = {
|
||||
'mfi': hp.choice('mfi', [
|
||||
{'enabled': False},
|
||||
{'enabled': True, 'value': hp.uniform('mfi-value', 10, 50)}
|
||||
]),
|
||||
'fastd': hp.choice('fastd', [
|
||||
{'enabled': False},
|
||||
{'enabled': True, 'value': hp.uniform('fastd-value', 10, 50)}
|
||||
]),
|
||||
'adx': hp.choice('adx', [
|
||||
{'enabled': False},
|
||||
{'enabled': True, 'value': hp.uniform('adx-value', 10, 50)}
|
||||
]),
|
||||
}
|
||||
|
||||
# print(hyperopt.pyll.stochastic.sample(space))
|
||||
print(fmin(fn=optimizer, space=space, algo=tpe.suggest, max_evals=2))
|
Loading…
Reference in New Issue
Block a user