rehaul of backend data management - increasing performance by holding history in memory, reducing load on the ratelimit by only pinging exchange once per candle. Improve code readability.
This commit is contained in:
@@ -18,6 +18,17 @@ class CatboostPredictionModel(IFreqaiModel):
|
||||
has its own DataHandler where data is held, saved, loaded, and managed.
|
||||
"""
|
||||
|
||||
def return_values(self, dataframe: DataFrame, dh: FreqaiDataKitchen) -> DataFrame:
|
||||
|
||||
dataframe["prediction"] = dh.full_predictions
|
||||
dataframe["do_predict"] = dh.full_do_predict
|
||||
dataframe["target_mean"] = dh.full_target_mean
|
||||
dataframe["target_std"] = dh.full_target_std
|
||||
if self.freqai_info('feature_parameters', {}).get('DI-threshold', 0) > 0:
|
||||
dataframe["DI"] = dh.full_DI_values
|
||||
|
||||
return dataframe
|
||||
|
||||
def make_labels(self, dataframe: DataFrame, dh: FreqaiDataKitchen) -> DataFrame:
|
||||
"""
|
||||
User defines the labels here (target values).
|
||||
|
Reference in New Issue
Block a user