Merge branch 'develop' into backtest_live_models
This commit is contained in:
@@ -1,12 +1,10 @@
|
||||
import logging
|
||||
import shutil
|
||||
import threading
|
||||
import time
|
||||
from abc import ABC, abstractmethod
|
||||
from collections import deque
|
||||
from datetime import datetime, timezone
|
||||
from pathlib import Path
|
||||
from threading import Lock
|
||||
from typing import Any, Dict, List, Literal, Tuple
|
||||
|
||||
import numpy as np
|
||||
@@ -21,7 +19,7 @@ from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.exchange import timeframe_to_seconds
|
||||
from freqtrade.freqai.data_drawer import FreqaiDataDrawer
|
||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||
from freqtrade.freqai.utils import plot_feature_importance
|
||||
from freqtrade.freqai.utils import plot_feature_importance, record_params
|
||||
from freqtrade.strategy.interface import IStrategy
|
||||
|
||||
|
||||
@@ -61,6 +59,7 @@ class IFreqaiModel(ABC):
|
||||
"data_split_parameters", {})
|
||||
self.model_training_parameters: Dict[str, Any] = config.get("freqai", {}).get(
|
||||
"model_training_parameters", {})
|
||||
self.identifier: str = self.freqai_info.get("identifier", "no_id_provided")
|
||||
self.retrain = False
|
||||
self.first = True
|
||||
self.set_full_path()
|
||||
@@ -69,9 +68,9 @@ class IFreqaiModel(ABC):
|
||||
if self.save_backtest_models:
|
||||
logger.info('Backtesting module configured to save all models.')
|
||||
self.dd = FreqaiDataDrawer(Path(self.full_path), self.config, self.follow_mode)
|
||||
self.identifier: str = self.freqai_info.get("identifier", "no_id_provided")
|
||||
self.scanning = False
|
||||
self.ft_params = self.freqai_info["feature_parameters"]
|
||||
self.corr_pairlist: List[str] = self.ft_params.get("include_corr_pairlist", [])
|
||||
self.keras: bool = self.freqai_info.get("keras", False)
|
||||
if self.keras and self.ft_params.get("DI_threshold", 0):
|
||||
self.ft_params["DI_threshold"] = 0
|
||||
@@ -83,9 +82,6 @@ class IFreqaiModel(ABC):
|
||||
self.pair_it_train = 0
|
||||
self.total_pairs = len(self.config.get("exchange", {}).get("pair_whitelist"))
|
||||
self.train_queue = self._set_train_queue()
|
||||
self.last_trade_database_summary: DataFrame = {}
|
||||
self.current_trade_database_summary: DataFrame = {}
|
||||
self.analysis_lock = Lock()
|
||||
self.inference_time: float = 0
|
||||
self.train_time: float = 0
|
||||
self.begin_time: float = 0
|
||||
@@ -93,10 +89,16 @@ class IFreqaiModel(ABC):
|
||||
self.base_tf_seconds = timeframe_to_seconds(self.config['timeframe'])
|
||||
self.continual_learning = self.freqai_info.get('continual_learning', False)
|
||||
self.plot_features = self.ft_params.get("plot_feature_importances", 0)
|
||||
self.corr_dataframes: Dict[str, DataFrame] = {}
|
||||
# get_corr_dataframes is controlling the caching of corr_dataframes
|
||||
# for improved performance. Careful with this boolean.
|
||||
self.get_corr_dataframes: bool = True
|
||||
|
||||
self._threads: List[threading.Thread] = []
|
||||
self._stop_event = threading.Event()
|
||||
|
||||
record_params(config, self.full_path)
|
||||
|
||||
def __getstate__(self):
|
||||
"""
|
||||
Return an empty state to be pickled in hyperopt
|
||||
@@ -385,10 +387,10 @@ class IFreqaiModel(ABC):
|
||||
# load the model and associated data into the data kitchen
|
||||
self.model = self.dd.load_data(metadata["pair"], dk)
|
||||
|
||||
with self.analysis_lock:
|
||||
dataframe = self.dk.use_strategy_to_populate_indicators(
|
||||
strategy, prediction_dataframe=dataframe, pair=metadata["pair"]
|
||||
)
|
||||
dataframe = dk.use_strategy_to_populate_indicators(
|
||||
strategy, prediction_dataframe=dataframe, pair=metadata["pair"],
|
||||
do_corr_pairs=self.get_corr_dataframes
|
||||
)
|
||||
|
||||
if not self.model:
|
||||
logger.warning(
|
||||
@@ -397,6 +399,9 @@ class IFreqaiModel(ABC):
|
||||
self.dd.return_null_values_to_strategy(dataframe, dk)
|
||||
return dk
|
||||
|
||||
if self.corr_pairlist:
|
||||
dataframe = self.cache_corr_pairlist_dfs(dataframe, dk)
|
||||
|
||||
dk.find_labels(dataframe)
|
||||
|
||||
self.build_strategy_return_arrays(dataframe, dk, metadata["pair"], trained_timestamp)
|
||||
@@ -548,14 +553,13 @@ class IFreqaiModel(ABC):
|
||||
return file_exists
|
||||
|
||||
def set_full_path(self) -> None:
|
||||
"""
|
||||
Creates and sets the full path for the identifier
|
||||
"""
|
||||
self.full_path = Path(
|
||||
self.config["user_data_dir"] / "models" / f"{self.freqai_info['identifier']}"
|
||||
self.config["user_data_dir"] / "models" / f"{self.identifier}"
|
||||
)
|
||||
self.full_path.mkdir(parents=True, exist_ok=True)
|
||||
shutil.copy(
|
||||
self.config["config_files"][0],
|
||||
Path(self.full_path, Path(self.config["config_files"][0]).name),
|
||||
)
|
||||
|
||||
def extract_data_and_train_model(
|
||||
self,
|
||||
@@ -581,10 +585,9 @@ class IFreqaiModel(ABC):
|
||||
data_load_timerange, pair, dk
|
||||
)
|
||||
|
||||
with self.analysis_lock:
|
||||
unfiltered_dataframe = dk.use_strategy_to_populate_indicators(
|
||||
strategy, corr_dataframes, base_dataframes, pair
|
||||
)
|
||||
unfiltered_dataframe = dk.use_strategy_to_populate_indicators(
|
||||
strategy, corr_dataframes, base_dataframes, pair
|
||||
)
|
||||
|
||||
unfiltered_dataframe = dk.slice_dataframe(new_trained_timerange, unfiltered_dataframe)
|
||||
|
||||
@@ -702,6 +705,8 @@ class IFreqaiModel(ABC):
|
||||
" avoid blinding open trades and degrading performance.")
|
||||
self.pair_it = 0
|
||||
self.inference_time = 0
|
||||
if self.corr_pairlist:
|
||||
self.get_corr_dataframes = True
|
||||
return
|
||||
|
||||
def train_timer(self, do: Literal['start', 'stop'] = 'start', pair: str = ''):
|
||||
@@ -760,6 +765,29 @@ class IFreqaiModel(ABC):
|
||||
f'Best approximation queue: {best_queue}')
|
||||
return best_queue
|
||||
|
||||
def cache_corr_pairlist_dfs(self, dataframe: DataFrame, dk: FreqaiDataKitchen) -> DataFrame:
|
||||
"""
|
||||
Cache the corr_pairlist dfs to speed up performance for subsequent pairs during the
|
||||
current candle.
|
||||
:param dataframe: strategy fed dataframe
|
||||
:param dk: datakitchen object for current asset
|
||||
:return: dataframe to attach/extract cached corr_pair dfs to/from.
|
||||
"""
|
||||
|
||||
if self.get_corr_dataframes:
|
||||
self.corr_dataframes = dk.extract_corr_pair_columns_from_populated_indicators(dataframe)
|
||||
if not self.corr_dataframes:
|
||||
logger.warning("Couldn't cache corr_pair dataframes for improved performance. "
|
||||
"Consider ensuring that the full coin/stake, e.g. XYZ/USD, "
|
||||
"is included in the column names when you are creating features "
|
||||
"in `populate_any_indicators()`.")
|
||||
self.get_corr_dataframes = not bool(self.corr_dataframes)
|
||||
else:
|
||||
dataframe = dk.attach_corr_pair_columns(
|
||||
dataframe, self.corr_dataframes, dk.pair)
|
||||
|
||||
return dataframe
|
||||
|
||||
# Following methods which are overridden by user made prediction models.
|
||||
# See freqai/prediction_models/CatboostPredictionModel.py for an example.
|
||||
|
||||
|
||||
Reference in New Issue
Block a user