Merge branch 'develop' into backtest_live_models

This commit is contained in:
Wagner Costa Santos
2022-11-03 13:29:25 -03:00
68 changed files with 1232 additions and 606 deletions

View File

@@ -1,12 +1,10 @@
import logging
import shutil
import threading
import time
from abc import ABC, abstractmethod
from collections import deque
from datetime import datetime, timezone
from pathlib import Path
from threading import Lock
from typing import Any, Dict, List, Literal, Tuple
import numpy as np
@@ -21,7 +19,7 @@ from freqtrade.exceptions import OperationalException
from freqtrade.exchange import timeframe_to_seconds
from freqtrade.freqai.data_drawer import FreqaiDataDrawer
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
from freqtrade.freqai.utils import plot_feature_importance
from freqtrade.freqai.utils import plot_feature_importance, record_params
from freqtrade.strategy.interface import IStrategy
@@ -61,6 +59,7 @@ class IFreqaiModel(ABC):
"data_split_parameters", {})
self.model_training_parameters: Dict[str, Any] = config.get("freqai", {}).get(
"model_training_parameters", {})
self.identifier: str = self.freqai_info.get("identifier", "no_id_provided")
self.retrain = False
self.first = True
self.set_full_path()
@@ -69,9 +68,9 @@ class IFreqaiModel(ABC):
if self.save_backtest_models:
logger.info('Backtesting module configured to save all models.')
self.dd = FreqaiDataDrawer(Path(self.full_path), self.config, self.follow_mode)
self.identifier: str = self.freqai_info.get("identifier", "no_id_provided")
self.scanning = False
self.ft_params = self.freqai_info["feature_parameters"]
self.corr_pairlist: List[str] = self.ft_params.get("include_corr_pairlist", [])
self.keras: bool = self.freqai_info.get("keras", False)
if self.keras and self.ft_params.get("DI_threshold", 0):
self.ft_params["DI_threshold"] = 0
@@ -83,9 +82,6 @@ class IFreqaiModel(ABC):
self.pair_it_train = 0
self.total_pairs = len(self.config.get("exchange", {}).get("pair_whitelist"))
self.train_queue = self._set_train_queue()
self.last_trade_database_summary: DataFrame = {}
self.current_trade_database_summary: DataFrame = {}
self.analysis_lock = Lock()
self.inference_time: float = 0
self.train_time: float = 0
self.begin_time: float = 0
@@ -93,10 +89,16 @@ class IFreqaiModel(ABC):
self.base_tf_seconds = timeframe_to_seconds(self.config['timeframe'])
self.continual_learning = self.freqai_info.get('continual_learning', False)
self.plot_features = self.ft_params.get("plot_feature_importances", 0)
self.corr_dataframes: Dict[str, DataFrame] = {}
# get_corr_dataframes is controlling the caching of corr_dataframes
# for improved performance. Careful with this boolean.
self.get_corr_dataframes: bool = True
self._threads: List[threading.Thread] = []
self._stop_event = threading.Event()
record_params(config, self.full_path)
def __getstate__(self):
"""
Return an empty state to be pickled in hyperopt
@@ -385,10 +387,10 @@ class IFreqaiModel(ABC):
# load the model and associated data into the data kitchen
self.model = self.dd.load_data(metadata["pair"], dk)
with self.analysis_lock:
dataframe = self.dk.use_strategy_to_populate_indicators(
strategy, prediction_dataframe=dataframe, pair=metadata["pair"]
)
dataframe = dk.use_strategy_to_populate_indicators(
strategy, prediction_dataframe=dataframe, pair=metadata["pair"],
do_corr_pairs=self.get_corr_dataframes
)
if not self.model:
logger.warning(
@@ -397,6 +399,9 @@ class IFreqaiModel(ABC):
self.dd.return_null_values_to_strategy(dataframe, dk)
return dk
if self.corr_pairlist:
dataframe = self.cache_corr_pairlist_dfs(dataframe, dk)
dk.find_labels(dataframe)
self.build_strategy_return_arrays(dataframe, dk, metadata["pair"], trained_timestamp)
@@ -548,14 +553,13 @@ class IFreqaiModel(ABC):
return file_exists
def set_full_path(self) -> None:
"""
Creates and sets the full path for the identifier
"""
self.full_path = Path(
self.config["user_data_dir"] / "models" / f"{self.freqai_info['identifier']}"
self.config["user_data_dir"] / "models" / f"{self.identifier}"
)
self.full_path.mkdir(parents=True, exist_ok=True)
shutil.copy(
self.config["config_files"][0],
Path(self.full_path, Path(self.config["config_files"][0]).name),
)
def extract_data_and_train_model(
self,
@@ -581,10 +585,9 @@ class IFreqaiModel(ABC):
data_load_timerange, pair, dk
)
with self.analysis_lock:
unfiltered_dataframe = dk.use_strategy_to_populate_indicators(
strategy, corr_dataframes, base_dataframes, pair
)
unfiltered_dataframe = dk.use_strategy_to_populate_indicators(
strategy, corr_dataframes, base_dataframes, pair
)
unfiltered_dataframe = dk.slice_dataframe(new_trained_timerange, unfiltered_dataframe)
@@ -702,6 +705,8 @@ class IFreqaiModel(ABC):
" avoid blinding open trades and degrading performance.")
self.pair_it = 0
self.inference_time = 0
if self.corr_pairlist:
self.get_corr_dataframes = True
return
def train_timer(self, do: Literal['start', 'stop'] = 'start', pair: str = ''):
@@ -760,6 +765,29 @@ class IFreqaiModel(ABC):
f'Best approximation queue: {best_queue}')
return best_queue
def cache_corr_pairlist_dfs(self, dataframe: DataFrame, dk: FreqaiDataKitchen) -> DataFrame:
"""
Cache the corr_pairlist dfs to speed up performance for subsequent pairs during the
current candle.
:param dataframe: strategy fed dataframe
:param dk: datakitchen object for current asset
:return: dataframe to attach/extract cached corr_pair dfs to/from.
"""
if self.get_corr_dataframes:
self.corr_dataframes = dk.extract_corr_pair_columns_from_populated_indicators(dataframe)
if not self.corr_dataframes:
logger.warning("Couldn't cache corr_pair dataframes for improved performance. "
"Consider ensuring that the full coin/stake, e.g. XYZ/USD, "
"is included in the column names when you are creating features "
"in `populate_any_indicators()`.")
self.get_corr_dataframes = not bool(self.corr_dataframes)
else:
dataframe = dk.attach_corr_pair_columns(
dataframe, self.corr_dataframes, dk.pair)
return dataframe
# Following methods which are overridden by user made prediction models.
# See freqai/prediction_models/CatboostPredictionModel.py for an example.