detect if upper tf candles are new or not, append if so. Correct the epoch for candle update check
This commit is contained in:
@@ -216,12 +216,9 @@ class IFreqaiModel(ABC):
|
||||
|
||||
# append the historic data once per round
|
||||
if (self.data_drawer.historic_data and
|
||||
self.update_historic_data >= len(self.config.get('exchange', '')
|
||||
.get('pair_whitelist'))):
|
||||
self.config.get('exchange', '').get('pair_whitelist').index(metadata['pair']) == 1):
|
||||
dh.update_historic_data(strategy)
|
||||
self.update_historic_data = 1
|
||||
else:
|
||||
self.update_historic_data += 1
|
||||
logger.info(f'Updating historic data on pair {metadata["pair"]}')
|
||||
|
||||
# if trainable, check if model needs training, if so compute new timerange,
|
||||
# then save model and metadata.
|
||||
@@ -405,9 +402,9 @@ class IFreqaiModel(ABC):
|
||||
# dh.download_new_data_for_retraining(data_load_timerange, metadata, strategy)
|
||||
# corr_dataframes, base_dataframes = dh.load_pairs_histories(data_load_timerange,
|
||||
# metadata)
|
||||
with self.data_drawer.history_lock:
|
||||
corr_dataframes, base_dataframes = dh.get_base_and_corr_dataframes(data_load_timerange,
|
||||
metadata)
|
||||
|
||||
corr_dataframes, base_dataframes = dh.get_base_and_corr_dataframes(data_load_timerange,
|
||||
metadata)
|
||||
|
||||
# protecting from common benign errors associated with grabbing new data from exchange:
|
||||
try:
|
||||
@@ -419,7 +416,6 @@ class IFreqaiModel(ABC):
|
||||
|
||||
except Exception as err:
|
||||
logger.exception(err)
|
||||
# self.data_drawer.pair_to_end_of_training_queue(metadata['pair'])
|
||||
self.training_on_separate_thread = False
|
||||
self.retrain = False
|
||||
return
|
||||
@@ -428,7 +424,6 @@ class IFreqaiModel(ABC):
|
||||
model = self.train(unfiltered_dataframe, metadata, dh)
|
||||
except ValueError:
|
||||
logger.warning('Value error encountered during training')
|
||||
# self.data_drawer.pair_to_end_of_training_queue(metadata['pair'])
|
||||
self.training_on_separate_thread = False
|
||||
self.retrain = False
|
||||
return
|
||||
|
Reference in New Issue
Block a user