Merge branch 'develop' into backtest_live_models

This commit is contained in:
Wagner Costa Santos
2022-11-03 13:29:25 -03:00
68 changed files with 1232 additions and 606 deletions

View File

@@ -214,7 +214,10 @@ class FreqaiDataKitchen:
const_cols = list((filtered_df.nunique() == 1).loc[lambda x: x].index)
if const_cols:
filtered_df = filtered_df.filter(filtered_df.columns.difference(const_cols))
self.data['constant_features_list'] = const_cols
logger.warning(f"Removed features {const_cols} with constant values.")
else:
self.data['constant_features_list'] = []
# we don't care about total row number (total no. datapoints) in training, we only care
# about removing any row with NaNs
# if labels has multiple columns (user wants to train multiple modelEs), we detect here
@@ -245,7 +248,8 @@ class FreqaiDataKitchen:
self.data["filter_drop_index_training"] = drop_index
else:
filtered_df = self.check_pred_labels(filtered_df)
if len(self.data['constant_features_list']):
filtered_df = self.check_pred_labels(filtered_df)
# we are backtesting so we need to preserve row number to send back to strategy,
# so now we use do_predict to avoid any prediction based on a NaN
drop_index = pd.isnull(filtered_df).any(axis=1)
@@ -354,13 +358,19 @@ class FreqaiDataKitchen:
:param df: Dataframe to be standardized
"""
for item in df.keys():
df[item] = (
2
* (df[item] - self.data[f"{item}_min"])
/ (self.data[f"{item}_max"] - self.data[f"{item}_min"])
- 1
)
train_max = [None] * len(df.keys())
train_min = [None] * len(df.keys())
for i, item in enumerate(df.keys()):
train_max[i] = self.data[f"{item}_max"]
train_min[i] = self.data[f"{item}_min"]
train_max_series = pd.Series(train_max, index=df.keys())
train_min_series = pd.Series(train_min, index=df.keys())
df = (
2 * (df - train_min_series) / (train_max_series - train_min_series) - 1
)
return df
@@ -491,18 +501,16 @@ class FreqaiDataKitchen:
def check_pred_labels(self, df_predictions: DataFrame) -> DataFrame:
"""
Check that prediction feature labels match training feature labels.
:params:
:df_predictions: incoming predictions
:param df_predictions: incoming predictions
"""
train_labels = self.data_dictionary["train_features"].columns
pred_labels = df_predictions.columns
num_diffs = len(pred_labels.difference(train_labels))
if num_diffs != 0:
df_predictions = df_predictions[train_labels]
logger.warning(
f"Removed {num_diffs} features from prediction features, "
f"these were likely considered constant values during most recent training."
)
constant_labels = self.data['constant_features_list']
df_predictions = df_predictions.filter(
df_predictions.columns.difference(constant_labels)
)
logger.warning(
f"Removed {len(constant_labels)} features from prediction features, "
f"these were considered constant values during most recent training."
)
return df_predictions
@@ -986,6 +994,9 @@ class FreqaiDataKitchen:
if "labels_std" in self.data:
append_df[f"{label}_std"] = self.data["labels_std"][label]
for extra_col in self.data["extra_returns_per_train"]:
append_df[f"{extra_col}"] = self.data["extra_returns_per_train"][extra_col]
append_df["do_predict"] = do_predict
if self.freqai_config["feature_parameters"].get("DI_threshold", 0) > 0:
append_df["DI_values"] = self.DI_values
@@ -1150,6 +1161,51 @@ class FreqaiDataKitchen:
if pair not in self.all_pairs:
self.all_pairs.append(pair)
def extract_corr_pair_columns_from_populated_indicators(
self,
dataframe: DataFrame
) -> Dict[str, DataFrame]:
"""
Find the columns of the dataframe corresponding to the corr_pairlist, save them
in a dictionary to be reused and attached to other pairs.
:param dataframe: fully populated dataframe (current pair + corr_pairs)
:return: corr_dataframes, dictionary of dataframes to be attached
to other pairs in same candle.
"""
corr_dataframes: Dict[str, DataFrame] = {}
pairs = self.freqai_config["feature_parameters"].get("include_corr_pairlist", [])
for pair in pairs:
valid_strs = [f"%-{pair}", f"%{pair}", f"%_{pair}"]
pair_cols = [col for col in dataframe.columns if
any(substr in col for substr in valid_strs)]
pair_cols.insert(0, 'date')
corr_dataframes[pair] = dataframe.filter(pair_cols, axis=1)
return corr_dataframes
def attach_corr_pair_columns(self, dataframe: DataFrame,
corr_dataframes: Dict[str, DataFrame],
current_pair: str) -> DataFrame:
"""
Attach the existing corr_pair dataframes to the current pair dataframe before training
:param dataframe: current pair strategy dataframe, indicators populated already
:param corr_dataframes: dictionary of saved dataframes from earlier in the same candle
:param current_pair: current pair to which we will attach corr pair dataframe
:return:
:dataframe: current pair dataframe of populated indicators, concatenated with corr_pairs
ready for training
"""
pairs = self.freqai_config["feature_parameters"].get("include_corr_pairlist", [])
for pair in pairs:
if current_pair != pair:
dataframe = dataframe.merge(corr_dataframes[pair], how='left', on='date')
return dataframe
def use_strategy_to_populate_indicators(
self,
strategy: IStrategy,
@@ -1157,6 +1213,7 @@ class FreqaiDataKitchen:
base_dataframes: dict = {},
pair: str = "",
prediction_dataframe: DataFrame = pd.DataFrame(),
do_corr_pairs: bool = True,
) -> DataFrame:
"""
Use the user defined strategy for populating indicators during retrain
@@ -1166,15 +1223,15 @@ class FreqaiDataKitchen:
:param base_dataframes: dict = dict containing the current pair dataframes
(for user defined timeframes)
:param metadata: dict = strategy furnished pair metadata
:returns:
:return:
dataframe: DataFrame = dataframe containing populated indicators
"""
# for prediction dataframe creation, we let dataprovider handle everything in the strategy
# so we create empty dictionaries, which allows us to pass None to
# `populate_any_indicators()`. Signaling we want the dp to give us the live dataframe.
tfs = self.freqai_config["feature_parameters"].get("include_timeframes")
pairs = self.freqai_config["feature_parameters"].get("include_corr_pairlist", [])
tfs: List[str] = self.freqai_config["feature_parameters"].get("include_timeframes")
pairs: List[str] = self.freqai_config["feature_parameters"].get("include_corr_pairlist", [])
if not prediction_dataframe.empty:
dataframe = prediction_dataframe.copy()
for tf in tfs:
@@ -1197,15 +1254,18 @@ class FreqaiDataKitchen:
informative=base_dataframes[tf],
set_generalized_indicators=sgi
)
if pairs:
for i in pairs:
if pair in i:
continue # dont repeat anything from whitelist
# ensure corr pairs are always last
for corr_pair in pairs:
if pair == corr_pair:
continue # dont repeat anything from whitelist
for tf in tfs:
if pairs and do_corr_pairs:
dataframe = strategy.populate_any_indicators(
i,
corr_pair,
dataframe.copy(),
tf,
informative=corr_dataframes[i][tf]
informative=corr_dataframes[corr_pair][tf]
)
self.get_unique_classes_from_labels(dataframe)