rehaul of backend data management - increasing performance by holding history in memory, reducing load on the ratelimit by only pinging exchange once per candle. Improve code readability.

This commit is contained in:
robcaulk
2022-06-03 15:19:46 +02:00
parent 4ac6ef2972
commit 16b4a5b71f
5 changed files with 342 additions and 70 deletions

View File

@@ -35,6 +35,8 @@ class FreqaiDataDrawer:
self.model_dictionary: Dict[str, Any] = {}
self.model_return_values: Dict[str, Any] = {}
self.pair_data_dict: Dict[str, Any] = {}
self.historic_data: Dict[str, Any] = {}
# self.populated_historic_data: Dict[str, Any] = {} ?
self.follower_dict: Dict[str, Any] = {}
self.full_path = full_path
self.follow_mode = follow_mode
@@ -45,6 +47,12 @@ class FreqaiDataDrawer:
# self.create_training_queue(pair_whitelist)
def load_drawer_from_disk(self):
"""
Locate and load a previously saved data drawer full of all pair model metadata in
present model folder.
:returns:
exists: bool = whether or not the drawer was located
"""
exists = Path(self.full_path / str('pair_dictionary.json')).resolve().exists()
if exists:
with open(self.full_path / str('pair_dictionary.json'), "r") as fp:
@@ -58,16 +66,25 @@ class FreqaiDataDrawer:
return exists
def save_drawer_to_disk(self):
"""
Save data drawer full of all pair model metadata in present model folder.
"""
with open(self.full_path / str('pair_dictionary.json'), "w") as fp:
json.dump(self.pair_dict, fp, default=self.np_encoder)
def save_follower_dict_to_dist(self):
def save_follower_dict_to_disk(self):
"""
Save follower dictionary to disk (used by strategy for persistent prediction targets)
"""
follower_name = self.config.get('bot_name', 'follower1')
with open(self.full_path / str('follower_dictionary-' +
follower_name + '.json'), "w") as fp:
json.dump(self.follower_dict, fp, default=self.np_encoder)
def create_follower_dict(self):
"""
Create or dictionary for each follower to maintain unique persistent prediction targets
"""
follower_name = self.config.get('bot_name', 'follower1')
whitelist_pairs = self.config.get('exchange', {}).get('pair_whitelist')
@@ -89,6 +106,18 @@ class FreqaiDataDrawer:
return object.item()
def get_pair_dict_info(self, metadata: dict) -> Tuple[str, int, bool, bool]:
"""
Locate and load existing model metadata from persistent storage. If not located,
create a new one and append the current pair to it and prepare it for its first
training
:params:
metadata: dict = strategy furnished pair metadata
:returns:
model_filename: str = unique filename used for loading persistent objects from disk
trained_timestamp: int = the last time the coin was trained
coin_first: bool = If the coin is fresh without metadata
return_null_array: bool = Follower could not find pair metadata
"""
pair_in_dict = self.pair_dict.get(metadata['pair'])
data_path_set = self.pair_dict.get(metadata['pair'], {}).get('data_path', None)
return_null_array = False
@@ -137,6 +166,7 @@ class FreqaiDataDrawer:
self.model_return_values[pair]['do_preds'] = dh.full_do_predict
self.model_return_values[pair]['target_mean'] = dh.full_target_mean
self.model_return_values[pair]['target_std'] = dh.full_target_std
self.model_return_values[pair]['DI_values'] = dh.full_DI_values
# if not self.follow_mode:
# self.save_model_return_values_to_disk()
@@ -157,6 +187,8 @@ class FreqaiDataDrawer:
self.model_return_values[pair]['predictions'] = np.append(
self.model_return_values[pair]['predictions'][i:], predictions[-1])
self.model_return_values[pair]['DI_values'] = np.append(
self.model_return_values[pair]['DI_values'][i:], dh.DI_values[-1])
self.model_return_values[pair]['do_preds'] = np.append(
self.model_return_values[pair]['do_preds'][i:], do_preds[-1])
self.model_return_values[pair]['target_mean'] = np.append(
@@ -168,6 +200,8 @@ class FreqaiDataDrawer:
prepend = np.zeros(abs(length_difference) - 1)
self.model_return_values[pair]['predictions'] = np.insert(
self.model_return_values[pair]['predictions'], 0, prepend)
self.model_return_values[pair]['DI_values'] = np.insert(
self.model_return_values[pair]['DI_values'], 0, prepend)
self.model_return_values[pair]['do_preds'] = np.insert(
self.model_return_values[pair]['do_preds'], 0, prepend)
self.model_return_values[pair]['target_mean'] = np.insert(
@@ -179,6 +213,7 @@ class FreqaiDataDrawer:
dh.full_do_predict = copy.deepcopy(self.model_return_values[pair]['do_preds'])
dh.full_target_mean = copy.deepcopy(self.model_return_values[pair]['target_mean'])
dh.full_target_std = copy.deepcopy(self.model_return_values[pair]['target_std'])
dh.full_DI_values = copy.deepcopy(self.model_return_values[pair]['DI_values'])
# if not self.follow_mode:
# self.save_model_return_values_to_disk()
@@ -190,6 +225,7 @@ class FreqaiDataDrawer:
dh.full_do_predict = np.zeros(len_df)
dh.full_target_mean = np.zeros(len_df)
dh.full_target_std = np.zeros(len_df)
dh.full_DI_values = np.zeros(len_df)
def purge_old_models(self) -> None:
@@ -227,6 +263,12 @@ class FreqaiDataDrawer:
shutil.rmtree(v)
deleted += 1
def update_follower_metadata(self):
# follower needs to load from disk to get any changes made by leader to pair_dict
self.load_drawer_from_disk()
if self.config.get('freqai', {})('purge_old_models', False):
self.purge_old_models()
# to be used if we want to send predictions directly to the follower instead of forcing
# follower to load models and inference
# def save_model_return_values_to_disk(self) -> None: