fixed most tests and moved AWS related stuff out

This commit is contained in:
Gert Wohlgemuth 2018-06-13 15:09:06 -07:00
commit 12c8a3131d
86 changed files with 2154 additions and 2785 deletions

View File

@ -1,15 +1,17 @@
## Step 1: Have you search for this issue before posting it?
If you have discovered a bug in the bot, please [search our issue tracker](https://github.com/gcarq/freqtrade/issues?q=is%3Aissue).
If you have discovered a bug in the bot, please [search our issue tracker](https://github.com/freqtrade/freqtrade/issues?q=is%3Aissue).
If it hasn't been reported, please create a new issue.
## Step 2: Describe your environment
* Python Version: _____ (`python -V`)
* CCXT version: _____ (`pip freeze | grep ccxt`)
* Branch: Master | Develop
* Last Commit ID: _____ (`git log --format="%H" -n 1`)
## Step 3: Describe the problem:
*Explain the problem you have encountered*
### Steps to reproduce:

View File

@ -1,5 +1,5 @@
Thank you for sending your pull request. But first, have you included
unit tests, and is your code PEP8 conformant? [More details](https://github.com/gcarq/freqtrade/blob/develop/CONTRIBUTING.md)
unit tests, and is your code PEP8 conformant? [More details](https://github.com/freqtrade/freqtrade/blob/develop/CONTRIBUTING.md)
## Summary
Explain in one sentence the goal of this PR

3
.gitignore vendored
View File

@ -6,8 +6,8 @@ config*.json
.hyperopt
logfile.txt
hyperopt_trials.pickle
user_data/
freqtrade-plot.html
freqtrade-profit-plot.html
# Byte-compiled / optimized / DLL files
__pycache__/
@ -90,3 +90,4 @@ target/
.vscode
.pytest_cache/
.mypy_cache/

4
.pyup.yml Normal file
View File

@ -0,0 +1,4 @@
# autogenerated pyup.io config file
# see https://pyup.io/docs/configuration/ for all available options
schedule: every day

View File

@ -13,21 +13,22 @@ addons:
install:
- ./install_ta-lib.sh
- export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH
- pip install --upgrade flake8 coveralls pytest-random-order
- pip install --upgrade flake8 coveralls pytest-random-order mypy
- pip install -r requirements.txt
- pip install -e .
jobs:
include:
- script: pytest --cov=freqtrade --cov-config=.coveragerc freqtrade/tests/
- script:
- pytest --cov=freqtrade --cov-config=.coveragerc freqtrade/tests/
- coveralls
- script:
- cp config.json.example config.json
- python freqtrade/main.py backtesting
- python freqtrade/main.py --datadir freqtrade/tests/testdata backtesting
- script:
- cp config.json.example config.json
- python freqtrade/main.py hyperopt -e 5
- python freqtrade/main.py --datadir freqtrade/tests/testdata hyperopt -e 5
- script: flake8 freqtrade
after_success:
- coveralls
- script: mypy freqtrade
notifications:
slack:
secure: bKLXmOrx8e2aPZl7W8DA5BdPAXWGpI5UzST33oc1G/thegXcDVmHBTJrBs4sZak6bgAclQQrdZIsRd2eFYzHLalJEaw6pk7hoAw8SvLnZO0ZurWboz7qg2+aZZXfK4eKl/VUe4sM9M4e/qxjkK+yWG7Marg69c4v1ypF7ezUi1fPYILYw8u0paaiX0N5UX8XNlXy+PBlga2MxDjUY70MuajSZhPsY2pDUvYnMY1D/7XN3cFW0g+3O8zXjF0IF4q1Z/1ASQe+eYjKwPQacE+O8KDD+ZJYoTOFBAPllrtpO1jnOPFjNGf3JIbVMZw4bFjIL0mSQaiSUaUErbU3sFZ5Or79rF93XZ81V7uEZ55vD8KMfR2CB1cQJcZcj0v50BxLo0InkFqa0Y8Nra3sbpV4fV5Oe8pDmomPJrNFJnX6ULQhQ1gTCe0M5beKgVms5SITEpt4/Y0CmLUr6iHDT0CUiyMIRWAXdIgbGh1jfaWOMksybeRevlgDsIsNBjXmYI1Sw2ZZR2Eo2u4R6zyfyjOMLwYJ3vgq9IrACv2w5nmf0+oguMWHf6iWi2hiOqhlAN1W74+3HsYQcqnuM3LGOmuCnPprV1oGBqkPXjIFGpy21gNx4vHfO1noLUyJnMnlu2L7SSuN1CdLsnjJ1hVjpJjPfqB4nn8g12x87TqM1bOm+3Q=

View File

@ -7,7 +7,7 @@ Feel like our bot is missing a feature? We welcome your pull requests! Few point
conformant (max-line-length = 100).
If you are unsure, discuss the feature on our [Slack](https://join.slack.com/t/highfrequencybot/shared_invite/enQtMjQ5NTM0OTYzMzY3LWMxYzE3M2MxNDdjMGM3ZTYwNzFjMGIwZGRjNTc3ZGU3MGE3NzdmZGMwNmU3NDM5ZTNmM2Y3NjRiNzk4NmM4OGE)
or in a [issue](https://github.com/gcarq/freqtrade/issues) before a PR.
or in a [issue](https://github.com/freqtrade/freqtrade/issues) before a PR.
**Before sending the PR:**
@ -42,4 +42,21 @@ pip3.6 install flake8 coveralls
flake8 freqtrade
```
We receive a lot of code that fails the `flake8` checks.
To help with that, we encourage you to install the git pre-commit
hook that will warn you when you try to commit code that fails these checks.
Guide for installing them is [here](http://flake8.pycqa.org/en/latest/user/using-hooks.html).
## 3. Test if all type-hints are correct
**Install packages** (If not already installed)
``` bash
pip3.6 install mypy
```
**Run mypy**
``` bash
mypy freqtrade
```

View File

@ -1,8 +1,8 @@
# freqtrade
[![Build Status](https://travis-ci.org/gcarq/freqtrade.svg?branch=develop)](https://travis-ci.org/gcarq/freqtrade)
[![Coverage Status](https://coveralls.io/repos/github/gcarq/freqtrade/badge.svg?branch=develop&service=github)](https://coveralls.io/github/gcarq/freqtrade?branch=develop)
[![Maintainability](https://api.codeclimate.com/v1/badges/5737e6d668200b7518ff/maintainability)](https://codeclimate.com/github/gcarq/freqtrade/maintainability)
[![Build Status](https://travis-ci.org/freqtrade/freqtrade.svg?branch=develop)](https://travis-ci.org/freqtrade/freqtrade)
[![Coverage Status](https://coveralls.io/repos/github/freqtrade/freqtrade/badge.svg?branch=develop&service=github)](https://coveralls.io/github/freqtrade/freqtrade?branch=develop)
[![Maintainability](https://api.codeclimate.com/v1/badges/5737e6d668200b7518ff/maintainability)](https://codeclimate.com/github/freqtrade/freqtrade/maintainability)
## First of all, this is a fork!
@ -17,7 +17,7 @@ This reminds of the Torvalds kernel vs the Cox kernel...
Simple High frequency trading bot for crypto currencies designed to
support multi exchanges and be controlled via Telegram.
![freqtrade](https://raw.githubusercontent.com/gcarq/freqtrade/develop/docs/assets/freqtrade-screenshot.png)
![freqtrade](https://raw.githubusercontent.com/freqtrade/freqtrade/develop/docs/assets/freqtrade-screenshot.png)
## Disclaimer
This software is for educational purposes only. Do not risk money which
@ -34,12 +34,12 @@ hesitate to read the source code and understand the mechanism of this bot.
## Table of Contents
- [Features](#features)
- [Quick start](#quick-start)
- [Documentations](https://github.com/gcarq/freqtrade/blob/develop/docs/index.md)
- [Installation](https://github.com/gcarq/freqtrade/blob/develop/docs/installation.md)
- [Configuration](https://github.com/gcarq/freqtrade/blob/develop/docs/configuration.md)
- [Strategy Optimization](https://github.com/gcarq/freqtrade/blob/develop/docs/bot-optimization.md)
- [Backtesting](https://github.com/gcarq/freqtrade/blob/develop/docs/backtesting.md)
- [Hyperopt](https://github.com/gcarq/freqtrade/blob/develop/docs/hyperopt.md)
- [Documentations](https://github.com/freqtrade/freqtrade/blob/develop/docs/index.md)
- [Installation](https://github.com/freqtrade/freqtrade/blob/develop/docs/installation.md)
- [Configuration](https://github.com/freqtrade/freqtrade/blob/develop/docs/configuration.md)
- [Strategy Optimization](https://github.com/freqtrade/freqtrade/blob/develop/docs/bot-optimization.md)
- [Backtesting](https://github.com/freqtrade/freqtrade/blob/develop/docs/backtesting.md)
- [Hyperopt](https://github.com/freqtrade/freqtrade/blob/develop/docs/hyperopt.md)
- [Support](#support)
- [Help](#help--slack)
- [Bugs](#bugs--issues)
@ -62,28 +62,17 @@ Windows, macOS and Linux
- [x] **Persistence**: Persistence is achieved through sqlite
- [x] **Dry-run**: Run the bot without playing money.
- [x] **Backtesting**: Run a simulation of your buy/sell strategy.
- [x] **Strategy Optimization**: Optimize your buy/sell strategy
parameters with Hyperopts.
- [x] **Whitelist crypto-currencies**: Select which crypto-currency you
want to trade.
- [x] **Blacklist crypto-currencies**: Select which crypto-currency you
want to avoid.
- [x] **Strategy Optimization by machine learning**: Use machine learning to optimize your buy/sell
strategy parameters with real exchange data.
- [x] **Whitelist crypto-currencies**: Select which crypto-currency you want to trade.
- [x] **Blacklist crypto-currencies**: Select which crypto-currency you want to avoid.
- [x] **Manageable via Telegram**: Manage the bot with Telegram
- [x] **Display profit/loss in fiat**: Display your profit/loss in
33 fiat.
- [x] **Daily summary of profit/loss**: Provide a daily summary
of your profit/loss.
- [x] **Performance status report**: Provide a performance status of
your current trades.
- [x] **Display profit/loss in fiat**: Display your profit/loss in 33 fiat.
- [x] **Daily summary of profit/loss**: Provide a daily summary of your profit/loss.
- [x] **Performance status report**: Provide a performance status of your current trades.
### Additional features in this branch
#### Cloud:
- [x] aws lambda based backtesting
- [x] automatically evaluating all strategies from: https://github.com/berlinguyinca/freqtrade-trading-strategies on an hourly basis
- [x] persisting of backtesting results
#### Strategy:
- [x] loading strategies from Base64 encoded data in the config file
@ -102,15 +91,15 @@ your current trades.
- [x] maybe a bug here or there I haven't fixed yet
### Exchange supported
- [x] Bittrex
- [ ] Binance
- [ ] Others
### Exchange marketplaces supported
- [X] [Bittrex](https://bittrex.com/)
- [X] [Binance](https://www.binance.com/)
- [ ] [113 others to tests](https://github.com/ccxt/ccxt/). _(We cannot guarantee they will work)_
## Quick start
This quick start section is a very short explanation on how to test the
bot in dry-run. We invite you to read the
[bot documentation](https://github.com/gcarq/freqtrade/blob/develop/docs/index.md)
[bot documentation](https://github.com/freqtrade/freqtrade/blob/develop/docs/index.md)
to ensure you understand how the bot is working.
### Easy installation
@ -124,7 +113,7 @@ The following steps are made for Linux/MacOS environment
**1. Clone the repo**
```bash
git clone git@github.com:gcarq/freqtrade.git
git clone git@github.com:freqtrade/freqtrade.git
git checkout develop
cd freqtrade
```
@ -146,26 +135,26 @@ For any questions not covered by the documentation or for further
information about the bot, we encourage you to join our slack channel.
- [Click here to join Slack channel](https://join.slack.com/t/highfrequencybot/shared_invite/enQtMjQ5NTM0OTYzMzY3LWMxYzE3M2MxNDdjMGM3ZTYwNzFjMGIwZGRjNTc3ZGU3MGE3NzdmZGMwNmU3NDM5ZTNmM2Y3NjRiNzk4NmM4OGE).
### [Bugs / Issues](https://github.com/gcarq/freqtrade/issues?q=is%3Aissue)
### [Bugs / Issues](https://github.com/freqtrade/freqtrade/issues?q=is%3Aissue)
If you discover a bug in the bot, please
[search our issue tracker](https://github.com/gcarq/freqtrade/issues?q=is%3Aissue)
[search our issue tracker](https://github.com/freqtrade/freqtrade/issues?q=is%3Aissue)
first. If it hasn't been reported, please
[create a new issue](https://github.com/gcarq/freqtrade/issues/new) and
[create a new issue](https://github.com/freqtrade/freqtrade/issues/new) and
ensure you follow the template guide so that our team can assist you as
quickly as possible.
### [Feature Requests](https://github.com/gcarq/freqtrade/labels/enhancement)
### [Feature Requests](https://github.com/freqtrade/freqtrade/labels/enhancement)
Have you a great idea to improve the bot you want to share? Please,
first search if this feature was not [already discussed](https://github.com/gcarq/freqtrade/labels/enhancement).
first search if this feature was not [already discussed](https://github.com/freqtrade/freqtrade/labels/enhancement).
If it hasn't been requested, please
[create a new request](https://github.com/gcarq/freqtrade/issues/new)
[create a new request](https://github.com/freqtrade/freqtrade/issues/new)
and ensure you follow the template guide so that it does not get lost
in the bug reports.
### [Pull Requests](https://github.com/gcarq/freqtrade/pulls)
### [Pull Requests](https://github.com/freqtrade/freqtrade/pulls)
Feel like our bot is missing a feature? We welcome your pull requests!
Please read our
[Contributing document](https://github.com/gcarq/freqtrade/blob/develop/CONTRIBUTING.md)
[Contributing document](https://github.com/freqtrade/freqtrade/blob/develop/CONTRIBUTING.md)
to understand the requirements before sending your pull-requests.
**Important:** Always create your PR against the `develop` branch, not
@ -176,8 +165,9 @@ to understand the requirements before sending your pull-requests.
### Bot commands
```bash
usage: main.py [-h] [-v] [--version] [-c PATH] [--dry-run-db] [--datadir PATH]
[--dynamic-whitelist [INT]]
usage: main.py [-h] [-v] [--version] [-c PATH] [-d PATH] [-s NAME]
[--strategy-path PATH] [--dynamic-whitelist [INT]]
[--dry-run-db]
{backtesting,hyperopt} ...
Simple High Frequency Trading Bot for crypto currencies
@ -193,23 +183,28 @@ optional arguments:
--version show program's version number and exit
-c PATH, --config PATH
specify configuration file (default: config.json)
--dry-run-db Force dry run to use a local DB
"tradesv3.dry_run.sqlite" instead of memory DB. Work
only if dry_run is enabled.
--datadir PATH path to backtest data (default freqdata/tests/testdata
-d PATH, --datadir PATH
path to backtest data (default:
freqtrade/tests/testdata
-s NAME, --strategy NAME
specify strategy class name (default: DefaultStrategy)
--strategy-path PATH specify additional strategy lookup path
--dynamic-whitelist [INT]
dynamically generate and update whitelist based on 24h
BaseVolume (Default 20 currencies)
--dry-run-db Force dry run to use a local DB
"tradesv3.dry_run.sqlite" instead of memory DB. Work
only if dry_run is enabled.
```
More details on:
- [How to run the bot](https://github.com/gcarq/freqtrade/blob/develop/docs/bot-usage.md#bot-commands)
- [How to use Backtesting](https://github.com/gcarq/freqtrade/blob/develop/docs/bot-usage.md#backtesting-commands)
- [How to use Hyperopt](https://github.com/gcarq/freqtrade/blob/develop/docs/bot-usage.md#hyperopt-commands)
- [How to run the bot](https://github.com/freqtrade/freqtrade/blob/develop/docs/bot-usage.md#bot-commands)
- [How to use Backtesting](https://github.com/freqtrade/freqtrade/blob/develop/docs/bot-usage.md#backtesting-commands)
- [How to use Hyperopt](https://github.com/freqtrade/freqtrade/blob/develop/docs/bot-usage.md#hyperopt-commands)
### Telegram RPC commands
Telegram is not mandatory. However, this is a great way to control your
bot. More details on our
[documentation](https://github.com/gcarq/freqtrade/blob/develop/docs/index.md)
[documentation](https://github.com/freqtrade/freqtrade/blob/develop/docs/index.md)
- `/start`: Starts the trader
- `/stop`: Stops the trader

View File

@ -10,7 +10,14 @@
},
"unfilledtimeout": 600,
"bid_strategy": {
"ask_last_balance": 0.0
"ask_last_balance": 0.0,
"use_book_order": true,
"book_order_top": 6
},
"ask_strategy":{
"use_book_order": true,
"book_order_min": 1,
"book_order_max": 30
},
"exchange": {
"name": "bittrex",

View File

@ -15,7 +15,14 @@
"stoploss": -0.10,
"unfilledtimeout": 600,
"bid_strategy": {
"ask_last_balance": 0.0
"ask_last_balance": 0.0,
"use_book_order": true,
"book_order_top": 6
},
"ask_strategy":{
"use_book_order": true,
"book_order_min": 1,
"book_order_max": 30
},
"exchange": {
"name": "bittrex",
@ -46,6 +53,7 @@
"token": "your_telegram_token",
"chat_id": "your_telegram_chat_id"
},
"db_url": "sqlite:///tradesv3.sqlite",
"initial_state": "running",
"internals": {
"process_throttle_secs": 5

View File

@ -14,7 +14,7 @@ real data. This is what we call
Backtesting will use the crypto-currencies (pair) from your config file
and load static tickers located in
[/freqtrade/tests/testdata](https://github.com/gcarq/freqtrade/tree/develop/freqtrade/tests/testdata).
[/freqtrade/tests/testdata](https://github.com/freqtrade/freqtrade/tree/develop/freqtrade/tests/testdata).
If the 5 min and 1 min ticker for the crypto-currencies to test is not
already in the `testdata` folder, backtesting will download them
automatically. Testdata files will not be updated until you specify it.
@ -53,15 +53,21 @@ python3 ./freqtrade/main.py backtesting --datadir freqtrade/tests/testdata-20180
**With a (custom) strategy file**
```bash
python3 ./freqtrade/main.py -s currentstrategy backtesting
python3 ./freqtrade/main.py -s TestStrategy backtesting
```
Where `-s currentstrategy` refers to a filename `currentstrategy.py` in `freqtrade/user_data/strategies`
Where `-s TestStrategy` refers to the class name within the strategy file `test_strategy.py` found in the `freqtrade/user_data/strategies` directory
**Exporting trades to file**
```bash
python3 ./freqtrade/main.py backtesting --export trades
```
**Exporting trades to file specifying a custom filename**
```bash
python3 ./freqtrade/main.py backtesting --export trades --export-filename=backtest_teststrategy.json
```
**Running backtest with smaller testset**
Use the `--timerange` argument to change how much of the testset
you want to use. The last N ticks/timeframes will be used.
@ -83,24 +89,35 @@ The full timerange specification:
- Use tickframes till 2018/01/31: `--timerange=-20180131`
- Use tickframes since 2018/01/31: `--timerange=20180131-`
- Use tickframes since 2018/01/31 till 2018/03/01 : `--timerange=20180131-20180301`
- Use tickframes between POSIX timestamps 1527595200 1527618600:
`--timerange=1527595200-1527618600`
**Update testdata directory**
To update your testdata directory, or download into another testdata directory:
```bash
mkdir -p user_data/data/testdata-20180113
cp freqtrade/tests/testdata/pairs.json user_data/data-20180113
cd user_data/data-20180113
```
**Downloading new set of ticker data**
To download new set of backtesting ticker data, you can use a download script.
Possibly edit pairs.json file to include/exclude pairs
If you are using Binance for example:
- create a folder `user_data/data/binance` and copy `pairs.json` in that folder.
- update the `pairs.json` to contain the currency pairs you are interested in.
```bash
python3 freqtrade/tests/testdata/download_backtest_data.py -p pairs.json
mkdir -p user_data/data/binance
cp freqtrade/tests/testdata/pairs.json user_data/data/binance
```
The script will read your pairs.json file, and download ticker data
into the current working directory.
Then run:
```bash
python scripts/download_backtest_data --exchange binance
```
This will download ticker data for all the currency pairs you defined in `pairs.json`.
- To use a different folder than the exchange specific default, use `--export user_data/data/some_directory`.
- To change the exchange used to download the tickers, use `--exchange`. Default is `bittrex`.
- To use `pairs.json` from some other folder, use `--pairs-file some_other_dir/pairs.json`.
- To download ticker data for only 10 days, use `--days 10`.
- Use `--timeframes` to specify which tickers to download. Default is `--timeframes 1m 5m` which will download 1-minute and 5-minute tickers.
For help about backtesting usage, please refer to
@ -158,4 +175,4 @@ strategies, your configuration, and the crypto-currency you have set up.
## Next step
Great, your strategy is profitable. What if the bot can give your the
optimal parameters to use for your strategy?
Your next step is to learn [how to find optimal parameters with Hyperopt](https://github.com/gcarq/freqtrade/blob/develop/docs/hyperopt.md)
Your next step is to learn [how to find optimal parameters with Hyperopt](https://github.com/freqtrade/freqtrade/blob/develop/docs/hyperopt.md)

View File

@ -1,8 +1,10 @@
# Bot Optimization
This page explains where to customize your strategies, and add new
indicators.
## Table of Contents
- [Install a custom strategy file](#install-a-custom-strategy-file)
- [Customize your strategy](#change-your-strategy)
- [Add more Indicator](#add-more-indicator)
@ -11,10 +13,12 @@ indicators.
Since the version `0.16.0` the bot allows using custom strategy file.
## Install a custom strategy file
This is very simple. Copy paste your strategy file into the folder
`user_data/strategies`.
Let assume you have a class called `AwesomeStrategy` in the file `awesome-strategy.py`:
1. Move your file into `user_data/strategies` (you should have `user_data/strategies/awesome-strategy.py`
2. Start the bot with the param `--strategy AwesomeStrategy` (the parameter is the class name)
@ -23,12 +27,14 @@ python3 ./freqtrade/main.py --strategy AwesomeStrategy
```
## Change your strategy
The bot includes a default strategy file. However, we recommend you to
use your own file to not have to lose your parameters every time the default
strategy file will be updated on Github. Put your custom strategy file
into the folder `user_data/strategies`.
A strategy file contains all the information needed to build a good strategy:
- Buy strategy rules
- Sell strategy rules
- Minimal ROI recommended
@ -38,25 +44,28 @@ A strategy file contains all the information needed to build a good strategy:
The bot also include a sample strategy called `TestStrategy` you can update: `user_data/strategies/test_strategy.py`.
You can test it with the parameter: `--strategy TestStrategy`
```bash
``` bash
python3 ./freqtrade/main.py --strategy AwesomeStrategy
```
### Specify custom strategy location
If you want to use a strategy from a different folder you can pass `--strategy-path`
```bash
python3 ./freqtrade/main.py --strategy AwesomeStrategy --strategy-path /some/folder
```
**For the following section we will use the [user_data/strategies/test_strategy.py](https://github.com/gcarq/freqtrade/blob/develop/user_data/strategies/test_strategy.py)
**For the following section we will use the [user_data/strategies/test_strategy.py](https://github.com/freqtrade/freqtrade/blob/develop/user_data/strategies/test_strategy.py)
file as reference.**
### Buy strategy
Edit the method `populate_buy_trend()` into your strategy file to
update your buy strategy.
Sample from `user_data/strategies/test_strategy.py`:
```python
def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:
"""
@ -76,10 +85,11 @@ def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:
```
### Sell strategy
Edit the method `populate_sell_trend()` into your strategy file to
update your sell strategy.
Edit the method `populate_sell_trend()` into your strategy file to update your sell strategy.
Sample from `user_data/strategies/test_strategy.py`:
```python
def populate_sell_trend(self, dataframe: DataFrame) -> DataFrame:
"""
@ -98,11 +108,13 @@ def populate_sell_trend(self, dataframe: DataFrame) -> DataFrame:
```
## Add more Indicator
As you have seen, buy and sell strategies need indicators. You can add
more indicators by extending the list contained in
the method `populate_indicators()` from your strategy file.
Sample:
```python
def populate_indicators(dataframe: DataFrame) -> DataFrame:
"""
@ -137,16 +149,25 @@ def populate_indicators(dataframe: DataFrame) -> DataFrame:
return dataframe
```
**Want more indicators example?**
Look into the [user_data/strategies/test_strategy.py](https://github.com/gcarq/freqtrade/blob/develop/user_data/strategies/test_strategy.py).
### Want more indicator examples
Look into the [user_data/strategies/test_strategy.py](https://github.com/freqtrade/freqtrade/blob/develop/user_data/strategies/test_strategy.py).
Then uncomment indicators you need.
### Where is the default strategy?
The default buy strategy is located in the file
[freqtrade/default_strategy.py](https://github.com/gcarq/freqtrade/blob/develop/freqtrade/strategy/default_strategy.py).
The default buy strategy is located in the file
[freqtrade/default_strategy.py](https://github.com/freqtrade/freqtrade/blob/develop/freqtrade/strategy/default_strategy.py).
### Further strategy ideas
To get additional Ideas for strategies, head over to our [strategy repository](https://github.com/freqtrade/freqtrade-strategies). Feel free to use them as they are - but results will depend on the current market situation, pairs used etc. - therefore please backtest the strategy for your exchange/desired pairs first, evaluate carefully, use at your own risk.
Feel free to use any of them as inspiration for your own strategies.
We're happy to accept Pull Requests containing new Strategies to that repo.
We also got a *strategy-sharing* channel in our [Slack community](https://join.slack.com/t/highfrequencybot/shared_invite/enQtMjQ5NTM0OTYzMzY3LWMxYzE3M2MxNDdjMGM3ZTYwNzFjMGIwZGRjNTc3ZGU3MGE3NzdmZGMwNmU3NDM5ZTNmM2Y3NjRiNzk4NmM4OGE) which is a great place to get and/or share ideas.
## Next step
Now you have a perfect strategy you probably want to backtesting it.
Your next step is to learn [How to use the Backtesting](https://github.com/gcarq/freqtrade/blob/develop/docs/backtesting.md).
Now you have a perfect strategy you probably want to backtest it.
Your next step is to learn [How to use the Backtesting](https://github.com/freqtrade/freqtrade/blob/develop/docs/backtesting.md).

View File

@ -9,9 +9,10 @@ it.
## Bot commands
```
usage: main.py [-h] [-c PATH] [-v] [--version] [--dynamic-whitelist [INT]]
[--dry-run-db]
{backtesting,hyperopt} ...
usage: freqtrade [-h] [-v] [--version] [-c PATH] [-d PATH] [-s NAME]
[--strategy-path PATH] [--dynamic-whitelist [INT]]
[--db-url PATH]
{backtesting,hyperopt} ...
Simple High Frequency Trading Bot for crypto currencies
@ -26,17 +27,17 @@ optional arguments:
--version show program's version number and exit
-c PATH, --config PATH
specify configuration file (default: config.json)
-d PATH, --datadir PATH
path to backtest data
-s NAME, --strategy NAME
specify strategy class name (default: DefaultStrategy)
--strategy-path PATH specify additional strategy lookup path
--dry-run-db Force dry run to use a local DB
"tradesv3.dry_run.sqlite" instead of memory DB. Work
only if dry_run is enabled.
--datadir PATH
path to backtest data (default freqdata/tests/testdata
--dynamic-whitelist [INT]
dynamically generate and update whitelist based on 24h
BaseVolume (Default 20 currencies)
BaseVolume (default: 20)
--db-url PATH Override trades database URL, this is useful if
dry_run is enabled or in custom deployments (default:
sqlite:///tradesv3.sqlite)
```
### How to use a different config file?
@ -66,7 +67,7 @@ python3 ./freqtrade/main.py --strategy AwesomeStrategy
If the bot does not find your strategy file, it will display in an error
message the reason (File not found, or errors in your code).
Learn more about strategy file in [optimize your bot](https://github.com/gcarq/freqtrade/blob/develop/docs/bot-optimization.md).
Learn more about strategy file in [optimize your bot](https://github.com/freqtrade/freqtrade/blob/develop/docs/bot-optimization.md).
### How to use --strategy-path?
This parameter allows you to add an additional strategy lookup path, which gets
@ -100,14 +101,14 @@ python3 ./freqtrade/main.py --dynamic-whitelist 30
negative value (e.g -2), `--dynamic-whitelist` will use the default
value (20).
### How to use --dry-run-db?
### How to use --db-url?
When you run the bot in Dry-run mode, per default no transactions are
stored in a database. If you want to store your bot actions in a DB
using `--dry-run-db`. This command will use a separate database file
`tradesv3.dry_run.sqlite`
using `--db-url`. This can also be used to specify a custom database
in production mode. Example command:
```bash
python3 ./freqtrade/main.py -c config.json --dry-run-db
python3 ./freqtrade/main.py -c config.json --db-url sqlite:///tradesv3.dry_run.sqlite
```
@ -116,21 +117,32 @@ python3 ./freqtrade/main.py -c config.json --dry-run-db
Backtesting also uses the config specified via `-c/--config`.
```
usage: freqtrade backtesting [-h] [-l] [-i INT] [--realistic-simulation]
[-r]
usage: main.py backtesting [-h] [-i TICKER_INTERVAL] [--realistic-simulation]
[--timerange TIMERANGE] [-l] [-r] [--export EXPORT]
[--export-filename EXPORTFILENAME]
optional arguments:
-h, --help show this help message and exit
-l, --live using live data
-i INT, --ticker-interval INT
specify ticker interval (default: '5m')
-i TICKER_INTERVAL, --ticker-interval TICKER_INTERVAL
specify ticker interval (1m, 5m, 30m, 1h, 1d)
--realistic-simulation
uses max_open_trades from config to simulate real
world limitations
--timerange TIMERANGE
specify what timerange of data to use.
-l, --live using live data
-r, --refresh-pairs-cached
refresh the pairs files in tests/testdata with
the latest data from the exchange. Use it if you want
to run your backtesting with up-to-date data.
refresh the pairs files in tests/testdata with the
latest data from the exchange. Use it if you want to
run your backtesting with up-to-date data.
--export EXPORT export backtest results, argument are: trades Example
--export=trades
--export-filename EXPORTFILENAME
Save backtest results to this filename requires
--export to be set as well Example --export-
filename=backtest_today.json (default: backtest-
result.json
```
### How to use --refresh-pairs-cached parameter?
@ -153,21 +165,32 @@ Hyperopt uses an internal json config return by `hyperopt_optimize_conf()`
located in `freqtrade/optimize/hyperopt_conf.py`.
```
usage: freqtrade hyperopt [-h] [-e INT] [--use-mongodb]
usage: main.py hyperopt [-h] [-i TICKER_INTERVAL] [--realistic-simulation]
[--timerange TIMERANGE] [-e INT] [--use-mongodb]
[-s {all,buy,roi,stoploss} [{all,buy,roi,stoploss} ...]]
optional arguments:
-h, --help show this help message and exit
-i TICKER_INTERVAL, --ticker-interval TICKER_INTERVAL
specify ticker interval (1m, 5m, 30m, 1h, 1d)
--realistic-simulation
uses max_open_trades from config to simulate real
world limitations
--timerange TIMERANGE
specify what timerange of data to use.
-e INT, --epochs INT specify number of epochs (default: 100)
--use-mongodb parallelize evaluations with mongodb (requires mongod
in PATH)
-s {all,buy,roi,stoploss} [{all,buy,roi,stoploss} ...], --spaces {all,buy,roi,stoploss} [{all,buy,roi,stoploss} ...]
Specify which parameters to hyperopt. Space separate
list. Default: all
```
## A parameter missing in the configuration?
All parameters for `main.py`, `backtesting`, `hyperopt` are referenced
in [misc.py](https://github.com/gcarq/freqtrade/blob/develop/freqtrade/misc.py#L84)
in [misc.py](https://github.com/freqtrade/freqtrade/blob/develop/freqtrade/misc.py#L84)
## Next step
The optimal strategy of the bot will change with time depending of the
market trends. The next step is to
[optimize your bot](https://github.com/gcarq/freqtrade/blob/develop/docs/bot-optimization.md).
[optimize your bot](https://github.com/freqtrade/freqtrade/blob/develop/docs/bot-optimization.md).

View File

@ -24,7 +24,7 @@ The table below will list all configuration parameters.
| `stoploss` | -0.10 | No | Value of the stoploss in percent used by the bot. More information below. If set, this parameter will override `stoploss` from your strategy file.
| `unfilledtimeout` | 0 | No | How long (in minutes) the bot will wait for an unfilled order to complete, after which the order will be cancelled.
| `bid_strategy.ask_last_balance` | 0.0 | Yes | Set the bidding price. More information below.
| `exchange.name` | bittrex | Yes | Name of the exchange class to use.
| `exchange.name` | bittrex | Yes | Name of the exchange class to use. [List below](#user-content-what-values-for-exchangename).
| `exchange.key` | key | No | API key to use for the exchange. Only required when you are in production mode.
| `exchange.secret` | secret | No | API secret to use for the exchange. Only required when you are in production mode.
| `exchange.pair_whitelist` | [] | No | List of currency to use by the bot. Can be overrided with `--dynamic-whitelist` param.
@ -34,13 +34,14 @@ The table below will list all configuration parameters.
| `telegram.enabled` | true | Yes | Enable or not the usage of Telegram.
| `telegram.token` | token | No | Your Telegram bot token. Only required if `telegram.enabled` is `true`.
| `telegram.chat_id` | chat_id | No | Your personal Telegram account id. Only required if `telegram.enabled` is `true`.
| `db_url` | `sqlite:///tradesv3.sqlite` | No | Declares database URL to use. NOTE: This defaults to `sqlite://` if `dry_run` is `True`.
| `initial_state` | running | No | Defines the initial application state. More information below.
| `strategy` | DefaultStrategy | No | Defines Strategy class to use.
| `strategy_path` | null | No | Adds an additional strategy lookup path (must be a folder).
| `internals.process_throttle_secs` | 5 | Yes | Set the process throttle. Value in second.
The definition of each config parameters is in
[misc.py](https://github.com/gcarq/freqtrade/blob/develop/freqtrade/misc.py#L205).
[misc.py](https://github.com/freqtrade/freqtrade/blob/develop/freqtrade/misc.py#L205).
### Understand minimal_roi
`minimal_roi` is a JSON object where the key is a duration
@ -73,15 +74,35 @@ value. This parameter is optional. If you use it, it will take over the
Possible values are `running` or `stopped`. (default=`running`)
If the value is `stopped` the bot has to be started with `/start` first.
### Understand process_throttle_secs
`process_throttle_secs` is an optional field that defines in seconds how long the bot should wait
before asking the strategy if we should buy or a sell an asset. After each wait period, the strategy is asked again for
every opened trade wether or not we should sell, and for all the remaining pairs (either the dynamic list of pairs or
the static list of pairs) if we should buy.
### Understand ask_last_balance
`ask_last_balance` sets the bidding price. Value `0.0` will use `ask` price, `1.0` will
use the `last` price and values between those interpolate between ask and last
price. Using `ask` price will guarantee quick success in bid, but bot will also
end up paying more then would probably have been necessary.
### What values for exchange.name?
Freqtrade is based on [CCXT library](https://github.com/ccxt/ccxt) that supports 115 cryptocurrency
exchange markets and trading APIs. The complete up-to-date list can be found in the
[CCXT repo homepage](https://github.com/ccxt/ccxt/tree/master/python). However, the bot was tested
with only Bittrex and Binance.
The bot was tested with the following exchanges:
- [Bittrex](https://bittrex.com/): "bittrex"
- [Binance](https://www.binance.com/): "binance"
Feel free to test other exchanges and submit your PR to improve the bot.
### What values for fiat_display_currency?
`fiat_display_currency` set the fiat to use for the conversion form coin to fiat in Telegram.
The valid value are: "AUD", "BRL", "CAD", "CHF", "CLP", "CNY", "CZK", "DKK", "EUR", "GBP", "HKD", "HUF", "IDR", "ILS", "INR", "JPY", "KRW", "MXN", "MYR", "NOK", "NZD", "PHP", "PKR", "PLN", "RUB", "SEK", "SGD", "THB", "TRY", "TWD", "ZAR", "USD".
`fiat_display_currency` set the base currency to use for the conversion from coin to fiat in Telegram.
The valid values are: "AUD", "BRL", "CAD", "CHF", "CLP", "CNY", "CZK", "DKK", "EUR", "GBP", "HKD", "HUF", "IDR", "ILS", "INR", "JPY", "KRW", "MXN", "MYR", "NOK", "NZD", "PHP", "PKR", "PLN", "RUB", "SEK", "SGD", "THB", "TRY", "TWD", "ZAR", "USD".
In addition to central bank currencies, a range of cryto currencies are supported.
The valid values are: "BTC", "ETH", "XRP", "LTC", "BCH", "USDT".
## Switch to dry-run mode
We recommend starting the bot in dry-run mode to see how your bot will
@ -91,12 +112,13 @@ creating trades.
### To switch your bot in Dry-run mode:
1. Edit your `config.json` file
2. Switch dry-run to true
2. Switch dry-run to true and specify db_url for a persistent db
```json
"dry_run": true,
"db_url": "sqlite///tradesv3.dryrun.sqlite",
```
3. Remove your Bittrex API key (change them by fake api credentials)
3. Remove your Exchange API key (change them by fake api credentials)
```json
"exchange": {
"name": "bittrex",
@ -117,12 +139,12 @@ you run it in production mode.
### To switch your bot in production mode:
1. Edit your `config.json` file
2. Switch dry-run to false
2. Switch dry-run to false and don't forget to adapt your database URL if set
```json
"dry_run": false,
```
3. Insert your Bittrex API key (change them by fake api keys)
3. Insert your Exchange API key (change them by fake api keys)
```json
"exchange": {
"name": "bittrex",
@ -132,9 +154,8 @@ you run it in production mode.
}
```
If you have not your Bittrex API key yet,
[see our tutorial](https://github.com/gcarq/freqtrade/blob/develop/docs/pre-requisite.md).
[see our tutorial](https://github.com/freqtrade/freqtrade/blob/develop/docs/pre-requisite.md).
## Next step
Now you have configured your config.json, the next step is to
[start your bot](https://github.com/gcarq/freqtrade/blob/develop/docs/bot-usage.md).
[start your bot](https://github.com/freqtrade/freqtrade/blob/develop/docs/bot-usage.md).

View File

@ -27,7 +27,7 @@ like pauses. You can stop your bot, adjust settings and start it again.
#### I want to improve the bot with a new strategy
That's great. We have a nice backtesting and hyperoptimizing setup. See
the tutorial [here|Testing-new-strategies-with-Hyperopt](https://github.com/gcarq/freqtrade/blob/develop/docs/bot-usage.md#hyperopt-commands).
the tutorial [here|Testing-new-strategies-with-Hyperopt](https://github.com/freqtrade/freqtrade/blob/develop/docs/bot-usage.md#hyperopt-commands).
#### Is there a setting to only SELL the coins being held and not
perform anymore BUYS?

View File

@ -14,13 +14,13 @@ parameters with Hyperopt.
## Prepare Hyperopt
Before we start digging in Hyperopt, we recommend you to take a look at
your strategy file located into [user_data/strategies/](https://github.com/gcarq/freqtrade/blob/develop/user_data/strategies/test_strategy.py)
your strategy file located into [user_data/strategies/](https://github.com/freqtrade/freqtrade/blob/develop/user_data/strategies/test_strategy.py)
### 1. Configure your Guards and Triggers
There are two places you need to change in your strategy file to add a
new buy strategy for testing:
- Inside [populate_buy_trend()](https://github.com/gcarq/freqtrade/blob/develop/user_data/strategies/test_strategy.py#L278-L294).
- Inside [hyperopt_space()](https://github.com/gcarq/freqtrade/blob/develop/user_data/strategies/test_strategy.py#L244-L297) known as `SPACE`.
- Inside [populate_buy_trend()](https://github.com/freqtrade/freqtrade/blob/develop/user_data/strategies/test_strategy.py#L278-L294).
- Inside [hyperopt_space()](https://github.com/freqtrade/freqtrade/blob/develop/user_data/strategies/test_strategy.py#L244-L297) known as `SPACE`.
There you have two different type of indicators: 1. `guards` and 2.
`triggers`.
@ -110,13 +110,13 @@ cannot use your config file. It is also made on purpose to allow you
testing your strategy with different configurations.
The Hyperopt configuration is located in
[user_data/hyperopt_conf.py](https://github.com/gcarq/freqtrade/blob/develop/user_data/hyperopt_conf.py).
[user_data/hyperopt_conf.py](https://github.com/freqtrade/freqtrade/blob/develop/user_data/hyperopt_conf.py).
## Advanced notions
### Understand the Guards and Triggers
When you need to add the new guards and triggers to be hyperopt
parameters, you do this by adding them into the [hyperopt_space()](https://github.com/gcarq/freqtrade/blob/develop/user_data/strategies/test_strategy.py#L244-L297).
parameters, you do this by adding them into the [hyperopt_space()](https://github.com/freqtrade/freqtrade/blob/develop/user_data/strategies/test_strategy.py#L244-L297).
If it's a trigger, you add one line to the 'trigger' choice group and that's it.
@ -312,4 +312,4 @@ def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:
## Next step
Now you have a perfect bot and want to control it from Telegram. Your
next step is to learn the [Telegram usage](https://github.com/gcarq/freqtrade/blob/develop/docs/telegram-usage.md).
next step is to learn the [Telegram usage](https://github.com/freqtrade/freqtrade/blob/develop/docs/telegram-usage.md).

View File

@ -6,27 +6,27 @@ Pull-request. Do not hesitate to reach us on
if you do not find the answer to your questions.
## Table of Contents
- [Pre-requisite](https://github.com/gcarq/freqtrade/blob/develop/docs/pre-requisite.md)
- [Setup your Bittrex account](https://github.com/gcarq/freqtrade/blob/develop/docs/pre-requisite.md#setup-your-bittrex-account)
- [Setup your Telegram bot](https://github.com/gcarq/freqtrade/blob/develop/docs/pre-requisite.md#setup-your-telegram-bot)
- [Bot Installation](https://github.com/gcarq/freqtrade/blob/develop/docs/installation.md)
- [Install with Docker (all platforms)](https://github.com/gcarq/freqtrade/blob/develop/docs/installation.md#docker)
- [Install on Linux Ubuntu](https://github.com/gcarq/freqtrade/blob/develop/docs/installation.md#21-linux---ubuntu-1604)
- [Install on MacOS](https://github.com/gcarq/freqtrade/blob/develop/docs/installation.md#23-macos-installation)
- [Install on Windows](https://github.com/gcarq/freqtrade/blob/develop/docs/installation.md#windows)
- [Bot Configuration](https://github.com/gcarq/freqtrade/blob/develop/docs/configuration.md)
- [Bot usage (Start your bot)](https://github.com/gcarq/freqtrade/blob/develop/docs/bot-usage.md)
- [Bot commands](https://github.com/gcarq/freqtrade/blob/develop/docs/bot-usage.md#bot-commands)
- [Backtesting commands](https://github.com/gcarq/freqtrade/blob/develop/docs/bot-usage.md#backtesting-commands)
- [Hyperopt commands](https://github.com/gcarq/freqtrade/blob/develop/docs/bot-usage.md#hyperopt-commands)
- [Bot Optimization](https://github.com/gcarq/freqtrade/blob/develop/docs/bot-optimization.md)
- [Change your strategy](https://github.com/gcarq/freqtrade/blob/develop/docs/bot-optimization.md#change-your-strategy)
- [Add more Indicator](https://github.com/gcarq/freqtrade/blob/develop/docs/bot-optimization.md#add-more-indicator)
- [Test your strategy with Backtesting](https://github.com/gcarq/freqtrade/blob/develop/docs/backtesting.md)
- [Find optimal parameters with Hyperopt](https://github.com/gcarq/freqtrade/blob/develop/docs/hyperopt.md)
- [Control the bot with telegram](https://github.com/gcarq/freqtrade/blob/develop/docs/telegram-usage.md)
- [Contribute to the project](https://github.com/gcarq/freqtrade/blob/develop/CONTRIBUTING.md)
- [How to contribute](https://github.com/gcarq/freqtrade/blob/develop/CONTRIBUTING.md)
- [Run tests & Check PEP8 compliance](https://github.com/gcarq/freqtrade/blob/develop/CONTRIBUTING.md)
- [FAQ](https://github.com/gcarq/freqtrade/blob/develop/docs/faq.md)
- [SQL cheatsheet](https://github.com/gcarq/freqtrade/blob/develop/docs/sql_cheatsheet.md)
- [Pre-requisite](https://github.com/freqtrade/freqtrade/blob/develop/docs/pre-requisite.md)
- [Setup your Bittrex account](https://github.com/freqtrade/freqtrade/blob/develop/docs/pre-requisite.md#setup-your-bittrex-account)
- [Setup your Telegram bot](https://github.com/freqtrade/freqtrade/blob/develop/docs/pre-requisite.md#setup-your-telegram-bot)
- [Bot Installation](https://github.com/freqtrade/freqtrade/blob/develop/docs/installation.md)
- [Install with Docker (all platforms)](https://github.com/freqtrade/freqtrade/blob/develop/docs/installation.md#docker)
- [Install on Linux Ubuntu](https://github.com/freqtrade/freqtrade/blob/develop/docs/installation.md#21-linux---ubuntu-1604)
- [Install on MacOS](https://github.com/freqtrade/freqtrade/blob/develop/docs/installation.md#23-macos-installation)
- [Install on Windows](https://github.com/freqtrade/freqtrade/blob/develop/docs/installation.md#windows)
- [Bot Configuration](https://github.com/freqtrade/freqtrade/blob/develop/docs/configuration.md)
- [Bot usage (Start your bot)](https://github.com/freqtrade/freqtrade/blob/develop/docs/bot-usage.md)
- [Bot commands](https://github.com/freqtrade/freqtrade/blob/develop/docs/bot-usage.md#bot-commands)
- [Backtesting commands](https://github.com/freqtrade/freqtrade/blob/develop/docs/bot-usage.md#backtesting-commands)
- [Hyperopt commands](https://github.com/freqtrade/freqtrade/blob/develop/docs/bot-usage.md#hyperopt-commands)
- [Bot Optimization](https://github.com/freqtrade/freqtrade/blob/develop/docs/bot-optimization.md)
- [Change your strategy](https://github.com/freqtrade/freqtrade/blob/develop/docs/bot-optimization.md#change-your-strategy)
- [Add more Indicator](https://github.com/freqtrade/freqtrade/blob/develop/docs/bot-optimization.md#add-more-indicator)
- [Test your strategy with Backtesting](https://github.com/freqtrade/freqtrade/blob/develop/docs/backtesting.md)
- [Find optimal parameters with Hyperopt](https://github.com/freqtrade/freqtrade/blob/develop/docs/hyperopt.md)
- [Control the bot with telegram](https://github.com/freqtrade/freqtrade/blob/develop/docs/telegram-usage.md)
- [Contribute to the project](https://github.com/freqtrade/freqtrade/blob/develop/CONTRIBUTING.md)
- [How to contribute](https://github.com/freqtrade/freqtrade/blob/develop/CONTRIBUTING.md)
- [Run tests & Check PEP8 compliance](https://github.com/freqtrade/freqtrade/blob/develop/CONTRIBUTING.md)
- [FAQ](https://github.com/freqtrade/freqtrade/blob/develop/docs/faq.md)
- [SQL cheatsheet](https://github.com/freqtrade/freqtrade/blob/develop/docs/sql_cheatsheet.md)

View File

@ -2,7 +2,7 @@
This page explains how to prepare your environment for running the bot.
To understand how to set up the bot please read the [Bot Configuration](https://github.com/gcarq/freqtrade/blob/develop/docs/configuration.md) page.
To understand how to set up the bot please read the [Bot Configuration](https://github.com/freqtrade/freqtrade/blob/develop/docs/configuration.md) page.
## Table of Contents
@ -16,7 +16,6 @@ To understand how to set up the bot please read the [Bot Configuration](https://
- [Setup Config and virtual env](#setup-config-and-virtual-env)
* [Windows](#windows)
<!-- /TOC -->
------
@ -35,7 +34,9 @@ usage:
```
### --install
This script will install everything you need to run the bot:
* Mandatory software as: `Python3`, `ta-lib`, `wget`
* Setup your virtualenv
* Configure your `config.json` file
@ -43,12 +44,15 @@ This script will install everything you need to run the bot:
This script is a combination of `install script` `--reset`, `--config`
### --update
Update parameter will pull the last version of your current branch and update your virtualenv.
### --reset
Reset parameter will hard reset your branch (only if you are on `master` or `develop`) and recreate your virtualenv.
### --config
Config parameter is a `config.json` configurator. This script will ask you questions to setup your bot and create your `config.json`.
------
@ -63,13 +67,12 @@ Start by downloading Docker for your platform:
Once you have Docker installed, simply create the config file (e.g. `config.json`) and then create a Docker image for `freqtrade` using the Dockerfile in this repo.
### 1. Prepare the Bot
#### 1.1. Clone the git repository
```bash
git clone https://github.com/gcarq/freqtrade.git
git clone https://github.com/freqtrade/freqtrade.git
```
#### 1.2. (Optional) Checkout the develop branch
@ -90,21 +93,22 @@ cd freqtrade
cp -n config.json.example config.json
```
> To edit the config please refer to the [Bot Configuration](https://github.com/gcarq/freqtrade/blob/develop/docs/configuration.md) page.
> To edit the config please refer to the [Bot Configuration](https://github.com/freqtrade/freqtrade/blob/develop/docs/configuration.md) page.
#### 1.5. Create your database file *(optional - the bot will create it if it is missing)*
Production
```bash
touch tradesv3.sqlite
````
Dry-Run
```bash
touch tradesv3.dryrun.sqlite
```
### 2. Build the Docker image
```bash
@ -114,7 +118,6 @@ docker build -t freqtrade .
For security reasons, your configuration file will not be included in the image, you will need to bind mount it. It is also advised to bind mount an SQLite database file (see the "5. Run a restartable docker image" section) to keep it between updates.
### 3. Verify the Docker image
After the build process you can verify that the image was created with:
@ -123,7 +126,6 @@ After the build process you can verify that the image was created with:
docker images
```
### 4. Run the Docker image
You can run a one-off container that is immediately deleted upon exiting with the following command (`config.json` must be in the current working directory):
@ -132,8 +134,15 @@ You can run a one-off container that is immediately deleted upon exiting with th
docker run --rm -v /etc/localtime:/etc/localtime:ro -v `pwd`/config.json:/freqtrade/config.json -it freqtrade
```
In this example, the database will be created inside the docker instance and will be lost when you will refresh your image.
There is known issue in OSX Docker versions after 17.09.1, whereby /etc/localtime cannot be shared causing Docker to not start. A work-around for this is to start with the following cmd.
```bash
docker run --rm -e TZ=`ls -la /etc/localtime | cut -d/ -f8-9` -v `pwd`/config.json:/freqtrade/config.json -it freqtrade
```
More information on this docker issue and work-around can be read [here](https://github.com/docker/for-mac/issues/2396)
In this example, the database will be created inside the docker instance and will be lost when you will refresh your image.
### 5. Run a restartable docker image
@ -155,10 +164,11 @@ docker run -d \
-v /etc/localtime:/etc/localtime:ro \
-v ~/.freqtrade/config.json:/freqtrade/config.json \
-v ~/.freqtrade/tradesv3.sqlite:/freqtrade/tradesv3.sqlite \
freqtrade
freqtrade --db-url sqlite:///tradesv3.sqlite
```
If you are using `dry_run=True` it's not necessary to mount `tradesv3.sqlite`, but you can mount `tradesv3.dryrun.sqlite` if you plan to use the dry run mode with the param `--dry-run-db`.
NOTE: db-url defaults to `sqlite:///tradesv3.sqlite` but it defaults to `sqlite://` if `dry_run=True` is being used.
To override this behaviour use a custom db-url value: i.e.: `--db-url sqlite:///tradesv3.dryrun.sqlite`
### 6. Monitor your Docker instance
@ -183,13 +193,13 @@ We've included/collected install instructions for Ubuntu 16.04, MacOS, and Windo
### Requirements
Click each one for install guide:
* [Python 3.6.x](http://docs.python-guide.org/en/latest/starting/installation/), note the bot was not tested on Python >= 3.7.x
* [pip](https://pip.pypa.io/en/stable/installing/)
* [git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git)
* [virtualenv](https://virtualenv.pypa.io/en/stable/installation/) (Recommended)
* [TA-Lib](https://mrjbq7.github.io/ta-lib/install.html)
### Linux - Ubuntu 16.04
#### 1. Install Python 3.6, Git, and wget
@ -230,13 +240,7 @@ sudo apt-get install mongodb-org
Clone the git repository:
```bash
git clone https://github.com/gcarq/freqtrade.git
```
Optionally checkout the develop branch:
```bash
git checkout develop
git clone https://github.com/freqtrade/freqtrade.git
```
#### 5. Configure `freqtrade` as a `systemd` service
@ -244,6 +248,7 @@ git checkout develop
From the freqtrade repo... copy `freqtrade.service` to your systemd user directory (usually `~/.config/systemd/user`) and update `WorkingDirectory` and `ExecStart` to match your setup.
After that you can start the daemon with:
```bash
systemctl --user start freqtrade
```
@ -254,7 +259,6 @@ For this to be persistent (run when user is logged out) you'll need to enable `l
sudo loginctl enable-linger "$USER"
```
### MacOS
#### 1. Install Python 3.6, git, wget and ta-lib
@ -280,7 +284,7 @@ export PATH=<path_freqtrade>/env/mongodb/bin:$PATH
Clone the git repository:
```bash
git clone https://github.com/gcarq/freqtrade.git
git clone https://github.com/freqtrade/freqtrade.git
```
Optionally checkout the develop branch:
@ -289,7 +293,6 @@ Optionally checkout the develop branch:
git checkout develop
```
### Setup Config and virtual env
#### 1. Initialize the configuration
@ -299,8 +302,7 @@ cd freqtrade
cp config.json.example config.json
```
> *To edit the config please refer to [Bot Configuration](https://github.com/gcarq/freqtrade/blob/develop/docs/configuration.md).*
> *To edit the config please refer to [Bot Configuration](https://github.com/freqtrade/freqtrade/blob/develop/docs/configuration.md).*
#### 2. Setup your Python virtual environment (virtualenv)
@ -324,27 +326,41 @@ python3.6 ./freqtrade/main.py -c config.json
## Windows
We recommend that Windows users use [Docker](#docker) as this will work
much easier and smoother (also more secure).
We recommend that Windows users use [Docker](#docker) as this will work much easier and smoother (also more secure).
### Install freqtrade
If that is not possible, try using the Windows Linux subsystem (WSL) - for which the Ubuntu instructions should work.
If that is not available on your system, feel free to try the instructions below, which led to success for some.
### Install freqtrade manually
#### Clone the git repository
```bash
git clone https://github.com/freqtrade/freqtrade.git
```
copy paste `config.json` to ``\path\freqtrade-develop\freqtrade`
#### install ta-lib
Install ta-lib according to the [ta-lib documentation](https://github.com/mrjbq7/ta-lib#windows).
As compiling from source on windows has heavy dependencies (requires a partial visual studio installation), there is also a repository of inofficial precompiled windows Wheels [here](https://www.lfd.uci.edu/~gohlke/pythonlibs/#ta-lib), which needs to be downloaded and installed using `pip install TA_Lib0.4.17cp36cp36mwin32.whl` (make sure to use the version matching your python version)
```cmd
>cd \path\freqtrade-develop
>python -m venv .env
>cd .env\Scripts
>activate.bat
>cd \path\freqtrade-develop
REM optionally install ta-lib from wheel
REM >pip install TA_Lib0.4.17cp36cp36mwin32.whl
>pip install -r requirements.txt
>pip install -e .
>cd freqtrade
>python main.py
>python freqtrade\main.py
```
> Thanks [Owdr](https://github.com/Owdr) for the commands. Source: [Issue #222](https://github.com/gcarq/freqtrade/issues/222)
> Thanks [Owdr](https://github.com/Owdr) for the commands. Source: [Issue #222](https://github.com/freqtrade/freqtrade/issues/222)
Now you have an environment ready, the next step is
[Bot Configuration](https://github.com/gcarq/freqtrade/blob/develop/docs/configuration.md)...
[Bot Configuration](https://github.com/freqtrade/freqtrade/blob/develop/docs/configuration.md)...

View File

@ -48,6 +48,12 @@ To plot trades stored in a database use `--db-url` argument:
python scripts/plot_dataframe.py --db-url tradesv3.dry_run.sqlite -p BTC_ETH
```
To plot a test strategy the strategy should have first be backtested.
The results may then be plotted with the -s argument:
```
python scripts/plot_dataframe.py -s Strategy_Name -p BTC/ETH --datadir user_data/data/<exchange_name>/
```
## Plot profit
The profit plotter show a picture with three plots:

View File

@ -85,7 +85,7 @@ INSERT INTO trades (exchange, pair, is_open, fee_open, fee_close, open_rate, sta
## Fix wrong fees in the table
If your DB was created before
[PR#200](https://github.com/gcarq/freqtrade/pull/200) was merged
[PR#200](https://github.com/freqtrade/freqtrade/pull/200) was merged
(before 12/23/17).
```sql

50
docs/stoploss.md Normal file
View File

@ -0,0 +1,50 @@
# Stop Loss support
at this stage the bot contains the following stoploss support modes:
1. static stop loss, defined in either the strategy or configuration
2. trailing stop loss, defined in the configuration
3. trailing stop loss, custom positive loss, defined in configuration
## Static Stop Loss
This is very simple, basically you define a stop loss of x in your strategy file or alternative in the configuration, which
will overwrite the strategy definition. This will basically try to sell your asset, the second the loss exceeds the defined loss.
## Trail Stop Loss
The initial value for this stop loss, is defined in your strategy or configuration. Just as you would define your Stop Loss normally.
To enable this Feauture all you have to do, is to define the configuration element:
```
"trailing_stop" : True
```
This will now actiave an algorithm, whihch automatically moves up your stop loss, every time the price of your asset increases.
For example, simplified math,
* you buy an asset at a price of 100$
* your stop loss is defined at 2%
* which means your stop loss, gets triggered once your asset dropped below 98$
* assuming your asset now increases in proce to 102$
* your stop loss, will now be 2% of 102$ or 99.96$
* now your asset drops in value to 101$, your stop loss, will still be 99.96$
basically what this means, is that your stop loss will be adjusted to be always be 2% of the highest observed price
### Custom positive loss
due to demand, it is possible to have a default stop loss, when you are in the red with your buy, but once your buy turns positive,
the system will utilize a new stop loss, which can be a different value. For example your default stop loss is 5%, but once you are in the
black, it will be changed to be only a 1% stop loss
this can be configured in the main confiuration file, the following way:
```
"trailing_stop": {
"positive" : 0.01
},
```
The 0.01 would translate to a 1% stop loss, once you hit profit.

View File

@ -4,7 +4,7 @@ This page explains how to command your bot with Telegram.
## Pre-requisite
To control your bot with Telegram, you need first to
[set up a Telegram bot](https://github.com/gcarq/freqtrade/blob/develop/docs/pre-requisite.md)
[set up a Telegram bot](https://github.com/freqtrade/freqtrade/blob/develop/docs/pre-requisite.md)
and add your Telegram API keys into your config file.
## Telegram commands
@ -16,6 +16,7 @@ official commands. You can ask at any moment for help with `/help`.
|----------|---------|-------------|
| `/start` | | Starts the trader
| `/stop` | | Stops the trader
| `/reload_conf` | | Reloads the configuration file
| `/status` | | Lists all open trades
| `/status table` | | List all open trades in a table format
| `/count` | | Displays number of trades used and available

View File

@ -12,7 +12,8 @@ class DependencyException(BaseException):
class OperationalException(BaseException):
"""
Requires manual intervention.
This happens when an exchange returns an unexpected error during runtime.
This happens when an exchange returns an unexpected error during runtime
or given configuration is invalid.
"""

15
freqtrade/__main__.py Normal file
View File

@ -0,0 +1,15 @@
#!/usr/bin/env python3
"""
__main__.py for Freqtrade
To launch Freqtrade as a module
> python -m freqtrade (with Python >= 3.6)
"""
import sys
from freqtrade import main
if __name__ == '__main__':
main.set_loggers()
main.main(sys.argv[1:])

View File

@ -12,7 +12,7 @@ from pandas import DataFrame, to_datetime
from freqtrade import constants
from freqtrade.exchange import get_ticker_history
from freqtrade.persistence import Trade
from freqtrade.strategy.resolver import StrategyResolver
from freqtrade.strategy.resolver import StrategyResolver, IStrategy
logger = logging.getLogger(__name__)
@ -37,7 +37,7 @@ class Analyze(object):
:param config: Bot configuration (use the one from Configuration())
"""
self.config = config
self.strategy = StrategyResolver(self.config).strategy
self.strategy: IStrategy = StrategyResolver(self.config).strategy
@staticmethod
def parse_ticker_dataframe(ticker: list) -> DataFrame:
@ -62,6 +62,7 @@ class Analyze(object):
'close': 'last',
'volume': 'max',
})
frame.drop(frame.tail(1).index, inplace=True) # eliminate partial candle
return frame
def populate_indicators(self, dataframe: DataFrame) -> DataFrame:

View File

@ -2,24 +2,36 @@
This module contains the argument manager class
"""
import os
import argparse
import logging
import os
import re
import arrow
from typing import List, Tuple, Optional
from typing import List, Optional, NamedTuple
from freqtrade import __version__, constants
class TimeRange(NamedTuple):
"""
NamedTuple Defining timerange inputs.
[start/stop]type defines if [start/stop]ts shall be used.
if *type is none, don't use corresponding startvalue.
"""
starttype: Optional[str] = None
stoptype: Optional[str] = None
startts: int = 0
stopts: int = 0
class Arguments(object):
"""
Arguments Class. Manage the arguments received by the cli
"""
def __init__(self, args: List[str], description: str):
def __init__(self, args: List[str], description: str) -> None:
self.args = args
self.parsed_arg = None
self.parsed_arg: Optional[argparse.Namespace] = None
self.parser = argparse.ArgumentParser(description=description)
def _load_args(self) -> None:
@ -60,7 +72,7 @@ class Arguments(object):
self.parser.add_argument(
'--version',
action='version',
version='%(prog)s {}'.format(__version__),
version=f'%(prog)s {__version__}'
)
self.parser.add_argument(
'-c', '--config',
@ -72,9 +84,9 @@ class Arguments(object):
)
self.parser.add_argument(
'-d', '--datadir',
help='path to backtest data (default: %(default)s',
help='path to backtest data',
dest='datadir',
default=os.path.join('freqtrade', 'tests', 'testdata'),
default=None,
type=str,
metavar='PATH',
)
@ -95,8 +107,8 @@ class Arguments(object):
)
self.parser.add_argument(
'--dynamic-whitelist',
help='dynamically generate and update whitelist \
based on 24h BaseVolume (Default 20 currencies)', # noqa
help='dynamically generate and update whitelist'
' based on 24h BaseVolume (default: %(const)s)',
dest='dynamic_whitelist',
const=constants.DYNAMIC_WHITELIST,
type=int,
@ -104,11 +116,13 @@ class Arguments(object):
nargs='?',
)
self.parser.add_argument(
'--dry-run-db',
help='Force dry run to use a local DB "tradesv3.dry_run.sqlite" \
instead of memory DB. Work only if dry_run is enabled.',
action='store_true',
dest='dry_run_db',
'--db-url',
help='Override trades database URL, this is useful if dry_run is enabled'
' or in custom deployments (default: %(default)s)',
dest='db_url',
default=constants.DEFAULT_DB_PROD_URL,
type=str,
metavar='PATH',
)
@staticmethod
@ -124,8 +138,8 @@ class Arguments(object):
)
parser.add_argument(
'-r', '--refresh-pairs-cached',
help='refresh the pairs files in tests/testdata with the latest data from the exchange. \
Use it if you want to run your backtesting with up-to-date data.',
help='refresh the pairs files in tests/testdata with the latest data from the '
'exchange. Use it if you want to run your backtesting with up-to-date data.',
action='store_true',
dest='refresh_pairs',
)
@ -137,9 +151,25 @@ class Arguments(object):
default=None,
dest='export',
)
parser.add_argument(
'--export-filename',
help='Save backtest results to this filename \
requires --export to be set as well\
Example --export-filename=user_data/backtest_data/backtest_today.json\
(default: %(default)s)',
type=str,
default=os.path.join('user_data', 'backtest_data', 'backtest-result.json'),
dest='exportfilename',
metavar='PATH',
)
@staticmethod
def optimizer_shared_options(parser: argparse.ArgumentParser) -> None:
"""
Parses given common arguments for Backtesting and Hyperopt scripts.
:param parser:
:return:
"""
parser.add_argument(
'-i', '--ticker-interval',
help='specify ticker interval (1m, 5m, 30m, 1h, 1d)',
@ -215,17 +245,20 @@ class Arguments(object):
logging.warn("no hyper opt found - skipping support for it")
@staticmethod
def parse_timerange(text: str) -> Optional[Tuple[List, int, int]]:
def parse_timerange(text: Optional[str]) -> TimeRange:
"""
Parse the value of the argument --timerange to determine what is the range desired
:param text: value from --timerange
:return: Start and End range period
"""
if text is None:
return None
return TimeRange(None, None, 0, 0)
syntax = [(r'^-(\d{8})$', (None, 'date')),
(r'^(\d{8})-$', ('date', None)),
(r'^(\d{8})-(\d{8})$', ('date', 'date')),
(r'^-(\d{10})$', (None, 'date')),
(r'^(\d{10})-$', ('date', None)),
(r'^(\d{10})-(\d{10})$', ('date', 'date')),
(r'^(-\d+)$', (None, 'line')),
(r'^(\d+)-$', ('line', None)),
(r'^(\d+)-(\d+)$', ('index', 'index'))]
@ -235,22 +268,24 @@ class Arguments(object):
if match: # Regex has matched
rvals = match.groups()
index = 0
start = None
stop = None
start: int = 0
stop: int = 0
if stype[0]:
start = rvals[index]
starts = rvals[index]
if stype[0] == 'date':
start = arrow.get(start, 'YYYYMMDD').timestamp
start = int(starts) if len(starts) == 10 \
else arrow.get(starts, 'YYYYMMDD').timestamp
else:
start = int(start)
start = int(starts)
index += 1
if stype[1]:
stop = rvals[index]
stops = rvals[index]
if stype[1] == 'date':
stop = arrow.get(stop, 'YYYYMMDD').timestamp
stop = int(stops) if len(stops) == 10 \
else arrow.get(stops, 'YYYYMMDD').timestamp
else:
stop = int(stop)
return stype, start, stop
stop = int(stops)
return TimeRange(stype[0], stype[1], start, stop)
raise Exception('Incorrect syntax for timerange "%s"' % text)
def scripts_options(self) -> None:
@ -351,13 +386,6 @@ class Arguments(object):
type=int
)
self.parser.add_argument(
'-db', '--db-url',
help='Show trades stored in database.',
dest='db_url',
default=None
)
def testdata_dl_options(self) -> None:
"""
Parses given arguments for testdata download
@ -366,25 +394,42 @@ class Arguments(object):
'--pairs-file',
help='File containing a list of pairs to download',
dest='pairs_file',
default=None
default=None,
metavar='PATH',
)
self.parser.add_argument(
'--export',
help='Export files to given dir',
dest='export',
default=None)
default=None,
metavar='PATH',
)
self.parser.add_argument(
'--days',
help='Download data for number of days',
dest='days',
type=int,
default=None)
metavar='INT',
default=None
)
self.parser.add_argument(
'--exchange',
help='Exchange name',
help='Exchange name (default: %(default)s)',
dest='exchange',
type=str,
default='bittrex')
default='bittrex'
)
self.parser.add_argument(
'-t', '--timeframes',
help='Specify which tickers to download. Space separated list. \
Default: %(default)s',
choices=['1m', '3m', '5m', '15m', '30m', '1h', '2h', '4h',
'6h', '8h', '12h', '1d', '3d', '1w'],
default=['1m', '5m'],
nargs='+',
dest='timeframes',
)

View File

@ -1,413 +0,0 @@
import datetime
import logging
import os
import tempfile
from base64 import urlsafe_b64encode
import requests
import simplejson as json
from requests import post
from freqtrade.optimize.backtesting import Backtesting
def backtest(event, context):
"""
this method is running on the AWS server
and back tests this application for us
and stores the back testing results in a local database
this event can be given as:
:param event:
{
'strategy' : 'url handle where we can find the strategy'
'stake_currency' : 'our desired stake currency'
'asset' : '[] asset we are interested in.
'username' : user who's strategy should be evaluated
'name' : name of the strategy we want to evaluate
'exchange' : name of the exchange we should be using
}
it should be invoked by SNS only to avoid abuse of the system!
:param context:
standard AWS context, so pleaes ignore for now!
:return:
no return
"""
if 'Records' in event:
for x in event['Records']:
if 'Sns' in x and 'Message' in x['Sns']:
event['body'] = json.loads(x['Sns']['Message'])
name = event['body']['name']
user = event['body']['user']
days = [90]
if 'days' in event['body']:
days = event['body']['days']
# by default we refresh data
refresh = True
if 'refresh' in event['body']:
refresh = event['body']['refresh']
try:
if "ticker" in event['body']:
ticker = event['body']['ticker']
else:
ticker = ['5m']
if "local" in event['body'] and event['body']['local']:
print("running in local mode")
for x in days:
for y in ticker:
till = datetime.datetime.today()
fromDate = till - datetime.timedelta(days=x)
configuration = generate_configuration(fromDate, till, name, refresh, user, False)
run_backtest(configuration, name, user, y, fromDate, till)
else:
print("running in remote mode")
_submit_job(name, user, ticker, days)
return {
"statusCode": 200
}
except ImportError as e:
return {
"statusCode": 500,
"body": json.dumps({"error": e})
}
else:
raise Exception("not a valid event: {}".format(event))
def _submit_job(name, user, ticker, days):
"""
submits a new task to the cluster
:param configuration:
:param user:
:return:
"""
import boto3
overrides = {"containerOverrides": [{
"name": "freqtrade-backtest",
"environment": [
{
"name": "FREQ_USER",
"value": "{}".format(user)
},
{
"name": "FREQ_TICKER",
"value": "{}".format(json.dumps(ticker))
},
{
"name": "FREQ_DAYS",
"value": "{}".format(json.dumps(days, use_decimal=False))
},
{
"name": "FREQ_STRATEGY",
"value": "{}".format(name)
}
]
}]}
print(overrides)
# fire AWS fargate instance now
# run_backtest(configuration, name, user)
# kinda ugly right now and needs more customization
client = boto3.client('ecs')
response = client.run_task(
cluster=os.environ.get('FREQ_CLUSTER_NAME', 'fargate'), # name of the cluster
launchType='FARGATE',
taskDefinition=os.environ.get('FREQ_TASK_NAME', 'freqtrade-backtesting:2'),
count=1,
platformVersion='LATEST',
networkConfiguration={
'awsvpcConfiguration': {
'subnets': [
# we need at least 2, to insure network stability
os.environ.get('FREQ_SUBNET_1', 'subnet-c35bdcab'),
os.environ.get('FREQ_SUBNET_2', 'subnet-be46b9c4'),
os.environ.get('FREQ_SUBNET_3', 'subnet-234ab559'),
os.environ.get('FREQ_SUBNET_4', 'subnet-234ab559')],
'assignPublicIp': 'ENABLED'
}
},
overrides=overrides,
)
return response
def run_backtest(configuration, name, user, interval, fromDate, till):
"""
this backtests the specified evaluation
:param configuration:
:param name:
:param user:
:param interval:
:param timerange:
:return:
"""
timerange = (till - fromDate).days
configuration['ticker_interval'] = interval
backtesting = Backtesting(configuration)
result = backtesting.start()
# store individual trades - not really needed
# _store_trade_data(interval, name, result, timerange, user)
# store aggregated values
_store_aggregated_data(interval, name, result, timerange, user)
return result
def _store_aggregated_data(interval, name, result, timerange, user):
"""
stores aggregated data for ease of access, yay for dynamodb data duplication...
:param interval:
:param name:
:param result:
:param timerange:
:param user:
:return:
"""
submit_data = []
for row in result[1][2]:
if row[1] > 0:
data = {
"pair": row[0],
"trades": row[1],
"losses": row[7],
"wins": row[6],
"duration": row[5],
"profit_mean_percent": row[2],
"profit_cum_percent": row[3],
"daily_return": row[3] / timerange,
"strategy": name,
"user": user,
"ticker": interval,
"days": timerange
}
# aggregate by pair + interval + time range for each strategy
data['id'] = "aggregate:{}:{}:{}:test".format(row[0].upper(), interval, timerange)
data['trade'] = "{}.{}".format(user, name)
submit_data.append(data.copy())
# id: aggregate by strategy + user + range + pair
# range: ticker
# allows us to easily see on which ticker the strategy works best
data['id'] = "aggregate:ticker:{}:{}:{}:{}:test".format(user, name, row[0].upper(), timerange)
data['trade'] = "{}".format(interval)
submit_data.append(data.copy())
# id: aggregate by strategy + user + ticker + pair
# range: timerange
# allows us to easily see on which time range the strategy works best
data['id'] = "aggregate:timerange:{}:{}:{}:{}:test".format(user, name, row[0].upper(), interval)
data['trade'] = "{}".format(timerange)
submit_data.append(data.copy())
_submit_to_remote(submit_data)
def _submit_to_remote(data):
"""
submits data to the backend to be persisted in the database
:param data:
:return:
"""
try:
print("submitting data: {}".format(data))
print(
post("{}/trade".format(os.environ.get('BASE_URL', 'https://freq.isaac.international/dev')),
json=data))
except Exception as e:
print("submission ignored: {}".format(e))
def _store_trade_data(interval, name, result, timerange, user):
"""
stores individual trades on the remote system
:param interval:
:param name:
:param result:
:param timerange:
:param user:
:return:
"""
submit_data = []
for index, row in result[0].iterrows():
submit_data.append({
"id": "{}.{}:{}:{}:{}:test".format(user, name, interval, timerange, row['currency'].upper()),
"trade": "{} to {}".format(row['entry'].strftime('%Y-%m-%d %H:%M:%S'),
row['exit'].strftime('%Y-%m-%d %H:%M:%S')),
"pair": row['currency'],
"duration": row['duration'],
"profit_percent": row['profit_percent'],
"profit_stake": row['profit_BTC'],
"entry_date": row['entry'].strftime('%Y-%m-%d %H:%M:%S'),
"exit_date": row['exit'].strftime('%Y-%m-%d %H:%M:%S'),
"strategy": name,
"user": user
})
_submit_to_remote(submit_data)
def generate_configuration(fromDate, till, name, refresh, user, remote=True):
"""
generates the configuration for us on the fly for a given
strategy. This is loaded from a remote url if specfied or
the internal dynamodb
:param event:
:param fromDate:
:param name:
:param response:
:param till:
:return:
"""
response = {}
if remote:
print("using remote mode to query strategy details")
response = requests.get(
"{}/strategies/{}/{}".format(os.environ.get('BASE_URL', "https://freq.isaac.international/dev"), user,
name)).json()
# load associated content right now this only works for public strategies obviously TODO
content = requests.get(
"{}/strategies/{}/{}/code".format(os.environ.get('BASE_URL', "https://freq.isaac.international/dev"), user,
name)).content
response['content'] = urlsafe_b64encode(content).decode()
print(content)
else:
print("using local mode to query strategy details")
from boto3.dynamodb.conditions import Key
from freqtrade.aws.tables import get_strategy_table
table = get_strategy_table()
response = table.query(
KeyConditionExpression=Key('user').eq(user) &
Key('name').eq(name)
)['Items'][0]
print(response)
content = response['content']
configuration = {
"max_open_trades": 1,
"stake_currency": response['stake_currency'].upper(),
"stake_amount": 1,
"fiat_display_currency": "USD",
"unfilledtimeout": 600,
"trailing_stop": response['trailing_stop'],
"bid_strategy": {
"ask_last_balance": 0.0
},
"exchange": {
"name": response['exchange'],
"enabled": True,
"key": "key",
"secret": "secret",
"pair_whitelist": list(
map(lambda x: "{}/{}".format(x, response['stake_currency']).upper(),
response['assets']))
},
"telegram": {
"enabled": False,
"token": "token",
"chat_id": "0"
},
"initial_state": "running",
"datadir": tempfile.gettempdir(),
"experimental": {
"use_sell_signal": response['use_sell'],
"sell_profit_only": True
},
"internals": {
"process_throttle_secs": 5
},
'realistic_simulation': True,
"loglevel": logging.INFO,
"strategy": "{}:{}".format(name, content),
"timerange": "{}-{}".format(fromDate.strftime('%Y%m%d'), till.strftime('%Y%m%d')),
"refresh_pairs": refresh
}
return configuration
def cron(event, context):
"""
this functions submits all strategies to the backtesting queue
:param event:
:param context:
:return:
"""
import boto3
# if topic exists, we just reuse it
client = boto3.client('sns')
topic_arn = client.create_topic(Name=os.environ['topic'])['TopicArn']
message = {
"local": False,
"refresh": True,
"ticker": ['5m', '15m', '30m', '1h', '2h', '4h', '6h', '12h', '1d'],
"days": [1, 2, 3, 4, 5, 6, 7, 14, 30, 90]
}
print("submitting: {}".format(message))
serialized = json.dumps(message, use_decimal=True)
# submit item to queue for routing to the correct persistence
result = client.publish(
TopicArn=topic_arn,
Message=json.dumps({'default': serialized}),
Subject="schedule",
MessageStructure='json'
)
print(result)
return {
"statusCode": 200
}
if __name__ == "__main__":
till = datetime.datetime.today()
fromDate = till - datetime.timedelta(days=90)
print(_submit_job(
"BinHV45",
"GBPAQEFGGWCMWVFU34PMVGS4P2NJR4IDFNVI4LTCZAKJAD3JCXUMBI4J",
"5m",
fromDate,
till
))

View File

@ -1,14 +0,0 @@
def fetch_pairs (events, context):
"""
fetches the pairs for the given exchange name and currency
requires:
name: name of the exchange
stake_currency: name of the stake currency
:param events:
:param context:
:return:
"""

View File

@ -1,6 +0,0 @@
# Defined the default HTTP headers for function responses
__HTTP_HEADERS__ = {
'Access-Control-Allow-Origin' : '*',
'Access-Control-Allow-Credentials' : True
}

View File

@ -1,91 +0,0 @@
# defines the schema to submit a new strategy to the system
__SUBMIT_STRATEGY_SCHEMA__ = {
"$id": "http://example.com/example.json",
"type": "object",
"definitions": {},
"$schema": "http://json-schema.org/draft-07/schema#",
"properties": {
"user": {
"$id": "/properties/user",
"type": "string",
"title": "The User Schema ",
"default": "",
"examples": [
"GCU4LW2XXZW3A3FM2XZJTEJHNWHTWDKY2DIJLCZJ5ULVZ4K7LZ7D23TG"
]
},
"description": {
"$id": "/properties/description",
"type": "string",
"title": "The Description Schema ",
"default": "",
"examples": [
"simple test strategy"
]
},
"exchange": {
"$id": "/properties/exchange",
"type": "object",
"properties": {
"name": {
"$id": "/properties/exchange/properties/name",
"type": "string",
"title": "The Name Schema ",
"default": "",
"examples": [
"binance"
]
},
"stake": {
"$id": "/properties/exchange/properties/stake",
"type": "string",
"title": "The Stake Schema ",
"default": "",
"examples": [
"usdt"
]
},
"pairs": {
"$id": "/properties/exchange/properties/pairs",
"type": "array",
"items": {
"$id": "/properties/exchange/properties/pairs/items",
"type": "string",
"title": "The 0th Schema ",
"default": "",
"examples": [
"btc/usdt"
]
}
}
}
},
"name": {
"$id": "/properties/name",
"type": "string",
"title": "The Name Schema ",
"default": "",
"examples": [
"MyFancyTestStrategy"
]
},
"content": {
"$id": "/properties/content",
"type": "string",
"title": "The Content Schema ",
"default": "",
"examples": [
"IyAtLS0gRG8gbm90IHJlbW92ZSB0aGVzZSBsaWJzIC0tLQpmcm9tIGZyZXF0cmFkZS5zdHJhdGVneS5pbnRlcmZhY2UgaW1wb3J0IElTdHJhdGVneQpmcm9tIHR5cGluZyBpbXBvcnQgRGljdCwgTGlzdApmcm9tIGh5cGVyb3B0IGltcG9ydCBocApmcm9tIGZ1bmN0b29scyBpbXBvcnQgcmVkdWNlCmZyb20gcGFuZGFzIGltcG9ydCBEYXRhRnJhbWUKIyAtLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLQoKaW1wb3J0IHRhbGliLmFic3RyYWN0IGFzIHRhCmltcG9ydCBmcmVxdHJhZGUudmVuZG9yLnF0cHlsaWIuaW5kaWNhdG9ycyBhcyBxdHB5bGliCgpjbGFzcyBNeUZhbmN5VGVzdFN0cmF0ZWd5KElTdHJhdGVneSk6CiAgICBtaW5pbWFsX3JvaSA9IHsKICAgICAgICAiMCI6IDAuNQogICAgfQogICAgc3RvcGxvc3MgPSAtMC4yCiAgICB0aWNrZXJfaW50ZXJ2YWwgPSAnNW0nCgogICAgZGVmIHBvcHVsYXRlX2luZGljYXRvcnMoc2VsZiwgZGF0YWZyYW1lOiBEYXRhRnJhbWUpIC0-IERhdGFGcmFtZToKICAgICAgICBtYWNkID0gdGEuTUFDRChkYXRhZnJhbWUpCiAgICAgICAgZGF0YWZyYW1lWydtYVNob3J0J10gPSB0YS5FTUEoZGF0YWZyYW1lLCB0aW1lcGVyaW9kPTgpCiAgICAgICAgZGF0YWZyYW1lWydtYU1lZGl1bSddID0gdGEuRU1BKGRhdGFmcmFtZSwgdGltZXBlcmlvZD0yMSkKICAgICAgICByZXR1cm4gZGF0YWZyYW1lCgogICAgZGVmIHBvcHVsYXRlX2J1eV90cmVuZChzZWxmLCBkYXRhZnJhbWU6IERhdGFGcmFtZSkgLT4gRGF0YUZyYW1lOgogICAgICAgIGRhdGFmcmFtZS5sb2NbCiAgICAgICAgICAgICgKICAgICAgICAgICAgICAgIHF0cHlsaWIuY3Jvc3NlZF9hYm92ZShkYXRhZnJhbWVbJ21hU2hvcnQnXSwgZGF0YWZyYW1lWydtYU1lZGl1bSddKQogICAgICAgICAgICApLAogICAgICAgICAgICAnYnV5J10gPSAxCgogICAgICAgIHJldHVybiBkYXRhZnJhbWUKCiAgICBkZWYgcG9wdWxhdGVfc2VsbF90cmVuZChzZWxmLCBkYXRhZnJhbWU6IERhdGFGcmFtZSkgLT4gRGF0YUZyYW1lOgogICAgICAgIGRhdGFmcmFtZS5sb2NbCiAgICAgICAgICAgICgKICAgICAgICAgICAgICAgIHF0cHlsaWIuY3Jvc3NlZF9hYm92ZShkYXRhZnJhbWVbJ21hTWVkaXVtJ10sIGRhdGFmcmFtZVsnbWFTaG9ydCddKQogICAgICAgICAgICApLAogICAgICAgICAgICAnc2VsbCddID0gMQogICAgICAgIHJldHVybiBkYXRhZnJhbWUKCgogICAgICAgIA=="
]
},
"public": {
"$id": "/properties/public",
"type": "boolean",
"title": "The Public Schema ",
"default": False,
"examples": [
False
]
}
}
}

View File

@ -1,278 +0,0 @@
import os
import time
from base64 import urlsafe_b64decode, urlsafe_b64encode
import boto3
import simplejson as json
from boto3.dynamodb.conditions import Key, Attr
from jsonschema import validate
from freqtrade.aws.schemas import __SUBMIT_STRATEGY_SCHEMA__
from freqtrade.aws.tables import get_strategy_table, get_trade_table
from freqtrade.strategy.resolver import StrategyResolver
import requests
db = boto3.resource('dynamodb')
from freqtrade.aws.headers import __HTTP_HEADERS__
def names(event, context):
"""
returns the names of all registered strategies, both public and private
:param event:
:param context:
:return:
"""
table = get_strategy_table()
response = table.scan()
result = response['Items']
# no pagination here
while 'LastEvaluatedKey' in response:
for i in response['Items']:
result.append(i)
response = table.scan(
ExclusiveStartKey=response['LastEvaluatedKey']
)
# map results and hide informations
data = list(map(lambda x: {'name': x['name'], 'public': x['public'], 'user': x['user']}, result))
return {
"headers": __HTTP_HEADERS__,
"statusCode": 200,
"body": json.dumps(data)
}
def get(event, context):
"""
returns the code of the requested strategy, if it's public
:param event:
:param context:
:return:
"""
assert 'pathParameters' in event
assert 'user' in event['pathParameters']
assert 'name' in event['pathParameters']
table = get_strategy_table()
response = table.query(
KeyConditionExpression=Key('user').eq(event['pathParameters']['user']) &
Key('name').eq(event['pathParameters']['name'])
)
if "Items" in response and len(response['Items']) > 0:
item = response['Items'][0]
# content is private...
item.pop('content')
return {
"headers": __HTTP_HEADERS__,
"statusCode": response['ResponseMetadata']['HTTPStatusCode'],
"body": json.dumps(item)
}
else:
return {
"headers": __HTTP_HEADERS__,
"statusCode": 404,
"body": json.dumps(response)
}
def code(event, context):
"""
returns the code of the requested strategy, if it's public
:param event:
:param context:
:return:
"""
user = ""
name = ""
# proxy based handling
if 'pathParameters' in event:
assert 'user' in event['pathParameters']
assert 'name' in event['pathParameters']
user = event['pathParameters']['user']
name = event['pathParameters']['name']
# plain lambda handling
elif 'path' in event:
assert 'user' in event['path']
assert 'name' in event['path']
user = event['path']['user']
name = event['path']['name']
table = get_strategy_table()
response = table.query(
KeyConditionExpression=Key('user').eq(user) &
Key('name').eq(name)
)
if "Items" in response and len(response['Items']) > 0:
if response['Items'][0]["public"]:
content = urlsafe_b64decode(response['Items'][0]['content']).decode('utf-8')
content["headers"]: __HTTP_HEADERS__
return content
else:
return {
"headers": __HTTP_HEADERS__,
"statusCode": 403,
"body": json.dumps({"success": False, "reason": "Denied"})
}
else:
return {
"headers": __HTTP_HEADERS__,
"statusCode": response['ResponseMetadata']['HTTPStatusCode'],
"body": json.dumps(response)
}
def submit(event, context):
"""
compiles the given strategy and stores it in the internal database
:param event:
:param context:
:return:
"""
# print(event)
# get data
data = json.loads(event['body'])
# print("received data")
# validate against schema
result = validate(data, __SUBMIT_STRATEGY_SCHEMA__)
# print("data are validated");
# print(result)
# validate that the user is an Isaac User
# ToDo
result = __evaluate(data)
return {
"headers": __HTTP_HEADERS__,
"statusCode": result['ResponseMetadata']['HTTPStatusCode'],
"body": json.dumps(result)
}
def __evaluate(data):
"""
evaluates the given data object and submits it to the system
for persistence
0
:param data:
:return:
"""
strategy = urlsafe_b64decode(data['content']).decode('utf-8')
# comment out hyper opt references, they are no supported here
# due to lambda size limitations
strategy = "\n".join(
list(
map(
lambda x: "#{} # this version does not support hyperopt!".format(x) if "hyperopt" in x else x,
strategy.split("\n"))))
print("loaded strategy")
print(strategy)
# try to load the strategy
strat = StrategyResolver().compile(data['name'], strategy)
data['time'] = int(time.time() * 1000)
data['type'] = "strategy"
data['roi'] = strat.minimal_roi
data['stoploss'] = strat.stoploss
# ensure that the modified file is saved
data['content'] = urlsafe_b64encode(strategy.encode('utf-8'))
# default variables if not provided
if 'trailing_stop' not in data:
data['trailing_stop'] = False
if 'stake_currency' not in data:
data['stake_currency'] = "USDT"
if 'use_sell' not in data:
data['use_sell'] = True
if 'exchange' not in data:
data['exchange'] = 'binance'
if 'assets' not in data:
data['assets'] = ["BTC", "ETH", "LTC"]
# force serialization to deal with decimal number
data = json.dumps(data, use_decimal=True)
data = json.loads(data, use_decimal=True)
table = get_strategy_table()
result = table.put_item(Item=data)
return result
def submit_github(event, context):
"""
there has been a push to our github repository, so let's
update all the strategies.
The user account will be the provided secret
:param event:
:param context:
:return:
"""
print("download all strategies and updating the system")
result = requests.get(
"https://api.github.com/repos/berlinguyinca/freqtrade-trading-strategies/git/trees/master?recursive=1").json()
if 'tree' in result:
strategies = 0
for x in result['tree']:
if x['path'].endswith(".py") and x['type'] == 'blob':
file = requests.get(x['url']).json()
if "content" in file:
# assemble submit object
# generate simple id
# submit it - we should be able to support multiple repositories
# maybe another database table, where we can map these?
try:
__evaluate({
"name": x['path'].split("/")[-1].split(".py")[0],
"content": file['content'],
"user": "GBPAQEFGGWCMWVFU34PMVGS4P2NJR4IDFNVI4LTCZAKJAD3JCXUMBI4J",
"public": True,
"description": "imported from github repository: berlinguyinca/freqtrade-trading-strategies"
})
strategies = strategies + 1
except ImportError as e:
print("error: {}".format(e))
print("imported/updated: {} strategies".format(strategies))
return {
"headers": __HTTP_HEADERS__,
"statusCode": 200,
"body": json.dumps({"imported": strategies})
}
else:
return {
"headers": __HTTP_HEADERS__,
"statusCode": 404,
"body": json.dumps({"error": result})
}

View File

@ -1,98 +0,0 @@
import os
import boto3
db = boto3.resource('dynamodb')
def get_trade_table():
"""
provides access to the trade table and if it doesn't exists
creates it for us
:return:
"""
if 'tradeTable' not in os.environ:
os.environ['tradeTable'] = "FreqTradeTable"
table_name = os.environ['tradeTable']
existing_tables = boto3.client('dynamodb').list_tables()['TableNames']
if table_name not in existing_tables:
try:
db.create_table(
TableName=table_name,
KeySchema=[
{
'AttributeName': 'id',
'KeyType': 'HASH'
},
{
'AttributeName': 'trade',
'KeyType': 'RANGE'
}
],
AttributeDefinitions=[
{
'AttributeName': 'id',
'AttributeType': 'S'
}, {
'AttributeName': 'trade',
'AttributeType': 'S'
}
],
ProvisionedThroughput={
'ReadCapacityUnits': 1,
'WriteCapacityUnits': 1
}
)
except Exception as e:
print("table already exist {}".format(e))
return db.Table(table_name)
def get_strategy_table():
"""
provides us access to the strategy table and if it doesn't exists creates it for us
:return:
"""
if 'strategyTable' not in os.environ:
os.environ['strategyTable'] = "FreqStrategyTable"
table_name = os.environ['strategyTable']
existing_tables = boto3.client('dynamodb').list_tables()['TableNames']
existing_tables = boto3.client('dynamodb').list_tables()['TableNames']
if table_name not in existing_tables:
try:
db.create_table(
TableName=table_name,
KeySchema=[
{
'AttributeName': 'user',
'KeyType': 'HASH'
},
{
'AttributeName': 'name',
'KeyType': 'RANGE'
}
],
AttributeDefinitions=[
{
'AttributeName': 'user',
'AttributeType': 'S'
}, {
'AttributeName': 'name',
'AttributeType': 'S'
}
],
ProvisionedThroughput={
'ReadCapacityUnits': 1,
'WriteCapacityUnits': 1
}
)
except Exception as e:
print("table already exist {}".format(e))
return db.Table(table_name)

View File

@ -1,164 +0,0 @@
import datetime
from time import sleep
import boto3
import simplejson as json
import os
from freqtrade.aws.tables import get_trade_table, get_strategy_table
from boto3.dynamodb.conditions import Key, Attr
from freqtrade.aws.headers import __HTTP_HEADERS__
def store(event, context):
"""
stores the received data in the internal database
:param data:
:return:
"""
if 'Records' in event:
for x in event['Records']:
if 'Sns' in x and 'Message' in x['Sns']:
data = json.loads(x['Sns']['Message'], use_decimal=True)
print("storing {} data trade results".format(len(x)))
for x in data:
x['ttl'] = int((datetime.datetime.today() + datetime.timedelta(days=1)).timestamp())
print("storing data: {}".format(x))
sleep(0.5) # throttle to not overwhelm the DB, lambda is cheaper than dynamo
get_trade_table().put_item(Item=x)
def submit(event, context):
"""
submits a new trade to be registered in the internal queue system
:param event:
:param context:
:return:
"""
print(event)
data = json.loads(event['body'])
client = boto3.client('sns')
topic_arn = client.create_topic(Name=os.environ['tradeTopic'])['TopicArn']
result = client.publish(
TopicArn=topic_arn,
Message=json.dumps({'default': json.dumps(data, use_decimal=True)}),
Subject="persist data",
MessageStructure='json'
)
return {
"headers": __HTTP_HEADERS__,
"statusCode": 200,
"body": json.dumps(result)
}
def get_aggregated_trades(event, context):
"""
returns the aggregated trades for the given key combination
:param event:
:param context:
:return:
"""
assert 'pathParameters' in event
assert 'ticker' in event['pathParameters']
assert 'days' in event['pathParameters']
table = get_trade_table()
response = table.query(
KeyConditionExpression=Key('id').eq(
"aggregate:{}:{}:{}:test".format(
"TOTAL",
event['pathParameters']['ticker'],
event['pathParameters']['days']
)
)
)
if "Items" in response and len(response['Items']) > 0:
# preparation for pagination
# TODO include in parameters an optional
# start key ExclusiveStartKey=response['LastEvaluatedKey']
data = {
"headers": __HTTP_HEADERS__,
"result": response['Items'],
"paginationKey": response.get('LastEvaluatedKey')
}
return {
"headers": __HTTP_HEADERS__,
"statusCode": response['ResponseMetadata']['HTTPStatusCode'],
"body": json.dumps(data)
}
else:
return {
"headers": __HTTP_HEADERS__,
"statusCode": 404,
"body": json.dumps({
"error": "sorry this query did not produce any results",
"event": event
})
}
def get_trades(event, context):
"""
this function returns all the known trades for a user, strategy and pair
:param event:
:param context:
:return:
"""
assert 'pathParameters' in event
assert 'user' in event['pathParameters']
assert 'name' in event['pathParameters']
assert 'stake' in event['pathParameters']
assert 'asset' in event['pathParameters']
table = get_trade_table()
response = table.query(
KeyConditionExpression=Key('id').eq(
"{}.{}:{}/{}".format(
event['pathParameters']['user'],
event['pathParameters']['name'],
event['pathParameters']['asset'].upper(),
event['pathParameters']['stake'].upper()
)
)
)
if "Items" in response and len(response['Items']) > 0:
# preparation for pagination
# TODO include in parameters an optional
# start key ExclusiveStartKey=response['LastEvaluatedKey']
#
# data = {
# "result": response['Items'],
# "paginationKey": response.get('LastEvaluatedKey')
# }
return {
"headers": __HTTP_HEADERS__,
"statusCode": response['ResponseMetadata']['HTTPStatusCode'],
"body": response['Items']
}
else:
return {
"headers": __HTTP_HEADERS__,
"statusCode": 404,
"body": json.dumps({
"error": "sorry this query did not produce any results",
"event": event
})
}

View File

@ -1,11 +1,11 @@
"""
This module contains the configuration class
"""
import os
import json
import logging
from argparse import Namespace
from typing import Dict, Any
from typing import Optional, Dict, Any
from jsonschema import Draft4Validator, validate
from jsonschema.exceptions import ValidationError, best_match
import ccxt
@ -23,7 +23,7 @@ class Configuration(object):
"""
def __init__(self, args: Namespace) -> None:
self.args = args
self.config = None
self.config: Optional[Dict[str, Any]] = None
def load_config(self) -> Dict[str, Any]:
"""
@ -61,11 +61,9 @@ class Configuration(object):
with open(path) as file:
conf = json.load(file)
except FileNotFoundError:
logger.critical(
'Config file "%s" not found. Please create your config file',
path
)
exit(0)
raise OperationalException(
'Config file "{}" not found!'
' Please create a config file or check whether it exists.'.format(path))
if 'internals' not in conf:
conf['internals'] = {}
@ -97,22 +95,35 @@ class Configuration(object):
'(not applicable with Backtesting and Hyperopt)'
)
# Add dry_run_db if found and the bot in dry run
if self.args.dry_run_db and config.get('dry_run', False):
config.update({'dry_run_db': True})
logger.info('Parameter --dry-run-db detected ...')
if self.args.db_url != constants.DEFAULT_DB_PROD_URL:
config.update({'db_url': self.args.db_url})
logger.info('Parameter --db-url detected ...')
if config.get('dry_run_db', False):
if config.get('dry_run', False):
logger.info('Dry_run will use the DB file: "tradesv3.dry_run.sqlite"')
else:
logger.info('Dry run is disabled. (--dry_run_db ignored)')
if config.get('dry_run', False):
logger.info('Dry run is enabled')
if config.get('db_url') in [None, constants.DEFAULT_DB_PROD_URL]:
# Default to in-memory db for dry_run if not specified
config['db_url'] = constants.DEFAULT_DB_DRYRUN_URL
else:
if not config.get('db_url', None):
config['db_url'] = constants.DEFAULT_DB_PROD_URL
logger.info('Dry run is disabled')
logger.info('Using DB: "{}"'.format(config['db_url']))
# Check if the exchange set by the user is supported
self.check_exchange(config)
return config
def _create_default_datadir(self, config: Dict[str, Any]) -> str:
exchange_name = config.get('exchange', {}).get('name').lower()
default_path = os.path.join('user_data', 'data', exchange_name)
if not os.path.isdir(default_path):
os.makedirs(default_path)
logger.info(f'Created data directory: {default_path}')
return default_path
def _load_backtesting_config(self, config: Dict[str, Any]) -> Dict[str, Any]:
"""
Extract information for sys.argv and load Backtesting configuration
@ -145,7 +156,9 @@ class Configuration(object):
# If --datadir is used we add it to the configuration
if 'datadir' in self.args and self.args.datadir:
config.update({'datadir': self.args.datadir})
logger.info('Parameter --datadir detected: %s ...', self.args.datadir)
else:
config.update({'datadir': self._create_default_datadir(config)})
logger.info('Using data folder: %s ...', config.get('datadir'))
# If -r/--refresh-pairs-cached is used we add it to the configuration
if 'refresh_pairs' in self.args and self.args.refresh_pairs:
@ -157,6 +170,11 @@ class Configuration(object):
config.update({'export': self.args.export})
logger.info('Parameter --export detected: %s ...', self.args.export)
# If --export-filename is used we add it to the configuration
if 'export' in config and 'exportfilename' in self.args and self.args.exportfilename:
config.update({'exportfilename': self.args.exportfilename})
logger.info('Storing backtest results to %s ...', self.args.exportfilename)
return config
def _load_hyperopt_config(self, config: Dict[str, Any]) -> Dict[str, Any]:
@ -192,7 +210,7 @@ class Configuration(object):
validate(conf, constants.CONF_SCHEMA)
return conf
except ValidationError as exception:
logger.fatal(
logger.critical(
'Invalid configuration. See config.json.example. Reason: %s',
exception
)
@ -218,9 +236,8 @@ class Configuration(object):
exchange = config.get('exchange', {}).get('name').lower()
if exchange not in ccxt.exchanges:
exception_msg = 'Exchange "{}" not supported.\n' \
'The following exchanges are supported: {}'\
.format(exchange, ', '.join(ccxt.exchanges))
exception_msg = f'Exchange "{exchange}" not supported.\n' \
f'The following exchanges are supported: {", ".join(ccxt.exchanges)}'
logger.critical(exception_msg)
raise OperationalException(

View File

@ -9,9 +9,12 @@ TICKER_INTERVAL = 5 # min
HYPEROPT_EPOCH = 100 # epochs
RETRY_TIMEOUT = 30 # sec
DEFAULT_STRATEGY = 'DefaultStrategy'
DEFAULT_DB_PROD_URL = 'sqlite:///tradesv3.sqlite'
DEFAULT_DB_DRYRUN_URL = 'sqlite://'
TICKER_INTERVAL_MINUTES = {
'1m': 1,
'3m': 3,
'5m': 5,
'15m': 15,
'30m': 30,
@ -19,11 +22,20 @@ TICKER_INTERVAL_MINUTES = {
'2h': 120,
'4h': 240,
'6h': 360,
'8h': 480,
'12h': 720,
'1d': 1440,
'3d': 4320,
'1w': 10080,
}
SUPPORTED_FIAT = [
"AUD", "BRL", "CAD", "CHF", "CLP", "CNY", "CZK", "DKK",
"EUR", "GBP", "HKD", "HUF", "IDR", "ILS", "INR", "JPY",
"KRW", "MXN", "MYR", "NOK", "NZD", "PHP", "PKR", "PLN",
"RUB", "SEK", "SGD", "THB", "TRY", "TWD", "ZAR", "USD",
"BTC", "ETH", "XRP", "LTC", "BCH", "USDT"
]
# Required json-schema for user specified config
CONF_SCHEMA = {
@ -31,16 +43,9 @@ CONF_SCHEMA = {
'properties': {
'max_open_trades': {'type': 'integer', 'minimum': 0},
'ticker_interval': {'type': 'string', 'enum': list(TICKER_INTERVAL_MINUTES.keys())},
'stake_currency': {'type': 'string', 'enum': ['BTC', 'ETH', 'USDT']},
'stake_currency': {'type': 'string', 'enum': ['BTC', 'ETH', 'USDT', 'EUR', 'USD']},
'stake_amount': {'type': 'number', 'minimum': 0.0005},
'fiat_display_currency': {'type': 'string', 'enum': ['AUD', 'BRL', 'CAD', 'CHF',
'CLP', 'CNY', 'CZK', 'DKK',
'EUR', 'GBP', 'HKD', 'HUF',
'IDR', 'ILS', 'INR', 'JPY',
'KRW', 'MXN', 'MYR', 'NOK',
'NZD', 'PHP', 'PKR', 'PLN',
'RUB', 'SEK', 'SGD', 'THB',
'TRY', 'TWD', 'ZAR', 'USD']},
'fiat_display_currency': {'type': 'string', 'enum': SUPPORTED_FIAT},
'dry_run': {'type': 'boolean'},
'minimal_roi': {
'type': 'object',
@ -60,9 +65,19 @@ CONF_SCHEMA = {
'maximum': 1,
'exclusiveMaximum': False
},
'use_book_order': {'type': 'boolean'},
'book_order_top': {'type': 'number', 'maximum':20,'minimum':1}
},
'required': ['ask_last_balance']
},
'ask_strategy': {
'type': 'object',
'properties': {
'use_book_order': {'type': 'boolean'},
'book_order_min': {'type': 'number', 'minimum':1},
'book_order_max': {'type': 'number', 'minimum':1}
},
},
'exchange': {'$ref': '#/definitions/exchange'},
'experimental': {
'type': 'object',
@ -80,6 +95,7 @@ CONF_SCHEMA = {
},
'required': ['enabled', 'token', 'chat_id']
},
'db_url': {'type': 'string'},
'initial_state': {'type': 'string', 'enum': ['running', 'stopped']},
'internals': {
'type': 'object',

View File

@ -18,6 +18,8 @@ _API: ccxt.Exchange = None
_CONF: Dict = {}
API_RETRY_COUNT = 4
_CACHED_TICKER: Dict[str, Any] = {}
# Holds all open sell orders for dry_run
_DRY_RUN_OPEN_ORDERS: Dict[str, Any] = {}
@ -57,7 +59,7 @@ def init_ccxt(exchange_config: dict) -> ccxt.Exchange:
name = exchange_config['name']
if name not in ccxt.exchanges:
raise OperationalException('Exchange {} is not supported'.format(name))
raise OperationalException(f'Exchange {name} is not supported')
try:
api = getattr(ccxt, name.lower())({
'apiKey': exchange_config.get('key'),
@ -67,7 +69,7 @@ def init_ccxt(exchange_config: dict) -> ccxt.Exchange:
'enableRateLimit': True,
})
except (KeyError, AttributeError):
raise OperationalException('Exchange {} is not supported'.format(name))
raise OperationalException(f'Exchange {name} is not supported')
return api
@ -116,11 +118,10 @@ def validate_pairs(pairs: List[str]) -> None:
# TODO: add a support for having coins in BTC/USDT format
if not pair.endswith(stake_cur):
raise OperationalException(
'Pair {} not compatible with stake_currency: {}'.format(pair, stake_cur)
)
f'Pair {pair} not compatible with stake_currency: {stake_cur}')
if pair not in markets:
raise OperationalException(
'Pair {} is not available at {}'.format(pair, get_name()))
f'Pair {pair} is not available at {get_name()}')
def exchange_has(endpoint: str) -> bool:
@ -136,7 +137,7 @@ def exchange_has(endpoint: str) -> bool:
def buy(pair: str, rate: float, amount: float) -> Dict:
if _CONF['dry_run']:
global _DRY_RUN_OPEN_ORDERS
order_id = 'dry_run_buy_{}'.format(randint(0, 10**6))
order_id = f'dry_run_buy_{randint(0, 10**6)}'
_DRY_RUN_OPEN_ORDERS[order_id] = {
'pair': pair,
'price': rate,
@ -154,20 +155,17 @@ def buy(pair: str, rate: float, amount: float) -> Dict:
return _API.create_limit_buy_order(pair, amount, rate)
except ccxt.InsufficientFunds as e:
raise DependencyException(
'Insufficient funds to create limit buy order on market {}.'
'Tried to buy amount {} at rate {} (total {}).'
'Message: {}'.format(pair, amount, rate, rate*amount, e)
)
f'Insufficient funds to create limit buy order on market {pair}.'
f'Tried to buy amount {amount} at rate {rate} (total {rate*amount}).'
f'Message: {e}')
except ccxt.InvalidOrder as e:
raise DependencyException(
'Could not create limit buy order on market {}.'
'Tried to buy amount {} at rate {} (total {}).'
'Message: {}'.format(pair, amount, rate, rate*amount, e)
)
f'Could not create limit buy order on market {pair}.'
f'Tried to buy amount {amount} at rate {rate} (total {rate*amount}).'
f'Message: {e}')
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
raise TemporaryError(
'Could not place buy order due to {}. Message: {}'.format(
e.__class__.__name__, e))
f'Could not place buy order due to {e.__class__.__name__}. Message: {e}')
except ccxt.BaseError as e:
raise OperationalException(e)
@ -175,7 +173,7 @@ def buy(pair: str, rate: float, amount: float) -> Dict:
def sell(pair: str, rate: float, amount: float) -> Dict:
if _CONF['dry_run']:
global _DRY_RUN_OPEN_ORDERS
order_id = 'dry_run_sell_{}'.format(randint(0, 10**6))
order_id = f'dry_run_sell_{randint(0, 10**6)}'
_DRY_RUN_OPEN_ORDERS[order_id] = {
'pair': pair,
'price': rate,
@ -192,20 +190,17 @@ def sell(pair: str, rate: float, amount: float) -> Dict:
return _API.create_limit_sell_order(pair, amount, rate)
except ccxt.InsufficientFunds as e:
raise DependencyException(
'Insufficient funds to create limit sell order on market {}.'
'Tried to sell amount {} at rate {} (total {}).'
'Message: {}'.format(pair, amount, rate, rate*amount, e)
)
f'Insufficient funds to create limit sell order on market {pair}.'
f'Tried to sell amount {amount} at rate {rate} (total {rate*amount}).'
f'Message: {e}')
except ccxt.InvalidOrder as e:
raise DependencyException(
'Could not create limit sell order on market {}.'
'Tried to sell amount {} at rate {} (total {}).'
'Message: {}'.format(pair, amount, rate, rate*amount, e)
)
f'Could not create limit sell order on market {pair}.'
f'Tried to sell amount {amount} at rate {rate} (total {rate*amount}).'
f'Message: {e}')
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
raise TemporaryError(
'Could not place sell order due to {}. Message: {}'.format(
e.__class__.__name__, e))
f'Could not place sell order due to {e.__class__.__name__}. Message: {e}')
except ccxt.BaseError as e:
raise OperationalException(e)
@ -220,8 +215,7 @@ def get_balance(currency: str) -> float:
balance = balances.get(currency)
if balance is None:
raise TemporaryError(
'Could not get {} balance due to malformed exchange response: {}'.format(
currency, balances))
f'Could not get {currency} balance due to malformed exchange response: {balances}')
return balance['free']
@ -241,11 +235,23 @@ def get_balances() -> dict:
return balances
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
raise TemporaryError(
'Could not get balance due to {}. Message: {}'.format(
e.__class__.__name__, e))
f'Could not get balance due to {e.__class__.__name__}. Message: {e}')
except ccxt.BaseError as e:
raise OperationalException(e)
@retrier
def get_order_book(pair: str, refresh: Optional[bool] = True) -> dict:
try:
return _API.fetch_order_book(pair)
except ccxt.NotSupported as e:
raise OperationalException(
f'Exchange {_API.name} does not support fetching order book.'
f'Message: {e}')
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
raise TemporaryError(
f'Could not load order book due to {e.__class__.__name__}. Message: {e}')
except ccxt.BaseError as e:
raise OperationalException(e)
@retrier
def get_tickers() -> Dict:
@ -253,28 +259,37 @@ def get_tickers() -> Dict:
return _API.fetch_tickers()
except ccxt.NotSupported as e:
raise OperationalException(
'Exchange {} does not support fetching tickers in batch.'
'Message: {}'.format(_API.name, e)
)
f'Exchange {_API.name} does not support fetching tickers in batch.'
f'Message: {e}')
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
raise TemporaryError(
'Could not load tickers due to {}. Message: {}'.format(
e.__class__.__name__, e))
f'Could not load tickers due to {e.__class__.__name__}. Message: {e}')
except ccxt.BaseError as e:
raise OperationalException(e)
# TODO: remove refresh argument, keeping it to keep track of where it was intended to be used
@retrier
def get_ticker(pair: str, refresh: Optional[bool] = True) -> dict:
try:
return _API.fetch_ticker(pair)
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
raise TemporaryError(
'Could not load ticker history due to {}. Message: {}'.format(
e.__class__.__name__, e))
except ccxt.BaseError as e:
raise OperationalException(e)
global _CACHED_TICKER
if refresh or pair not in _CACHED_TICKER.keys():
try:
data = _API.fetch_ticker(pair)
try:
_CACHED_TICKER[pair] = {
'bid': float(data['bid']),
'ask': float(data['ask']),
}
except KeyError:
logger.debug("Could not cache ticker data for %s", pair)
return data
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
raise TemporaryError(
f'Could not load ticker history due to {e.__class__.__name__}. Message: {e}')
except ccxt.BaseError as e:
raise OperationalException(e)
else:
logger.info("returning cached ticker-data for %s", pair)
return _CACHED_TICKER[pair]
@retrier
@ -290,10 +305,15 @@ def get_ticker_history(pair: str, tick_interval: str, since_ms: Optional[int] =
# chached data was already downloaded
till_time_ms = min(till_time_ms, arrow.utcnow().shift(minutes=-10).timestamp * 1000)
data = []
data: List[Dict[Any, Any]] = []
while not since_ms or since_ms < till_time_ms:
data_part = _API.fetch_ohlcv(pair, timeframe=tick_interval, since=since_ms)
# Because some exchange sort Tickers ASC and other DESC.
# Ex: Bittrex returns a list of tickers ASC (oldest first, newest last)
# when GDAX returns a list of tickers DESC (newest first, oldest last)
data_part = sorted(data_part, key=lambda x: x[0])
if not data_part:
break
@ -308,15 +328,13 @@ def get_ticker_history(pair: str, tick_interval: str, since_ms: Optional[int] =
return data
except ccxt.NotSupported as e:
raise OperationalException(
'Exchange {} does not support fetching historical candlestick data.'
'Message: {}'.format(_API.name, e)
)
f'Exchange {_API.name} does not support fetching historical candlestick data.'
f'Message: {e}')
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
raise TemporaryError(
'Could not load ticker history due to {}. Message: {}'.format(
e.__class__.__name__, e))
f'Could not load ticker history due to {e.__class__.__name__}. Message: {e}')
except ccxt.BaseError as e:
raise OperationalException('Could not fetch ticker data. Msg: {}'.format(e))
raise OperationalException(f'Could not fetch ticker data. Msg: {e}')
@retrier
@ -328,12 +346,10 @@ def cancel_order(order_id: str, pair: str) -> None:
return _API.cancel_order(order_id, pair)
except ccxt.InvalidOrder as e:
raise DependencyException(
'Could not cancel order. Message: {}'.format(e)
)
f'Could not cancel order. Message: {e}')
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
raise TemporaryError(
'Could not cancel order due to {}. Message: {}'.format(
e.__class__.__name__, e))
f'Could not cancel order due to {e.__class__.__name__}. Message: {e}')
except ccxt.BaseError as e:
raise OperationalException(e)
@ -350,12 +366,10 @@ def get_order(order_id: str, pair: str) -> Dict:
return _API.fetch_order(order_id, pair)
except ccxt.InvalidOrder as e:
raise DependencyException(
'Could not get order. Message: {}'.format(e)
)
f'Could not get order. Message: {e}')
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
raise TemporaryError(
'Could not get order due to {}. Message: {}'.format(
e.__class__.__name__, e))
f'Could not get order due to {e.__class__.__name__}. Message: {e}')
except ccxt.BaseError as e:
raise OperationalException(e)
@ -374,8 +388,7 @@ def get_trades_for_order(order_id: str, pair: str, since: datetime) -> List:
except ccxt.NetworkError as e:
raise TemporaryError(
'Could not get trades due to networking error. Message: {}'.format(e)
)
f'Could not get trades due to networking error. Message: {e}')
except ccxt.BaseError as e:
raise OperationalException(e)
@ -397,8 +410,7 @@ def get_markets() -> List[dict]:
return _API.fetch_markets()
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
raise TemporaryError(
'Could not load markets due to {}. Message: {}'.format(
e.__class__.__name__, e))
f'Could not load markets due to {e.__class__.__name__}. Message: {e}')
except ccxt.BaseError as e:
raise OperationalException(e)
@ -423,8 +435,7 @@ def get_fee(symbol='ETH/BTC', type='', side='', amount=1,
price=price, takerOrMaker=taker_or_maker)['rate']
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
raise TemporaryError(
'Could not get fee info due to {}. Message: {}'.format(
e.__class__.__name__, e))
f'Could not get fee info due to {e.__class__.__name__}. Message: {e}')
except ccxt.BaseError as e:
raise OperationalException(e)

View File

@ -5,9 +5,11 @@ e.g BTC to USD
import logging
import time
from typing import Dict
from typing import Dict, List
from coinmarketcap import Market
from requests.exceptions import RequestException
from freqtrade.constants import SUPPORTED_FIAT
logger = logging.getLogger(__name__)
@ -33,7 +35,7 @@ class CryptoFiat(object):
self.price = 0.0
# Private attributes
self._expiration = 0
self._expiration = 0.0
self.crypto_symbol = crypto_symbol.upper()
self.fiat_symbol = fiat_symbol.upper()
@ -64,15 +66,7 @@ class CryptoToFiatConverter(object):
This object is also a Singleton
"""
__instance = None
_coinmarketcap = None
# Constants
SUPPORTED_FIAT = [
"AUD", "BRL", "CAD", "CHF", "CLP", "CNY", "CZK", "DKK",
"EUR", "GBP", "HKD", "HUF", "IDR", "ILS", "INR", "JPY",
"KRW", "MXN", "MYR", "NOK", "NZD", "PHP", "PKR", "PLN",
"RUB", "SEK", "SGD", "THB", "TRY", "TWD", "ZAR", "USD"
]
_coinmarketcap: Market = None
_cryptomap: Dict = {}
@ -86,7 +80,7 @@ class CryptoToFiatConverter(object):
return CryptoToFiatConverter.__instance
def __init__(self) -> None:
self._pairs = []
self._pairs: List[CryptoFiat] = []
self._load_cryptomap()
def _load_cryptomap(self) -> None:
@ -94,8 +88,11 @@ class CryptoToFiatConverter(object):
coinlistings = self._coinmarketcap.listings()
self._cryptomap = dict(map(lambda coin: (coin["symbol"], str(coin["id"])),
coinlistings["data"]))
except ValueError:
logger.error("Could not load FIAT Cryptocurrency map")
except (ValueError, RequestException) as exception:
logger.error(
"Could not load FIAT Cryptocurrency map for the following problem: %s",
exception
)
def convert_amount(self, crypto_amount: float, crypto_symbol: str, fiat_symbol: str) -> float:
"""
@ -122,7 +119,7 @@ class CryptoToFiatConverter(object):
# Check if the fiat convertion you want is supported
if not self._is_supported_fiat(fiat=fiat_symbol):
raise ValueError('The fiat {} is not supported.'.format(fiat_symbol))
raise ValueError(f'The fiat {fiat_symbol} is not supported.')
# Get the pair that interest us and return the price in fiat
for pair in self._pairs:
@ -174,7 +171,7 @@ class CryptoToFiatConverter(object):
fiat = fiat.upper()
return fiat in self.SUPPORTED_FIAT
return fiat in SUPPORTED_FIAT
def _find_price(self, crypto_symbol: str, fiat_symbol: str) -> float:
"""
@ -185,12 +182,17 @@ class CryptoToFiatConverter(object):
"""
# Check if the fiat convertion you want is supported
if not self._is_supported_fiat(fiat=fiat_symbol):
raise ValueError('The fiat {} is not supported.'.format(fiat_symbol))
raise ValueError(f'The fiat {fiat_symbol} is not supported.')
# No need to convert if both crypto and fiat are the same
if crypto_symbol == fiat_symbol:
return 1.0
if crypto_symbol not in self._cryptomap:
# return 0 for unsupported stake currencies (fiat-convert should not break the bot)
logger.warning("unsupported crypto-symbol %s - returning 0.0", crypto_symbol)
return 0.0
try:
return float(
self._coinmarketcap.ticker(
@ -198,6 +200,6 @@ class CryptoToFiatConverter(object):
convert=fiat_symbol
)['data']['quotes'][fiat_symbol.upper()]['price']
)
except BaseException as ex:
logger.error("Error in _find_price: %s", ex)
except BaseException as exception:
logger.error("Error in _find_price: %s", exception)
return 0.0

View File

@ -33,12 +33,11 @@ class FreqtradeBot(object):
This is from here the bot start its logic.
"""
def __init__(self, config: Dict[str, Any], db_url: Optional[str] = None):
def __init__(self, config: Dict[str, Any]) -> None:
"""
Init all variables and object the bot need to work
:param config: configuration dict, you can use the Configuration.get_config()
method to get the config dict.
:param db_url: database connector string for sqlalchemy (Optional)
"""
logger.info(
@ -51,26 +50,22 @@ class FreqtradeBot(object):
# Init objects
self.config = config
self.analyze = None
self.fiat_converter = None
self.rpc = None
self.analyze = Analyze(self.config)
self.fiat_converter = CryptoToFiatConverter()
self.rpc: RPCManager = RPCManager(self)
self.persistence = None
self.exchange = None
self._init_modules(db_url=db_url)
self._init_modules()
def _init_modules(self, db_url: Optional[str] = None) -> None:
def _init_modules(self) -> None:
"""
Initializes all modules and updates the config
:param db_url: database connector string for sqlalchemy (Optional)
:return: None
"""
# Initialize all modules
self.analyze = Analyze(self.config)
self.fiat_converter = CryptoToFiatConverter()
self.rpc = RPCManager(self)
persistence.init(self.config, db_url)
persistence.init(self.config)
exchange.init(self.config)
# Set initial application state
@ -81,19 +76,16 @@ class FreqtradeBot(object):
else:
self.state = State.STOPPED
def clean(self) -> bool:
def cleanup(self) -> None:
"""
Cleanup the application state und finish all pending tasks
Cleanup pending resources on an already stopped bot
:return: None
"""
self.rpc.send_msg('*Status:* `Stopping trader...`')
logger.info('Stopping trader and cleaning up modules...')
self.state = State.STOPPED
logger.info('Cleaning up modules ...')
self.rpc.cleanup()
persistence.cleanup()
return True
def worker(self, old_state: None) -> State:
def worker(self, old_state: State = None) -> State:
"""
Trading routine that must be run at each loop
:param old_state: the previous service state from the previous call
@ -102,7 +94,7 @@ class FreqtradeBot(object):
# Log state transition
state = self.state
if state != old_state:
self.rpc.send_msg('*Status:* `{}`'.format(state.name.lower()))
self.rpc.send_msg(f'*Status:* `{state.name.lower()}`')
logger.info('Changing state to: %s', state.name)
if state == State.STOPPED:
@ -176,12 +168,10 @@ class FreqtradeBot(object):
logger.warning('%s, retrying in 30 seconds...', error)
time.sleep(constants.RETRY_TIMEOUT)
except OperationalException:
tb = traceback.format_exc()
hint = 'Issue `/start` if you think it is safe to restart.'
self.rpc.send_msg(
'*Status:* OperationalException:\n```\n{traceback}```{hint}'
.format(
traceback=traceback.format_exc(),
hint='Issue `/start` if you think it is safe to restart.'
)
f'*Status:* OperationalException:\n```\n{tb}```{hint}'
)
logger.exception('OperationalException. Stopping trader ...')
self.state = State.STOPPED
@ -244,27 +234,36 @@ class FreqtradeBot(object):
return final_list
def get_target_bid(self, ticker: Dict[str, float]) -> float:
def get_target_bid(self, pair: str) -> float:
"""
Calculates bid target between current ask price and last price
:param ticker: Ticker to use for getting Ask and Last Price
:return: float: Price
"""
if ticker['ask'] < ticker['last']:
return ticker['ask']
balance = self.config['bid_strategy']['ask_last_balance']
return ticker['ask'] + balance * (ticker['last'] - ticker['ask'])
if self.config['bid_strategy']['use_book_order']:
logger.info('Getting price from Order Book')
orderBook = exchange.get_order_book(pair)
return orderBook['bids'][self.config['bid_strategy']['book_order_top']][0]
else:
logger.info('Using Ask / Last Price')
ticker = exchange.get_ticker(pair);
if ticker['ask'] < ticker['last']:
return ticker['ask']
balance = self.config['bid_strategy']['ask_last_balance']
return ticker['ask'] + balance * (ticker['last'] - ticker['ask'])
def create_trade(self) -> bool:
"""
Checks the implemented trading indicator(s) for a randomly picked pair,
if one pair triggers the buy_signal a new trade record gets created
:param stake_amount: amount of btc to spend
:param interval: Ticker interval used for Analyze
:return: True if a trade object has been created and persisted, False otherwise
"""
stake_amount = self.config['stake_amount']
interval = self.analyze.get_ticker_interval()
stake_currency = self.config['stake_currency']
fiat_currency = self.config['fiat_display_currency']
exc_name = exchange.get_name()
logger.info(
'Checking buy signals to create a new trade with stake_amount: %f ...',
@ -272,10 +271,9 @@ class FreqtradeBot(object):
)
whitelist = copy.deepcopy(self.config['exchange']['pair_whitelist'])
# Check if stake_amount is fulfilled
if exchange.get_balance(self.config['stake_currency']) < stake_amount:
if exchange.get_balance(stake_currency) < stake_amount:
raise DependencyException(
'stake amount is not fulfilled (currency={})'.format(self.config['stake_currency'])
)
f'stake amount is not fulfilled (currency={stake_currency})')
# Remove currently opened and latest pairs from whitelist
for trade in Trade.query.filter(Trade.is_open.is_(True)).all():
@ -294,32 +292,25 @@ class FreqtradeBot(object):
break
else:
return False
pair_s = pair.replace('_', '/')
pair_url = exchange.get_pair_detail_url(pair)
# Calculate amount
buy_limit = self.get_target_bid(exchange.get_ticker(pair))
buy_limit = self.get_target_bid(pair)
amount = stake_amount / buy_limit
order_id = exchange.buy(pair, buy_limit, amount)['id']
stake_amount_fiat = self.fiat_converter.convert_amount(
stake_amount,
self.config['stake_currency'],
self.config['fiat_display_currency']
stake_currency,
fiat_currency
)
# Create trade entity and return
self.rpc.send_msg(
'*{}:* Buying [{}]({}) with limit `{:.8f} ({:.6f} {}, {:.3f} {})` '
.format(
exchange.get_name(),
pair.replace('_', '/'),
exchange.get_pair_detail_url(pair),
buy_limit,
stake_amount,
self.config['stake_currency'],
stake_amount_fiat,
self.config['fiat_display_currency']
)
f"""*{exc_name}:* Buying [{pair_s}]({pair_url}) \
with limit `{buy_limit:.8f} ({stake_amount:.6f} \
{stake_currency}, {stake_amount_fiat:.3f} {fiat_currency})`"""
)
# Fee is applied twice because we make a LIMIT_BUY and LIMIT_SELL
fee = exchange.get_fee(symbol=pair, taker_or_maker='maker')
@ -420,12 +411,12 @@ class FreqtradeBot(object):
fee_abs += exectrade['fee']['cost']
if amount != order_amount:
logger.warning("amount {} does not match amount {}".format(amount, trade.amount))
logger.warning(f"amount {amount} does not match amount {trade.amount}")
raise OperationalException("Half bought? Amounts don't match")
real_amount = amount - fee_abs
if fee_abs != 0:
logger.info("Applying fee on amount for {} (from {} to {}) from Trades".format(
trade, order['amount'], real_amount))
logger.info(f"""Applying fee on amount for {trade} \
(from {order_amount} to {real_amount}) from Trades""")
return real_amount
def handle_trade(self, trade: Trade) -> bool:
@ -434,22 +425,39 @@ class FreqtradeBot(object):
:return: True if trade has been sold, False otherwise
"""
if not trade.is_open:
raise ValueError('attempt to handle closed trade: {}'.format(trade))
raise ValueError(f'attempt to handle closed trade: {trade}')
logger.debug('Handling %s ...', trade)
current_rate = exchange.get_ticker(trade.pair)['bid']
sell_rate = exchange.get_ticker(trade.pair)['bid']
(buy, sell) = (False, False)
if self.config.get('experimental', {}).get('use_sell_signal'):
(buy, sell) = self.analyze.get_signal(trade.pair, self.analyze.get_ticker_interval())
if self.analyze.should_sell(trade, current_rate, datetime.utcnow(), buy, sell):
self.execute_sell(trade, current_rate)
return True
if self.config['ask_strategy']['use_book_order']:
logger.info('Using order book for selling...')
orderBook = exchange.get_order_book(trade.pair)
# logger.debug('Order book %s',orderBook)
for i in range(self.config['ask_strategy']['book_order_min'],
self.config['ask_strategy']['book_order_max'] + 1):
sell_rate = orderBook['asks'][i - 1][0]
if self.check_sell(trade, sell_rate, buy, sell):
return True
break
else:
if self.check_sell(trade, sell_rate, buy, sell):
return True
logger.info('Found no sell signals for whitelisted currencies. Trying again..')
return False
def check_sell(self, trade: Trade, sell_rate: float, buy: bool, sell: bool) -> bool:
if self.analyze.should_sell(trade, sell_rate, datetime.utcnow(), buy, sell):
self.execute_sell(trade, sell_rate)
return True
return False
def check_handle_timedout(self, timeoutvalue: int) -> None:
"""
Check if any orders are timed out and cancel if neccessary
@ -460,6 +468,12 @@ class FreqtradeBot(object):
for trade in Trade.query.filter(Trade.open_order_id.isnot(None)).all():
try:
# FIXME: Somehow the query above returns results
# where the open_order_id is in fact None.
# This is probably because the record got
# updated via /forcesell in a different thread.
if not trade.open_order_id:
continue
order = exchange.get_order(trade.open_order_id, trade.pair)
except requests.exceptions.RequestException:
logger.info(
@ -469,10 +483,11 @@ class FreqtradeBot(object):
continue
ordertime = arrow.get(order['datetime']).datetime
print(order)
# Check if trade is still actually open
if int(order['remaining']) == 0:
continue
# this makes no real sense and causes errors!
#
# if (filled(int(order['filled']) == 0) and (order['status'] == 'open'):
if order['side'] == 'buy' and ordertime < timeoutthreashold:
self.handle_timedout_limit_buy(trade, order)
elif order['side'] == 'sell' and ordertime < timeoutthreashold:
@ -485,16 +500,14 @@ class FreqtradeBot(object):
"""Buy timeout - cancel order
:return: True if order was fully cancelled
"""
pair_s = trade.pair.replace('_', '/')
exchange.cancel_order(trade.open_order_id, trade.pair)
if order['remaining'] == order['amount']:
# if trade is not partially completed, just delete the trade
Trade.session.delete(trade)
# FIX? do we really need to flush, caller of
# check_handle_timedout will flush afterwards
Trade.session.flush()
logger.info('Buy order timeout for %s.', trade)
self.rpc.send_msg('*Timeout:* Unfilled buy order for {} cancelled'.format(
trade.pair.replace('_', '/')))
self.rpc.send_msg(f'*Timeout:* Unfilled buy order for {pair_s} cancelled')
return True
# if trade is partially complete, edit the stake details for the trade
@ -503,8 +516,7 @@ class FreqtradeBot(object):
trade.stake_amount = trade.amount * trade.open_rate
trade.open_order_id = None
logger.info('Partial buy order timeout for %s.', trade)
self.rpc.send_msg('*Timeout:* Remaining buy order for {} cancelled'.format(
trade.pair.replace('_', '/')))
self.rpc.send_msg(f'*Timeout:* Remaining buy order for {pair_s} cancelled')
return False
# FIX: 20180110, should cancel_order() be cond. or unconditionally called?
@ -513,6 +525,7 @@ class FreqtradeBot(object):
Sell timeout - cancel order and update trade
:return: True if order was fully cancelled
"""
pair_s = trade.pair.replace('_', '/')
if order['remaining'] == order['amount']:
# if trade is not partially completed, just cancel the trade
exchange.cancel_order(trade.open_order_id, trade.pair)
@ -521,8 +534,7 @@ class FreqtradeBot(object):
trade.close_date = None
trade.is_open = True
trade.open_order_id = None
self.rpc.send_msg('*Timeout:* Unfilled sell order for {} cancelled'.format(
trade.pair.replace('_', '/')))
self.rpc.send_msg(f'*Timeout:* Unfilled sell order for {pair_s} cancelled')
logger.info('Sell order timeout for %s.', trade)
return True
@ -536,6 +548,8 @@ class FreqtradeBot(object):
:param limit: limit rate for the sell order
:return: None
"""
exc = trade.exchange
pair = trade.pair
# Execute sell and update trade record
order_id = exchange.sell(str(trade.pair), limit, trade.amount)['id']
trade.open_order_id = order_id
@ -545,43 +559,31 @@ class FreqtradeBot(object):
profit_trade = trade.calc_profit(rate=limit)
current_rate = exchange.get_ticker(trade.pair)['bid']
profit = trade.calc_profit_percent(limit)
pair_url = exchange.get_pair_detail_url(trade.pair)
gain = "profit" if fmt_exp_profit > 0 else "loss"
message = "*{exchange}:* Selling\n" \
"*Current Pair:* [{pair}]({pair_url})\n" \
"*Limit:* `{limit}`\n" \
"*Amount:* `{amount}`\n" \
"*Open Rate:* `{open_rate:.8f}`\n" \
"*Current Rate:* `{current_rate:.8f}`\n" \
"*Profit:* `{profit:.2f}%`" \
"".format(
exchange=trade.exchange,
pair=trade.pair,
pair_url=exchange.get_pair_detail_url(trade.pair),
limit=limit,
open_rate=trade.open_rate,
current_rate=current_rate,
amount=round(trade.amount, 8),
profit=round(profit * 100, 2),
)
message = f"*{exc}:* Selling\n" \
f"*Current Pair:* [{pair}]({pair_url})\n" \
f"*Limit:* `{limit}`\n" \
f"*Amount:* `{round(trade.amount, 8)}`\n" \
f"*Open Rate:* `{trade.open_rate:.8f}`\n" \
f"*Current Rate:* `{current_rate:.8f}`\n" \
f"*Profit:* `{round(profit * 100, 2):.2f}%`" \
""
# For regular case, when the configuration exists
if 'stake_currency' in self.config and 'fiat_display_currency' in self.config:
stake = self.config['stake_currency']
fiat = self.config['fiat_display_currency']
fiat_converter = CryptoToFiatConverter()
profit_fiat = fiat_converter.convert_amount(
profit_trade,
self.config['stake_currency'],
self.config['fiat_display_currency']
stake,
fiat
)
message += '` ({gain}: {profit_percent:.2f}%, {profit_coin:.8f} {coin}`' \
'` / {profit_fiat:.3f} {fiat})`' \
''.format(
gain="profit" if fmt_exp_profit > 0 else "loss",
profit_percent=fmt_exp_profit,
profit_coin=profit_trade,
coin=self.config['stake_currency'],
profit_fiat=profit_fiat,
fiat=self.config['fiat_display_currency'],
)
message += f'` ({gain}: {fmt_exp_profit:.2f}%, {profit_trade:.8f} {stake}`' \
f'` / {profit_fiat:.3f} {fiat})`' \
''
# Because telegram._forcesell does not have the configuration
# Ignore the FIAT value and does not show the stake_currency as well
else:

View File

@ -13,7 +13,7 @@ def went_down(series: Series) -> bool:
return series < series.shift(1)
def ehlers_super_smoother(series: Series, smoothing: float = 6) -> type(Series):
def ehlers_super_smoother(series: Series, smoothing: float = 6) -> Series:
magic = pi * sqrt(2) / smoothing
a1 = exp(-magic)
coeff2 = 2 * a1 * cos(magic)

View File

@ -5,11 +5,14 @@ Read the documentation to know what cli arguments you need.
"""
import logging
import sys
from argparse import Namespace
from typing import List
from freqtrade import OperationalException
from freqtrade.arguments import Arguments
from freqtrade.configuration import Configuration
from freqtrade.freqtradebot import FreqtradeBot
from freqtrade.state import State
logger = logging.getLogger('freqtrade')
@ -43,24 +46,48 @@ def main(sysargv: List[str]) -> None:
state = None
while 1:
state = freqtrade.worker(old_state=state)
if state == State.RELOAD_CONF:
freqtrade = reconfigure(freqtrade, args)
except KeyboardInterrupt:
logger.info('SIGINT received, aborting ...')
return_code = 0
except OperationalException as e:
logger.error(str(e))
return_code = 2
except BaseException:
logger.exception('Fatal exception!')
finally:
if freqtrade:
freqtrade.clean()
freqtrade.rpc.send_msg('*Status:* `Process died ...`')
freqtrade.cleanup()
sys.exit(return_code)
def reconfigure(freqtrade: FreqtradeBot, args: Namespace) -> FreqtradeBot:
"""
Cleans up current instance, reloads the configuration and returns the new instance
"""
# Clean up current modules
freqtrade.cleanup()
# Create new instance
freqtrade = FreqtradeBot(Configuration(args).get_config())
freqtrade.rpc.send_msg(
'*Status:* `Config reloaded ...`'.format(
freqtrade.state.name.lower()
)
)
return freqtrade
def set_loggers() -> None:
"""
Set the logger level for Third party libs
:return: None
"""
logging.getLogger('requests.packages.urllib3').setLevel(logging.INFO)
logging.getLogger('ccxt.base.exchange').setLevel(logging.INFO)
logging.getLogger('telegram').setLevel(logging.INFO)

View File

@ -83,7 +83,7 @@ def file_dump_json(filename, data, is_zip=False) -> None:
json.dump(data, fp, default=str)
def format_ms_time(date: str) -> str:
def format_ms_time(date: int) -> str:
"""
convert MS date to readable format.
: epoch-string in ms

View File

@ -4,44 +4,45 @@ import gzip
import json
import logging
import os
from typing import Optional, List, Dict, Tuple, Any
import arrow
from typing import Optional, List, Dict, Tuple
from freqtrade import misc, constants
from freqtrade.exchange import get_ticker_history
from freqtrade.arguments import TimeRange
from user_data.hyperopt_conf import hyperopt_optimize_conf
logger = logging.getLogger(__name__)
def trim_tickerlist(tickerlist: List[Dict], timerange: Tuple[Tuple, int, int]) -> List[Dict]:
def trim_tickerlist(tickerlist: List[Dict], timerange: TimeRange) -> List[Dict]:
if not tickerlist:
return tickerlist
stype, start, stop = timerange
start_index = 0
stop_index = len(tickerlist)
if stype[0] == 'line':
stop_index = start
if stype[0] == 'index':
start_index = start
elif stype[0] == 'date':
while tickerlist[start_index][0] < start * 1000:
if timerange.starttype == 'line':
stop_index = timerange.startts
if timerange.starttype == 'index':
start_index = timerange.startts
elif timerange.starttype == 'date':
while (start_index < len(tickerlist) and
tickerlist[start_index][0] < timerange.startts * 1000):
start_index += 1
if stype[1] == 'line':
start_index = len(tickerlist) + stop
if stype[1] == 'index':
stop_index = stop
elif stype[1] == 'date':
while tickerlist[stop_index-1][0] > stop * 1000:
if timerange.stoptype == 'line':
start_index = len(tickerlist) + timerange.stopts
if timerange.stoptype == 'index':
stop_index = timerange.stopts
elif timerange.stoptype == 'date':
while (stop_index > 0 and
tickerlist[stop_index-1][0] > timerange.stopts * 1000):
stop_index -= 1
if start_index > stop_index:
raise ValueError(f'The timerange [{start},{stop}] is incorrect')
raise ValueError(f'The timerange [{timerange.startts},{timerange.stopts}] is incorrect')
return tickerlist[start_index:stop_index]
@ -49,7 +50,7 @@ def trim_tickerlist(tickerlist: List[Dict], timerange: Tuple[Tuple, int, int]) -
def load_tickerdata_file(
datadir: str, pair: str,
ticker_interval: str,
timerange: Optional[Tuple[Tuple, int, int]] = None) -> Optional[List[Dict]]:
timerange: Optional[TimeRange] = None) -> Optional[List[Dict]]:
"""
Load a pair from file,
:return dict OR empty if unsuccesful
@ -84,7 +85,7 @@ def load_data(datadir: str,
ticker_interval: str,
pairs: Optional[List[str]] = None,
refresh_pairs: Optional[bool] = False,
timerange: Optional[Tuple[Tuple, int, int]] = None) -> Dict[str, List]:
timerange: TimeRange = TimeRange(None, None, 0, 0)) -> Dict[str, List]:
"""
Loads ticker history data for the given parameters
:return: dict
@ -100,15 +101,16 @@ def load_data(datadir: str,
for pair in _pairs:
pairdata = load_tickerdata_file(datadir, pair, ticker_interval, timerange=timerange)
if not pairdata:
# download the tickerdata from exchange
download_backtesting_testdata(datadir,
pair=pair,
tick_interval=ticker_interval,
timerange=timerange)
# and retry reading the pair
pairdata = load_tickerdata_file(datadir, pair, ticker_interval, timerange=timerange)
result[pair] = pairdata
if pairdata:
result[pair] = pairdata
else:
logger.warning(
'No data for pair: "%s", Interval: %s. '
'Use --refresh-pairs-cached to download the data',
pair,
ticker_interval
)
return result
@ -123,7 +125,7 @@ def make_testdata_path(datadir: str) -> str:
def download_pairs(datadir, pairs: List[str],
ticker_interval: str,
timerange: Optional[Tuple[Tuple, int, int]] = None) -> bool:
timerange: TimeRange = TimeRange(None, None, 0, 0)) -> bool:
"""For each pairs passed in parameters, download the ticker intervals"""
for pair in pairs:
try:
@ -143,7 +145,9 @@ def download_pairs(datadir, pairs: List[str],
def load_cached_data_for_updating(filename: str,
tick_interval: str,
timerange: Optional[Tuple[Tuple, int, int]]) -> Tuple[list, int]:
timerange: Optional[TimeRange]) -> Tuple[
List[Any],
Optional[int]]:
"""
Load cached data and choose what part of the data should be updated
"""
@ -152,10 +156,10 @@ def load_cached_data_for_updating(filename: str,
# user sets timerange, so find the start time
if timerange:
if timerange[0][0] == 'date':
since_ms = timerange[1] * 1000
elif timerange[0][1] == 'line':
num_minutes = timerange[2] * constants.TICKER_INTERVAL_MINUTES[tick_interval]
if timerange.starttype == 'date':
since_ms = timerange.startts * 1000
elif timerange.stoptype == 'line':
num_minutes = timerange.stopts * constants.TICKER_INTERVAL_MINUTES[tick_interval]
since_ms = arrow.utcnow().shift(minutes=num_minutes).timestamp * 1000
# read the cached file
@ -185,7 +189,7 @@ def load_cached_data_for_updating(filename: str,
def download_backtesting_testdata(datadir: str,
pair: str,
tick_interval: str = '5m',
timerange: Optional[Tuple[Tuple, int, int]] = None) -> None:
timerange: Optional[TimeRange] = None) -> None:
"""
Download the latest ticker intervals from the exchange for the pairs passed in parameters

View File

@ -34,18 +34,6 @@ class Backtesting(object):
def __init__(self, config: Dict[str, Any]) -> None:
self.config = config
self.analyze = None
self.ticker_interval = None
self.tickerdata_to_dataframe = None
self.populate_buy_trend = None
self.populate_sell_trend = None
self._init()
def _init(self) -> None:
"""
Init objects required for backtesting
:return: None
"""
self.analyze = Analyze(self.config)
self.ticker_interval = self.analyze.strategy.ticker_interval
self.tickerdata_to_dataframe = self.analyze.tickerdata_to_dataframe
@ -79,9 +67,9 @@ class Backtesting(object):
Generates and returns a text table for the given backtest data and the results dataframe
:return: pretty printed table with tabulate as str
"""
floatfmt, headers, tabular_data = self.aggregate(data, results)
return tabulate(tabular_data, headers=headers, floatfmt=floatfmt)
floatfmt, headers, tabular_data = self.aggregate(data, results)
return tabulate(tabular_data, headers=headers, floatfmt=floatfmt, tablefmt="pipe")
def aggregate(self, data, results):
stake_currency = self.config.get('stake_currency')
@ -91,6 +79,7 @@ class Backtesting(object):
'total profit ' + stake_currency, 'avg duration', 'profit', 'loss']
for pair in data:
result = results[results.currency == pair]
print(results)
tabular_data.append([
pair,
len(result.index),
@ -174,13 +163,22 @@ class Backtesting(object):
max_open_trades = args.get('max_open_trades', 0)
realistic = args.get('realistic', False)
record = args.get('record', None)
recordfilename = args.get('recordfn', 'backtest-result.json')
records = []
trades = []
trade_count_lock = {}
trade_count_lock: Dict = {}
for pair, pair_data in processed.items():
pair_data['buy'], pair_data['sell'] = 0, 0 # cleanup from previous run
ticker_data = self.populate_sell_trend(self.populate_buy_trend(pair_data))[headers]
ticker_data = self.populate_sell_trend(
self.populate_buy_trend(pair_data))[headers].copy()
# to avoid using data from future, we buy/sell with signal from previous candle
ticker_data.loc[:, 'buy'] = ticker_data['buy'].shift(1)
ticker_data.loc[:, 'sell'] = ticker_data['sell'].shift(1)
ticker_data.drop(ticker_data.head(1).index, inplace=True)
ticker = [x for x in ticker_data.itertuples()]
lock_pair_until = None
@ -217,7 +215,8 @@ class Backtesting(object):
# For now export inside backtest(), maybe change so that backtest()
# returns a tuple like: (dataframe, records, logs, etc)
if record and record.find('trades') >= 0:
logger.info('Dumping backtest results')
logger.info('Dumping backtest results to %s', recordfilename)
file_dump_json(recordfilename, records)
file_dump_json('backtest-result.json', records)
labels = ['currency', 'profit_percent', 'profit_BTC', 'duration', 'entry', 'exit']
@ -240,7 +239,8 @@ class Backtesting(object):
else:
logger.info('Using local backtesting data (using whitelist in given config) ...')
timerange = Arguments.parse_timerange(self.config.get('timerange'))
timerange = Arguments.parse_timerange(None if self.config.get(
'timerange') is None else str(self.config.get('timerange')))
data = optimize.load_data(
self.config['datadir'],
pairs=pairs,
@ -249,6 +249,9 @@ class Backtesting(object):
timerange=timerange
)
if not data:
logger.critical("No data found. Terminating.")
return
# Ignore max_open_trades in backtesting, except realistic flag was passed
if self.config.get('realistic_simulation', False):
max_open_trades = self.config['max_open_trades']
@ -278,7 +281,8 @@ class Backtesting(object):
'realistic': self.config.get('realistic_simulation', False),
'sell_profit_only': sell_profit_only,
'use_sell_signal': use_sell_signal,
'record': self.config.get('export')
'record': self.config.get('export'),
'recordfn': self.config.get('exportfilename'),
}
)
logger.info(

View File

@ -14,7 +14,7 @@ from argparse import Namespace
from functools import reduce
from math import exp
from operator import itemgetter
from typing import Dict, Any, Callable
from typing import Dict, Any, Callable, Optional
import numpy
import talib.abstract as ta
@ -60,7 +60,7 @@ class Hyperopt(Backtesting):
self.expected_max_profit = 3.0
# Configuration and data used by hyperopt
self.processed = None
self.processed: Optional[Dict[str, Any]] = None
# Hyperopt Trials
self.trials_file = os.path.join('user_data', 'hyperopt_trials.pickle')
@ -344,7 +344,7 @@ class Hyperopt(Backtesting):
"""
Return the space to use during Hyperopt
"""
spaces = {}
spaces: Dict = {}
if self.has_space('buy'):
spaces = {**spaces, **Hyperopt.indicator_space()}
if self.has_space('roi'):
@ -455,6 +455,7 @@ class Hyperopt(Backtesting):
if trade_count == 0 or trade_duration > self.max_accepted_trade_duration:
print('.', end='')
sys.stdout.flush()
return {
'status': STATUS_FAIL,
'loss': float('inf')
@ -479,31 +480,32 @@ class Hyperopt(Backtesting):
'result': result_explanation,
}
@staticmethod
def format_results(results: DataFrame) -> str:
def format_results(self, results: DataFrame) -> str:
"""
Return the format result in a string
"""
return ('{:6d} trades. Avg profit {: 5.2f}%. '
'Total profit {: 11.8f} BTC ({:.4f}Σ%). Avg duration {:5.1f} mins.').format(
'Total profit {: 11.8f} {} ({:.4f}Σ%). Avg duration {:5.1f} mins.').format(
len(results.index),
results.profit_percent.mean() * 100.0,
results.profit_BTC.sum(),
self.config['stake_currency'],
results.profit_percent.sum(),
results.duration.mean(),
)
def start(self) -> None:
timerange = Arguments.parse_timerange(self.config.get('timerange'))
timerange = Arguments.parse_timerange(None if self.config.get(
'timerange') is None else str(self.config.get('timerange')))
data = load_data(
datadir=self.config.get('datadir'),
datadir=str(self.config.get('datadir')),
pairs=self.config['exchange']['pair_whitelist'],
ticker_interval=self.ticker_interval,
timerange=timerange
)
if self.has_space('buy'):
self.analyze.populate_indicators = Hyperopt.populate_indicators
self.analyze.populate_indicators = Hyperopt.populate_indicators # type: ignore
self.processed = self.tickerdata_to_dataframe(data)
if self.config.get('mongodb'):

View File

@ -5,48 +5,54 @@ This module contains the class to persist trades into SQLite
import logging
from datetime import datetime
from decimal import Decimal, getcontext
from typing import Dict, Optional
from typing import Dict, Optional, Any
import arrow
from sqlalchemy import (Boolean, Column, DateTime, Float, Integer, String,
create_engine)
from sqlalchemy.engine import Engine
from sqlalchemy import inspect
from sqlalchemy.exc import NoSuchModuleError
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm.scoping import scoped_session
from sqlalchemy.orm.session import sessionmaker
from sqlalchemy.pool import StaticPool
from sqlalchemy import inspect
from freqtrade import OperationalException
logger = logging.getLogger(__name__)
_CONF = {}
_DECL_BASE = declarative_base()
_DECL_BASE: Any = declarative_base()
def init(config: dict, engine: Optional[Engine] = None) -> None:
def init(config: Dict) -> None:
"""
Initializes this module with the given config,
registers all known command handlers
and starts polling for message updates
:param config: config to use
:param engine: database engine for sqlalchemy (Optional)
:return: None
"""
_CONF.update(config)
if not engine:
if _CONF.get('dry_run', False):
# the user wants dry run to use a DB
if _CONF.get('dry_run_db', False):
engine = create_engine('sqlite:///tradesv3.dry_run.sqlite')
# Otherwise dry run will store in memory
else:
engine = create_engine('sqlite://',
connect_args={'check_same_thread': False},
poolclass=StaticPool,
echo=False)
else:
engine = create_engine('sqlite:///tradesv3.sqlite')
db_url = _CONF.get('db_url', None)
kwargs = {}
# Take care of thread ownership if in-memory db
if db_url == 'sqlite://':
kwargs.update({
'connect_args': {'check_same_thread': False},
'poolclass': StaticPool,
'echo': False,
})
try:
engine = create_engine(db_url, **kwargs)
except NoSuchModuleError:
error = 'Given value for db_url: \'{}\' is no valid database URL! (See {}).'.format(
db_url, 'http://docs.sqlalchemy.org/en/latest/core/engines.html#database-urls'
)
raise OperationalException(error)
session = scoped_session(sessionmaker(bind=engine, autoflush=True, autocommit=True))
Trade.session = session()
@ -54,8 +60,8 @@ def init(config: dict, engine: Optional[Engine] = None) -> None:
_DECL_BASE.metadata.create_all(engine)
check_migrate(engine)
# Clean dry_run DB
if _CONF.get('dry_run', False) and _CONF.get('dry_run_db', False):
# Clean dry_run DB if the db is not in-memory
if _CONF.get('dry_run', False) and db_url != 'sqlite://':
clean_dry_run_db()
@ -149,11 +155,11 @@ class Trade(_DECL_BASE):
close_date = Column(DateTime)
open_order_id = Column(String)
# absolute value of the stop loss
stop_loss = Column(Float, nullable=False, default=0.0)
stop_loss = Column(Float, nullable=True, default=0.0)
# absolute value of the initial stop loss
initial_stop_loss = Column(Float, nullable=False, default=0.0)
initial_stop_loss = Column(Float, nullable=True, default=0.0)
# absolute value of the highest reached price
max_rate = Column(Float, nullable=False, default=0.0)
max_rate = Column(Float, nullable=True, default=0.0)
def __repr__(self):
return 'Trade(id={}, pair={}, amount={:.8f}, open_rate={:.8f}, open_since={})'.format(

View File

@ -2,13 +2,14 @@
This module contains class to define a RPC communications
"""
import logging
from datetime import datetime, timedelta
from datetime import datetime, timedelta, date
from decimal import Decimal
from typing import Tuple, Any
from typing import Dict, Tuple, Any
import arrow
import sqlalchemy as sql
from pandas import DataFrame
from numpy import mean, nan_to_num
from freqtrade import exchange
from freqtrade.misc import shorten_date
@ -117,7 +118,7 @@ class RPC(object):
self, timescale: int,
stake_currency: str, fiat_display_currency: str) -> Tuple[bool, Any]:
today = datetime.utcnow().date()
profit_days = {}
profit_days: Dict[date, Dict] = {}
if not (isinstance(timescale, int) and timescale > 0):
return True, '*Daily [n]:* `must be an integer greater than 0`'
@ -175,7 +176,7 @@ class RPC(object):
durations = []
for trade in trades:
current_rate = None
current_rate: float = 0.0
if not trade.open_rate:
continue
@ -212,14 +213,14 @@ class RPC(object):
fiat = self.freqtrade.fiat_converter
# Prepare data to display
profit_closed_coin = round(sum(profit_closed_coin), 8)
profit_closed_percent = round(sum(profit_closed_percent) * 100, 2)
profit_closed_percent = round(nan_to_num(mean(profit_closed_percent)) * 100, 2)
profit_closed_fiat = fiat.convert_amount(
profit_closed_coin,
stake_currency,
fiat_display_currency
)
profit_all_coin = round(sum(profit_all_coin), 8)
profit_all_percent = round(sum(profit_all_percent) * 100, 2)
profit_all_percent = round(nan_to_num(mean(profit_all_percent)) * 100, 2)
profit_all_fiat = fiat.convert_amount(
profit_all_coin,
stake_currency,
@ -281,7 +282,7 @@ class RPC(object):
value = fiat.convert_amount(total, 'BTC', symbol)
return False, (output, total, symbol, value)
def rpc_start(self) -> (bool, str):
def rpc_start(self) -> Tuple[bool, str]:
"""
Handler for start.
"""
@ -291,7 +292,7 @@ class RPC(object):
self.freqtrade.state = State.RUNNING
return False, '`Starting trader ...`'
def rpc_stop(self) -> (bool, str):
def rpc_stop(self) -> Tuple[bool, str]:
"""
Handler for stop.
"""
@ -301,6 +302,11 @@ class RPC(object):
return True, '*Status:* `already stopped`'
def rpc_reload_conf(self) -> str:
""" Handler for reload_conf. """
self.freqtrade.state = State.RELOAD_CONF
return '*Status:* `Reloading config ...`'
# FIX: no test for this!!!!
def rpc_forcesell(self, trade_id) -> Tuple[bool, Any]:
"""
@ -319,8 +325,10 @@ class RPC(object):
and order['side'] == 'buy':
exchange.cancel_order(trade.open_order_id, trade.pair)
trade.close(order.get('price') or trade.open_rate)
# TODO: sell amount which has been bought already
return
# Do the best effort, if we don't know 'filled' amount, don't try selling
if order['filled'] is None:
return
trade.amount = order['filled']
# Ignore trades with an attached LIMIT_SELL order
if order and order['status'] == 'open' \
@ -354,6 +362,7 @@ class RPC(object):
return True, 'Invalid argument.'
_exec_forcesell(trade)
Trade.session.flush()
return False, ''
def rpc_performance(self) -> Tuple[bool, Any]:

View File

@ -1,6 +1,7 @@
"""
This module contains class to manage RPC communications (Telegram, Slack, ...)
"""
from typing import Any, List
import logging
from freqtrade.rpc.telegram import Telegram
@ -21,8 +22,8 @@ class RPCManager(object):
"""
self.freqtrade = freqtrade
self.registered_modules = []
self.telegram = None
self.registered_modules: List[str] = []
self.telegram: Any = None
self._init()
def _init(self) -> None:

View File

@ -18,7 +18,7 @@ from freqtrade.rpc.rpc import RPC
logger = logging.getLogger(__name__)
def authorized_only(command_handler: Callable[[Bot, Update], None]) -> Callable[..., Any]:
def authorized_only(command_handler: Callable[[Any, Bot, Update], None]) -> Callable[..., Any]:
"""
Decorator to check if the message comes from the correct chat_id
:param command_handler: Telegram CommandHandler
@ -65,7 +65,7 @@ class Telegram(RPC):
"""
super().__init__(freqtrade)
self._updater = None
self._updater: Updater = None
self._config = freqtrade.config
self._init()
@ -93,6 +93,7 @@ class Telegram(RPC):
CommandHandler('performance', self._performance),
CommandHandler('daily', self._daily),
CommandHandler('count', self._count),
CommandHandler('reload_conf', self._reload_conf),
CommandHandler('help', self._help),
CommandHandler('version', self._version),
]
@ -300,6 +301,18 @@ class Telegram(RPC):
(error, msg) = self.rpc_stop()
self.send_msg(msg, bot=bot)
@authorized_only
def _reload_conf(self, bot: Bot, update: Update) -> None:
"""
Handler for /reload_conf.
Triggers a config file reload
:param bot: telegram bot
:param update: message update
:return: None
"""
msg = self.rpc_reload_conf()
self.send_msg(msg, bot=bot)
@authorized_only
def _forcesell(self, bot: Bot, update: Update) -> None:
"""

View File

@ -8,7 +8,8 @@ import enum
class State(enum.Enum):
"""
Bot running states
Bot application states
"""
RUNNING = 0
STOPPED = 1
RELOAD_CONF = 2

View File

@ -2,7 +2,7 @@
IStrategy interface
This module defines the interface to apply for strategies
"""
from typing import Dict
from abc import ABC, abstractmethod
from pandas import DataFrame
@ -16,9 +16,13 @@ class IStrategy(ABC):
Attributes you can use:
minimal_roi -> Dict: Minimal ROI designed for the strategy
stoploss -> float: optimal stoploss designed for the strategy
ticker_interval -> int: value of the ticker interval to use for the strategy
ticker_interval -> str: value of the ticker interval to use for the strategy
"""
minimal_roi: Dict
stoploss: float
ticker_interval: str
@abstractmethod
def populate_indicators(self, dataframe: DataFrame) -> DataFrame:
"""

View File

@ -37,7 +37,8 @@ class StrategyResolver(object):
# Verify the strategy is in the configuration, otherwise fallback to the default strategy
strategy_name = config.get('strategy') or constants.DEFAULT_STRATEGY
self.strategy = self._load_strategy(strategy_name, extra_dir=config.get('strategy_path'))
self.strategy: IStrategy = self._load_strategy(strategy_name,
extra_dir=config.get('strategy_path'))
# Set attributes
# Check if we need to override configuration
@ -72,7 +73,7 @@ class StrategyResolver(object):
return self._load_strategy(strategy_name, temp.absolute())
def _load_strategy(
self, strategy_name: str, extra_dir: Optional[str] = None) -> Optional[IStrategy]:
self, strategy_name: str, extra_dir: Optional[str] = None) -> IStrategy:
"""
Search and loads the specified strategy.
:param strategy_name: name of the module to import
@ -91,7 +92,7 @@ class StrategyResolver(object):
# check if the given strategy is provided as name, value pair
# where the value is the strategy encoded in base 64
if ":" in strategy_name:
if ":" in strategy_name and "http" not in strategy_name:
strat = strategy_name.split(":")
if len(strat) == 2:
@ -113,13 +114,18 @@ class StrategyResolver(object):
resp = requests.get(strategy_name, stream=True)
if resp.status_code == 200:
temp = Path(tempfile.mkdtemp("freq", "strategy"))
if strategy_name.endswith("/code"):
strategy_name = strategy_name.replace("/code", "")
name = os.path.basename(urlparse(strategy_name).path)
temp.joinpath(name).write_text(resp.text)
temp.joinpath("{}.py".format(name)).write_text(resp.text)
temp.joinpath("__init__.py").touch()
strategy_name = os.path.splitext(name)[0]
print("stored downloaded stat at: {}".format(temp))
# register temp path with the bot
abs_paths.insert(0, temp.absolute())
@ -149,7 +155,7 @@ class StrategyResolver(object):
# Generate spec based on absolute path
spec = importlib.util.spec_from_file_location('user_data.strategies', module_path)
module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(module)
spec.loader.exec_module(module) # type: ignore # importlib does not use typehints
valid_strategies_gen = (
obj for name, obj in inspect.getmembers(module, inspect.isclass)

View File

@ -1,330 +0,0 @@
from base64 import urlsafe_b64encode
import os
import pytest
import simplejson as json
from datetime import datetime, timedelta
from freqtrade.aws.backtesting_lambda import backtest, cron, generate_configuration
from freqtrade.aws.strategy import submit
# @pytest.mark.skip(reason="no way of currently testing this")
def test_backtest_remote(lambda_context):
content = """# --- Do not remove these libs ---
from freqtrade.strategy.interface import IStrategy
from typing import Dict, List
from hyperopt import hp
from functools import reduce
from pandas import DataFrame
# --------------------------------
import talib.abstract as ta
import freqtrade.vendor.qtpylib.indicators as qtpylib
class TestStrategy(IStrategy):
minimal_roi = {
"0": 0.5
}
stoploss = -0.2
ticker_interval = '5m'
def populate_indicators(self, dataframe: DataFrame) -> DataFrame:
macd = ta.MACD(dataframe)
dataframe['maShort'] = ta.EMA(dataframe, timeperiod=8)
dataframe['maMedium'] = ta.EMA(dataframe, timeperiod=21)
return dataframe
def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:
dataframe.loc[
(
qtpylib.crossed_above(dataframe['maShort'], dataframe['maMedium'])
),
'buy'] = 1
return dataframe
def populate_sell_trend(self, dataframe: DataFrame) -> DataFrame:
dataframe.loc[
(
qtpylib.crossed_above(dataframe['maMedium'], dataframe['maShort'])
),
'sell'] = 1
return dataframe
"""
request = {
"user": "GCU4LW2XXZW3A3FM2XZJTEJHNWHTWDKY2DIJLCZJ5ULVZ4K7LZ7D23TG",
"description": "simple test strategy",
"name": "TestStrategy",
"content": urlsafe_b64encode(content.encode('utf-8')),
"public": False
}
# now we add an entry
submit({
"body": json.dumps(request)
}, {})
# build sns request
request = {
"user": "GCU4LW2XXZW3A3FM2XZJTEJHNWHTWDKY2DIJLCZJ5ULVZ4K7LZ7D23TG",
"name": "MyFancyTestStrategy",
"from": "20180401",
"till": "20180501",
"stake_currency": "usdt",
"assets": ["ltc"],
"local": False
}
assert backtest({
"Records": [
{
"Sns": {
"Subject": "backtesting",
"Message": json.dumps(request)
}
}]
}, {})['statusCode'] == 200
def test_backtest_time_frame(lambda_context):
content = """# --- Do not remove these libs ---
from freqtrade.strategy.interface import IStrategy
from typing import Dict, List
from hyperopt import hp
from functools import reduce
from pandas import DataFrame
# --------------------------------
import talib.abstract as ta
import freqtrade.vendor.qtpylib.indicators as qtpylib
class MyFancyTestStrategy(IStrategy):
minimal_roi = {
"0": 0.5
}
stoploss = -0.2
ticker_interval = '5m'
def populate_indicators(self, dataframe: DataFrame) -> DataFrame:
macd = ta.MACD(dataframe)
dataframe['maShort'] = ta.EMA(dataframe, timeperiod=8)
dataframe['maMedium'] = ta.EMA(dataframe, timeperiod=21)
return dataframe
def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:
dataframe.loc[
(
qtpylib.crossed_above(dataframe['maShort'], dataframe['maMedium'])
),
'buy'] = 1
return dataframe
def populate_sell_trend(self, dataframe: DataFrame) -> DataFrame:
dataframe.loc[
(
qtpylib.crossed_above(dataframe['maMedium'], dataframe['maShort'])
),
'sell'] = 1
return dataframe
"""
request = {
"user": "GCU4LW2XXZW3A3FM2XZJTEJHNWHTWDKY2DIJLCZJ5ULVZ4K7LZ7D23TG",
"description": "simple test strategy",
"name": "MyFancyTestStrategy",
"content": urlsafe_b64encode(content.encode('utf-8')),
"public": False
}
# now we add an entry
submit({
"body": json.dumps(request)
}, {})
# build sns request
request = {
"user": "GCU4LW2XXZW3A3FM2XZJTEJHNWHTWDKY2DIJLCZJ5ULVZ4K7LZ7D23TG",
"name": "MyFancyTestStrategy",
"from": "20180401",
"till": "20180501",
"stake_currency": "usdt",
"assets": ["ltc"],
"local": True
}
assert backtest({
"Records": [
{
"Sns": {
"Subject": "backtesting",
"Message": json.dumps(request)
}
}]
}, {})['statusCode'] == 200
def test_backtest(lambda_context):
content = """# --- Do not remove these libs ---
from freqtrade.strategy.interface import IStrategy
from typing import Dict, List
from hyperopt import hp
from functools import reduce
from pandas import DataFrame
# --------------------------------
import talib.abstract as ta
import freqtrade.vendor.qtpylib.indicators as qtpylib
class MyFancyTestStrategy(IStrategy):
minimal_roi = {
"0": 0.5
}
stoploss = -0.2
ticker_interval = '5m'
def populate_indicators(self, dataframe: DataFrame) -> DataFrame:
macd = ta.MACD(dataframe)
dataframe['maShort'] = ta.EMA(dataframe, timeperiod=8)
dataframe['maMedium'] = ta.EMA(dataframe, timeperiod=21)
return dataframe
def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:
dataframe.loc[
(
qtpylib.crossed_above(dataframe['maShort'], dataframe['maMedium'])
),
'buy'] = 1
return dataframe
def populate_sell_trend(self, dataframe: DataFrame) -> DataFrame:
dataframe.loc[
(
qtpylib.crossed_above(dataframe['maMedium'], dataframe['maShort'])
),
'sell'] = 1
return dataframe
"""
request = {
"user": "GCU4LW2XXZW3A3FM2XZJTEJHNWHTWDKY2DIJLCZJ5ULVZ4K7LZ7D23TG",
"description": "simple test strategy",
"name": "MyFancyTestStrategy",
"content": urlsafe_b64encode(content.encode('utf-8')),
"public": False
}
# now we add an entry
submit({
"body": json.dumps(request)
}, {})
# build sns request
request = {
"user": "GCU4LW2XXZW3A3FM2XZJTEJHNWHTWDKY2DIJLCZJ5ULVZ4K7LZ7D23TG",
"name": "MyFancyTestStrategy",
"stake_currency": "usdt",
"assets": ["ltc"],
"days": 2,
"ticker": '15m',
"local": True
}
assert backtest({
"Records": [
{
"Sns": {
"Subject": "backtesting",
"Message": json.dumps(request)
}
}]
}, {})['statusCode'] == 200
def test_cron(lambda_context):
""" test the scheduling to the queue"""
content = """# --- Do not remove these libs ---
from freqtrade.strategy.interface import IStrategy
from typing import Dict, List
from hyperopt import hp
from functools import reduce
from pandas import DataFrame
# --------------------------------
import talib.abstract as ta
import freqtrade.vendor.qtpylib.indicators as qtpylib
class MyFancyTestStrategy(IStrategy):
minimal_roi = {
"0": 0.5
}
stoploss = -0.2
ticker_interval = '5m'
def populate_indicators(self, dataframe: DataFrame) -> DataFrame:
macd = ta.MACD(dataframe)
dataframe['maShort'] = ta.EMA(dataframe, timeperiod=8)
dataframe['maMedium'] = ta.EMA(dataframe, timeperiod=21)
return dataframe
def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:
dataframe.loc[
(
qtpylib.crossed_above(dataframe['maShort'], dataframe['maMedium'])
),
'buy'] = 1
return dataframe
def populate_sell_trend(self, dataframe: DataFrame) -> DataFrame:
dataframe.loc[
(
qtpylib.crossed_above(dataframe['maMedium'], dataframe['maShort'])
),
'sell'] = 1
return dataframe
"""
request = {
"user": "GCU4LW2XXZW3A3FM2XZJTEJHNWHTWDKY2DIJLCZJ5ULVZ4K7LZ7D23TG",
"description": "simple test strategy",
"name": "MyFancyTestStrategy",
"content": urlsafe_b64encode(content.encode('utf-8')),
"public": False
}
# now we add an entry
submit({
"body": json.dumps(request)
}, {})
print("evaluating cron job")
cron({}, {})
# TODO test receiving of message some how
def test_generate_configuration(lambda_context):
os.environ["BASE_URL"] = "https://freq.isaac.international/dev"
till = datetime.today()
fromDate = till - timedelta(days=90)
config = generate_configuration(fromDate, till, "TestStrategy", True,
"GCU4LW2XXZW3A3FM2XZJTEJHNWHTWDKY2DIJLCZJ5ULVZ4K7LZ7D23TG", True)
print(config)

View File

@ -1,211 +0,0 @@
import simplejson as json
from base64 import urlsafe_b64encode
import freqtrade.aws.strategy as aws
import responses
def test_strategy(lambda_context):
"""
very ugly long test
:param lambda_context:
:return:
"""
content = """# --- Do not remove these libs ---
from freqtrade.strategy.interface import IStrategy
from typing import Dict, List
from hyperopt import hp
from functools import reduce
from pandas import DataFrame
# --------------------------------
import talib.abstract as ta
import freqtrade.vendor.qtpylib.indicators as qtpylib
class TestStrategy(IStrategy):
minimal_roi = {
"0": 0.5
}
stoploss = -0.2
ticker_interval = '5m'
def populate_indicators(self, dataframe: DataFrame) -> DataFrame:
macd = ta.MACD(dataframe)
dataframe['maShort'] = ta.EMA(dataframe, timeperiod=8)
dataframe['maMedium'] = ta.EMA(dataframe, timeperiod=21)
return dataframe
def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:
dataframe.loc[
(
qtpylib.crossed_above(dataframe['maShort'], dataframe['maMedium'])
),
'buy'] = 1
return dataframe
def populate_sell_trend(self, dataframe: DataFrame) -> DataFrame:
dataframe.loc[
(
qtpylib.crossed_above(dataframe['maMedium'], dataframe['maShort'])
),
'sell'] = 1
return dataframe
"""
request = {
"user": "GCU4LW2XXZW3A3FM2XZJTEJHNWHTWDKY2DIJLCZJ5ULVZ4K7LZ7D23TG",
"description": "simple test strategy",
"name": "TestStrategy",
"content": urlsafe_b64encode(content.encode('utf-8')),
"public": False
}
# now we add an entry
aws.submit({
"body": json.dumps(request)
}, {})
# now we should have items
print(json.loads(aws.names({}, {})['body']))
assert (len(json.loads(aws.names({}, {})['body'])['result']) == 1)
# able to add a second strategy with the sample name, but different user
request = {
"user": "GCU4LW2XXZW3A3FM2XZJTEJHNWHTWDKY2DIJLCZJ5ULVZ4K7LZ7D23TH",
"description": "simple test strategy",
"name": "TestStrategy",
"content": urlsafe_b64encode(content.encode('utf-8')),
"public": True
}
aws.submit({
"body": json.dumps(request)
}, {})
assert (len(json.loads(aws.names({}, {})['body'])['result']) == 2)
# able to add a duplicated strategy, which should overwrite the existing strategy
request = {
"user": "GCU4LW2XXZW3A3FM2XZJTEJHNWHTWDKY2DIJLCZJ5ULVZ4K7LZ7D23TH",
"description": "simple test strategy",
"name": "TestStrategy",
"content": urlsafe_b64encode(content.encode('utf-8')),
"public": True
}
aws.submit({
"body": json.dumps(request)
}, {})
assert (len(json.loads(aws.names({}, {})['body'])['result']) == 2)
# we need to be able to get a strategy ( code cannot be included )
strategy = aws.get({'pathParameters': {
"name": "TestStrategy",
"user": "GCU4LW2XXZW3A3FM2XZJTEJHNWHTWDKY2DIJLCZJ5ULVZ4K7LZ7D23TH"
}}, {})
strategy = json.loads(strategy['body'])
assert "content" not in strategy
assert "user" in strategy
assert "name" in strategy
assert "description" in strategy
assert "public" in strategy
assert "content" not in strategy
# we need to be able to get the code of the strategy
code = aws.code({'pathParameters': {
"name": "TestStrategy",
"user": "GCU4LW2XXZW3A3FM2XZJTEJHNWHTWDKY2DIJLCZJ5ULVZ4K7LZ7D23TH"
}}, {})
print("code is")
print(code)
# code should equal our initial content
# assert code == content
# we are not allowed to load a private strategy
code = aws.code({'pathParameters': {
"name": "TestStrategy",
"user": "GCU4LW2XXZW3A3FM2XZJTEJHNWHTWDKY2DIJLCZJ5ULVZ4K7LZ7D23TG"
}}, {})
# code should equal our initial content
assert code['statusCode'] == 403
assert json.loads(code['body']) == {"success": False, "reason": "Denied"}
def test_strategy_submit_github(lambda_context):
event = {'resource': '/strategies/submit/github', 'path': '/strategies/submit/github', 'httpMethod': 'POST',
'headers': {'Accept': '*/*', 'CloudFront-Forwarded-Proto': 'https', 'CloudFront-Is-Desktop-Viewer': 'true',
'CloudFront-Is-Mobile-Viewer': 'false', 'CloudFront-Is-SmartTV-Viewer': 'false',
'CloudFront-Is-Tablet-Viewer': 'false', 'CloudFront-Viewer-Country': 'US',
'content-type': 'application/json', 'Host': '887c8k0tui.execute-api.us-east-2.amazonaws.com',
'User-Agent': 'GitHub-Hookshot/419cd30',
'Via': '1.1 fd885dc16612d4e9d70f328fd0542052.cloudfront.net (CloudFront)',
'X-Amz-Cf-Id': 'l8qrc32exLsdGHyWDr5i1WtmlJIQZKo7cqOElKrEEDGRgOm7PPxoKA==',
'X-Amzn-Trace-Id': 'Root=1-5b035d39-de61ead01e4729f073a67480',
'X-Forwarded-For': '192.30.252.39, 54.182.230.5', 'X-Forwarded-Port': '443',
'X-Forwarded-Proto': 'https', 'X-GitHub-Delivery': 'e7baca80-5d52-11e8-86c9-f183bfa87d9b',
'X-GitHub-Event': 'ping', 'X-Hub-Signature': 'sha1=d7d4cd82a5e7e4357e0f4df8d032c474c26b6d61'},
'queryStringParameters': None, 'pathParameters': None, 'stageVariables': None,
'requestContext': {'resourceId': 'dmek8c', 'resourcePath': '/strategies/submit/github',
'httpMethod': 'POST', 'extendedRequestId': 'HQuA9EbLiYcFr3A=',
'requestTime': '21/May/2018:23:58:49 +0000', 'path': '/dev/strategies/submit/github',
'accountId': '905951628980', 'protocol': 'HTTP/1.1', 'stage': 'dev',
'requestTimeEpoch': 1526947129330, 'requestId': 'e7d99de1-5d52-11e8-a559-fb527c3a0860',
'identity': {'cognitoIdentityPoolId': None, 'accountId': None,
'cognitoIdentityId': None, 'caller': None, 'sourceIp': '192.30.252.39',
'accessKey': None, 'cognitoAuthenticationType': None,
'cognitoAuthenticationProvider': None, 'userArn': None,
'userAgent': 'GitHub-Hookshot/419cd30', 'user': None},
'apiId': '887c8k0tui'},
'body': '{"zen":"Mind your words, they are important.","hook_id":30374368,"hook":{"type":"Repository",'
'"id":30374368,"name":"web","active":true,"events":["push"],"config":{"content_type":"json",'
'"insecure_ssl":"0","secret":"********","url":"https://887c8k0tui'
'.execute-api.us-east-2.amazonaws.com/dev/strategies/submit/github"},"updated_at":"2018-05'
'-21T23:58:49Z","created_at":"2018'
'-05-21T23:58:49Z","url":"https://api.'
'github.com/repos/'
'berlinguyinca/freqtrade-trading-strategies/hooks/30374368","test_url":"https://api'
'.github.com/repos/berlinguyinca/freqtrade-trading-strategies/hooks/30374368/test","ping_url'
'":"https://api.github.com/repos/berlinguyinca/freqtrade-trading-strategies/hooks/30374368/pings'
'","last_response":{"code":null,"status":"unused","message":null}},"repository":{"id":130613180,"'
'name":"freqtrade-trading-strategies","full_name":"berlinguyinca/freqtrade-trading-strategies",'
'"owner":{"login":"berlinguyinca","id":16364,"avatar_url":"https://avatars2.githubusercontent.com'
'/u/16364?v=4","gravatar_id":"","url":"https://api.github.com/users/berlinguyinca","html_url":"'
'https://github.com/berlinguyinca","followers_url":"https://api.github.com/users/berlinguyinca/'
'followers","following_url":"https://api.github.com/users/berlinguyinca/following{/other_user}",'
'"gists_url":"https://api.github.com/users/berlinguyinca/gists{/gist_id}","'
'starred_url":"https://api.github.com/users/berlinguyinca/starred{/owner}{/repo}","subscriptions_url'
'":"https://api.github.com/users/berlinguyinca/subscriptions","organizations_url":"'
'https://api.github.com/users/berlinguyinca/orgs","repos_url":"https://api.github.com/users'
'/berlinguyinca/repos","events_url":"https://api.github.com/users/berlinguyinca/events{/privacy}'
'","received_events_url":"https://api.github.com/users/berlinguyinca/received_events","type":"Us'
'er","site_admin":false},"private":false,"html_url":"https://github.com/berlinguyinca/freqtrade-'
'trading-strategies","description":"contains strategies for using freqtrade","fork":false,"url":"'
'https://api.github.com/repos/berlinguyinca/freqtrade-trading-strategies","forks_url":"https://a'
'pi.github.com/repos/berlinguyinca/freqtrade-trading-strategies/forks","keys_url":"https://api.gi'
'thub.com/repos/berlinguyinca/freqtrade-trading-strategies/keys{/key_id}","collaborators_url":"htt'
'ps://api.github.com/repos/berlinguyinca/freqtrade-trading-strategies/collaborators{/collaborator}'
'","teams_url":"https://api.github.com/repos/berlinguyinca/freqtrade-trading-strategies/teams","ho'
'oks_url":"https://api.github.com/repos/berlinguyinca/freqtrade-trading-strategies/hooks","issue_e'
'vents_url":"https://api.github.com/repos/berlinguyinca/freqtrade-trading-strategies/issues/events'
'{/number}","events_url":"https://api.github.com/repos/berlinguyinca/freqtrade-trading-strategies/'
'events","assignees_url":"https://api.github.com/repos/berlinguyinca/freqtrade-trading-strategies/'
'assignees{/user}","branches_url":"https://api.github.com/repos/berlinguyinca/freqtrade-trading-st'
'rategies/branches{/branch}","tags_url":"https://api.github.com/repos/berlinguyinca/freqtrade-trad'
'ing-strategies/tags","blobs_url":"https://api.github.com/repos/berlinguyinca/freqtrade-trading-st'
'rategies/git/blobs{/sha}","git_tags_url":"https://api.github.com/repos/berlinguyinca/freqtrade-tr'
'ading-strategies/git/tags{/sha}","git_refs_url":"https://api.github.com/repos/berlinguyinca/freqtr'
'ade-trading-strategies/git/refs{/sha}","trees_url":"https://api.github.com/repos/berlinguyinca/fre'
'qtrade-trading-strategies/git/trees{/sha}","statuses_url":"https://api.github.com/repos/berlinguyinca/freqtrade-trading-strategies/statuses/{sha}","languages_url":"https://api.github.com/repos/berlinguyinca/freqtrade-trading-strategies/languages","stargazers_url":"https://api.github.com/repos/berlinguyinca/freqtrade-trading-strategies/stargazers","contributors_url":"https://api.github.com/repos/berlinguyinca/freqtrade-trading-strategies/contributors","subscribers_url":"https://api.github.com/repos/berlinguyinca/freqtrade-trading-strategies/subscribers","subscription_url":"https://api.github.com/repos/berlinguyinca/freqtrade-trading-strategies/subscription","commits_url":"https://api.github.com/repos/berlinguyinca/freqtrade-trading-strategies/commits{/sha}","git_commits_url":"https://api.github.com/repos/berlinguyinca/freqtrade-trading-strategies/git/commits{/sha}","comments_url":"https://api.github.com/repos/berlinguyinca/freqtrade-trading-strategies/comments{/number}","issue_comment_url":"https://api.github.com/repos/berlinguyinca/freqtrade-trading-strategies/issues/comments{/number}","contents_url":"https://api.github.com/repos/berlinguyinca/freqtrade-trading-strategies/contents/{+path}","compare_url":"https://api.github.com/repos/berlinguyinca/freqtrade-trading-strategies/compare/{base}...{head}","merges_url":"https://api.github.com/repos/berlinguyinca/freqtrade-trading-strategies/merges","archive_url":"https://api.github.com/repos/berlinguyinca/freqtrade-trading-strategies/{archive_format}{/ref}","downloads_url":"https://api.github.com/repos/berlinguyinca/freqtrade-trading-strategies/downloads","issues_url":"https://api.github.com/repos/berlinguyinca/freqtrade-trading-strategies/issues{/number}","pulls_url":"https://api.github.com/repos/berlinguyinca/freqtrade-trading-strategies/pulls{/number}","milestones_url":"https://api.github.com/repos/berlinguyinca/freqtrade-trading-strategies/milestones{/number}","notifications_url":"https://api.github.com/repos/berlinguyinca/freqtrade-trading-strategies/notifications{?since,all,participating}","labels_url":"https://api.github.com/repos/berlinguyinca/freqtrade-trading-strategies/labels{/name}","releases_url":"https://api.github.com/repos/berlinguyinca/freqtrade-trading-strategies/releases{/id}","deployments_url":"https://api.github.com/repos/berlinguyinca/freqtrade-trading-strategies/deployments","created_at":"2018-04-22T22:31:25Z","updated_at":"2018-05-21T05:46:21Z","pushed_at":"2018-05-16T07:53:59Z","git_url":"git://github.com/berlinguyinca/freqtrade-trading-strategies.git","ssh_url":"git@github.com:berlinguyinca/freqtrade-trading-strategies.git","clone_url":"https://github.com/berlinguyinca/freqtrade-trading-strategies.git","svn_url":"https://github.com/berlinguyinca/freqtrade-trading-strategies","homepage":null,"size":67,"stargazers_count":11,"watchers_count":11,"language":"Python","has_issues":true,"has_projects":true,"has_downloads":true,"has_wiki":true,"has_pages":false,"forks_count":3,"mirror_url":null,"archived":false,"open_issues_count":1,"license":{"key":"mit","name":"MIT License","spdx_id":"MIT","url":"https://api.github.com/licenses/mit"},"forks":3,"open_issues":1,"watchers":11,"default_branch":"master"},"sender":{"login":"berlinguyinca","id":16364,"avatar_url":"https://avatars2.githubusercontent.com/u/16364?v=4","gravatar_id":"","url":"https://api.github.com/users/berlinguyinca","html_url":"https://github.com/berlinguyinca","followers_url":"https://api.github.com/users/berlinguyinca/followers","following_url":"https://api.github.com/users/berlinguyinca/following{/other_user}","gists_url":"https://api.github.com/users/berlinguyinca/gists{/gist_id}","starred_url":"https://api.github.com/users/berlinguyinca/starred{/owner}{/repo}","subscriptions_url":"https://api.github.com/users/berlinguyinca/subscriptions","organizations_url":"https://api.github.com/users/berlinguyinca/orgs","repos_url":"https://api.github.com/users/berlinguyinca/repos","events_url":"https://api.github.com/users/berlinguyinca/events{/privacy}","received_events_url":"https://api.github.com/users/berlinguyinca/received_events","type":"User","site_admin":false}}',
'isBase64Encoded': False}
aws.submit_github(event, {})

View File

@ -1,40 +0,0 @@
from freqtrade.aws.trade import store, submit
from freqtrade.aws.tables import get_trade_table
import simplejson as json
from boto3.dynamodb.conditions import Key, Attr
def test_store(lambda_context):
store({
"Records": [
{
"Sns": {
"Subject": "trade",
"Message": json.dumps(
{
'id': 'GCU4LW2XXZW3A3FM2XZJTEJHNWHTWDKY2DIJLCZJ5ULVZ4K7LZ7D23TG.MyFancyTestStrategy:BTC/USDT:test',
'trade': '2018-05-05 14:15:00 to 2018-05-18 00:40:00',
'pair': 'BTC/USDT',
'duration': 625,
'profit_percent': -0.20453928,
'profit_stake': -0.20514198,
'entry_date': '2018-05-05 14:15:00',
'exit_date': '2018-05-18 00:40:00'
}
)
}
}]
}
, {})
# trade table should not have 1 item in it, with our given key
table = get_trade_table()
response = table.query(
KeyConditionExpression=Key('id')
.eq('GCU4LW2XXZW3A3FM2XZJTEJHNWHTWDKY2DIJLCZJ5ULVZ4K7LZ7D23TG.MyFancyTestStrategy:BTC/USDT:test')
)
print(response)
assert 'Items' in response
assert len(response['Items']) == 1

View File

@ -9,7 +9,6 @@ from unittest.mock import MagicMock
import arrow
import pytest
from jsonschema import validate
from sqlalchemy import create_engine
from telegram import Chat, Message, Update
from freqtrade.analyze import Analyze
@ -49,7 +48,7 @@ def get_patched_freqtradebot(mocker, config) -> FreqtradeBot:
mocker.patch('freqtrade.freqtradebot.RPCManager.send_msg', MagicMock())
mocker.patch('freqtrade.freqtradebot.Analyze.get_signal', MagicMock())
return FreqtradeBot(config, create_engine('sqlite://'))
return FreqtradeBot(config)
def patch_coinmarketcap(mocker, value: Optional[Dict[str, float]] = None) -> None:
@ -92,7 +91,14 @@ def default_conf():
"stoploss": -0.10,
"unfilledtimeout": 600,
"bid_strategy": {
"ask_last_balance": 0.0
"use_book_order": False,
"book_order_top": 6,
"ask_last_balance": 0.0,
},
"ask_strategy": {
"use_book_order": False,
"book_order_min": 1,
"book_order_max": 10
},
"exchange": {
"name": "bittrex",
@ -112,7 +118,8 @@ def default_conf():
"chat_id": "0"
},
"initial_state": "running",
"loglevel": logging.DEBUG
"db_url": "sqlite://",
"loglevel": logging.DEBUG,
}
validate(configuration, constants.CONF_SCHEMA)
return configuration
@ -613,66 +620,3 @@ def buy_order_fee():
'status': 'closed',
'fee': None
}
@pytest.fixture
def lambda_context():
# mock the different AWS features we need
sns = moto.mock_sns()
sns.start()
dynamo = moto.mock_dynamodb2()
dynamo.start()
lamb = moto.mock_lambda()
lamb.start()
ecs = moto.mock_ecs()
ecs.start()
cluster = boto3.client('ecs')
cluster.create_cluster(clusterName='fargate')
cluster.register_task_definition(
containerDefinitions=[
{
'name': 'freqtrade-backtesting',
'command': [
'sleep',
'360',
],
'cpu': 10,
'essential': True,
'image': 'busybox',
'memory': 10,
},
],
family='sleep360',
taskRoleArn='',
volumes=[
],
)
session = boto3.session.Session()
os.environ["strategyTable"] = "StrategyTable"
os.environ["tradeTable"] = "TradeTable"
os.environ["topic"] = "UnitTestTopic"
os.environ["BASE_URL"] = "http://127.0.0.1/test"
client = session.client('sns')
client.create_topic(Name=os.environ["topic"])
dynamodb = boto3.resource('dynamodb')
import responses
# do not mock requests to these urls
responses.add_passthru('https://api.github.com')
responses.add_passthru('https://bittrex.com')
responses.add_passthru('https://api.binance.com')
responses.add_passthru('https://freq.isaac.international')
yield
sns.stop()
dynamo.stop()
lamb.stop()
ecs.stop()

View File

@ -310,9 +310,19 @@ def test_get_ticker(default_conf, mocker):
# if not fetching a new result we should get the cached ticker
ticker = get_ticker(pair='ETH/BTC')
assert api_mock.fetch_ticker.call_count == 1
assert ticker['bid'] == 0.5
assert ticker['ask'] == 1
assert 'ETH/BTC' in exchange._CACHED_TICKER
assert exchange._CACHED_TICKER['ETH/BTC']['bid'] == 0.5
assert exchange._CACHED_TICKER['ETH/BTC']['ask'] == 1
# Test caching
api_mock.fetch_ticker = MagicMock()
get_ticker(pair='ETH/BTC', refresh=False)
assert api_mock.fetch_ticker.call_count == 0
with pytest.raises(TemporaryError): # test retrier
api_mock.fetch_ticker = MagicMock(side_effect=ccxt.NetworkError)
mocker.patch('freqtrade.exchange._API', api_mock)
@ -323,6 +333,10 @@ def test_get_ticker(default_conf, mocker):
mocker.patch('freqtrade.exchange._API', api_mock)
get_ticker(pair='ETH/BTC', refresh=True)
api_mock.fetch_ticker = MagicMock(return_value={})
mocker.patch('freqtrade.exchange._API', api_mock)
get_ticker(pair='ETH/BTC', refresh=True)
def make_fetch_ohlcv_mock(data):
def fetch_ohlcv_mock(pair, timeframe, since):
@ -393,6 +407,78 @@ def test_get_ticker_history(default_conf, mocker):
get_ticker_history('EFGH/BTC', default_conf['ticker_interval'])
def test_get_ticker_history_sort(default_conf, mocker):
api_mock = MagicMock()
# GDAX use-case (real data from GDAX)
# This ticker history is ordered DESC (newest first, oldest last)
tick = [
[1527833100000, 0.07666, 0.07671, 0.07666, 0.07668, 16.65244264],
[1527832800000, 0.07662, 0.07666, 0.07662, 0.07666, 1.30051526],
[1527832500000, 0.07656, 0.07661, 0.07656, 0.07661, 12.034778840000001],
[1527832200000, 0.07658, 0.07658, 0.07655, 0.07656, 0.59780186],
[1527831900000, 0.07658, 0.07658, 0.07658, 0.07658, 1.76278136],
[1527831600000, 0.07658, 0.07658, 0.07658, 0.07658, 2.22646521],
[1527831300000, 0.07655, 0.07657, 0.07655, 0.07657, 1.1753],
[1527831000000, 0.07654, 0.07654, 0.07651, 0.07651, 0.8073060299999999],
[1527830700000, 0.07652, 0.07652, 0.07651, 0.07652, 10.04822687],
[1527830400000, 0.07649, 0.07651, 0.07649, 0.07651, 2.5734867]
]
type(api_mock).has = PropertyMock(return_value={'fetchOHLCV': True})
api_mock.fetch_ohlcv = MagicMock(side_effect=make_fetch_ohlcv_mock(tick))
mocker.patch('freqtrade.exchange._API', api_mock)
# Test the ticker history sort
ticks = get_ticker_history('ETH/BTC', default_conf['ticker_interval'])
assert ticks[0][0] == 1527830400000
assert ticks[0][1] == 0.07649
assert ticks[0][2] == 0.07651
assert ticks[0][3] == 0.07649
assert ticks[0][4] == 0.07651
assert ticks[0][5] == 2.5734867
assert ticks[9][0] == 1527833100000
assert ticks[9][1] == 0.07666
assert ticks[9][2] == 0.07671
assert ticks[9][3] == 0.07666
assert ticks[9][4] == 0.07668
assert ticks[9][5] == 16.65244264
# Bittrex use-case (real data from Bittrex)
# This ticker history is ordered ASC (oldest first, newest last)
tick = [
[1527827700000, 0.07659999, 0.0766, 0.07627, 0.07657998, 1.85216924],
[1527828000000, 0.07657995, 0.07657995, 0.0763, 0.0763, 26.04051037],
[1527828300000, 0.0763, 0.07659998, 0.0763, 0.0764, 10.36434124],
[1527828600000, 0.0764, 0.0766, 0.0764, 0.0766, 5.71044773],
[1527828900000, 0.0764, 0.07666998, 0.0764, 0.07666998, 47.48888565],
[1527829200000, 0.0765, 0.07672999, 0.0765, 0.07672999, 3.37640326],
[1527829500000, 0.0766, 0.07675, 0.0765, 0.07675, 8.36203831],
[1527829800000, 0.07675, 0.07677999, 0.07620002, 0.076695, 119.22963884],
[1527830100000, 0.076695, 0.07671, 0.07624171, 0.07671, 1.80689244],
[1527830400000, 0.07671, 0.07674399, 0.07629216, 0.07655213, 2.31452783]
]
type(api_mock).has = PropertyMock(return_value={'fetchOHLCV': True})
api_mock.fetch_ohlcv = MagicMock(side_effect=make_fetch_ohlcv_mock(tick))
mocker.patch('freqtrade.exchange._API', api_mock)
# Test the ticker history sort
ticks = get_ticker_history('ETH/BTC', default_conf['ticker_interval'])
assert ticks[0][0] == 1527827700000
assert ticks[0][1] == 0.07659999
assert ticks[0][2] == 0.0766
assert ticks[0][3] == 0.07627
assert ticks[0][4] == 0.07657998
assert ticks[0][5] == 1.85216924
assert ticks[9][0] == 1527830400000
assert ticks[9][1] == 0.07671
assert ticks[9][2] == 0.07674399
assert ticks[9][3] == 0.07629216
assert ticks[9][4] == 0.07655213
assert ticks[9][5] == 2.31452783
def test_cancel_order_dry_run(default_conf, mocker):
default_conf['dry_run'] = True
mocker.patch.dict('freqtrade.exchange._CONF', default_conf)

View File

@ -13,7 +13,7 @@ from arrow import Arrow
from freqtrade import optimize
from freqtrade.analyze import Analyze
from freqtrade.arguments import Arguments
from freqtrade.arguments import Arguments, TimeRange
from freqtrade.optimize.backtesting import Backtesting, start, setup_configuration
from freqtrade.tests.conftest import log_has
@ -30,7 +30,7 @@ def trim_dictlist(dict_list, num):
def load_data_test(what):
timerange = ((None, 'line'), None, -100)
timerange = TimeRange(None, 'line', 0, -101)
data = optimize.load_data(None, ticker_interval='1m',
pairs=['UNITTEST/BTC'], timerange=timerange)
pair = data['UNITTEST/BTC']
@ -84,6 +84,7 @@ def load_data_test(what):
def simple_backtest(config, contour, num_results, mocker) -> None:
mocker.patch('freqtrade.exchange.validate_pairs', MagicMock(return_value=True))
backtesting = Backtesting(config)
data = load_data_test(contour)
@ -97,6 +98,7 @@ def simple_backtest(config, contour, num_results, mocker) -> None:
'realistic': True
}
)
# results :: <class 'pandas.core.frame.DataFrame'>
assert len(results) == num_results
@ -110,14 +112,14 @@ def mocked_load_data(datadir, pairs=[], ticker_interval='0m', refresh_pairs=Fals
# use for mock freqtrade.exchange.get_ticker_history'
def _load_pair_as_ticks(pair, tickfreq):
ticks = optimize.load_data(None, ticker_interval=tickfreq, pairs=[pair])
ticks = trim_dictlist(ticks, -200)
ticks = trim_dictlist(ticks, -201)
return ticks[pair]
# FIX: fixturize this?
def _make_backtest_conf(mocker, conf=None, pair='UNITTEST/BTC', record=None):
data = optimize.load_data(None, ticker_interval='8m', pairs=[pair])
data = trim_dictlist(data, -200)
data = trim_dictlist(data, -201)
mocker.patch('freqtrade.exchange.validate_pairs', MagicMock(return_value=True))
backtesting = Backtesting(conf)
return {
@ -181,7 +183,7 @@ def test_setup_configuration_without_arguments(mocker, default_conf, caplog) ->
assert 'pair_whitelist' in config['exchange']
assert 'datadir' in config
assert log_has(
'Parameter --datadir detected: {} ...'.format(config['datadir']),
'Using data folder: {} ...'.format(config['datadir']),
caplog.record_tuples
)
assert 'ticker_interval' in config
@ -218,7 +220,8 @@ def test_setup_configuration_with_arguments(mocker, default_conf, caplog) -> Non
'--realistic-simulation',
'--refresh-pairs-cached',
'--timerange', ':100',
'--export', '/bar/foo'
'--export', '/bar/foo',
'--export-filename', 'foo_bar.json'
]
config = setup_configuration(get_args(args))
@ -229,7 +232,7 @@ def test_setup_configuration_with_arguments(mocker, default_conf, caplog) -> Non
assert 'pair_whitelist' in config['exchange']
assert 'datadir' in config
assert log_has(
'Parameter --datadir detected: {} ...'.format(config['datadir']),
'Using data folder: {} ...'.format(config['datadir']),
caplog.record_tuples
)
assert 'ticker_interval' in config
@ -259,6 +262,11 @@ def test_setup_configuration_with_arguments(mocker, default_conf, caplog) -> Non
'Parameter --export detected: {} ...'.format(config['export']),
caplog.record_tuples
)
assert 'exportfilename' in config
assert log_has(
'Storing backtest results to {} ...'.format(config['exportfilename']),
caplog.record_tuples
)
def test_start(mocker, fee, default_conf, caplog) -> None:
@ -286,23 +294,6 @@ def test_start(mocker, fee, default_conf, caplog) -> None:
assert start_mock.call_count == 1
def test_backtesting__init__(mocker, default_conf) -> None:
"""
Test Backtesting.__init__() method
"""
init_mock = MagicMock()
mocker.patch('freqtrade.optimize.backtesting.Backtesting._init', init_mock)
backtesting = Backtesting(default_conf)
assert backtesting.config == default_conf
assert backtesting.analyze is None
assert backtesting.ticker_interval is None
assert backtesting.tickerdata_to_dataframe is None
assert backtesting.populate_buy_trend is None
assert backtesting.populate_sell_trend is None
assert init_mock.call_count == 1
def test_backtesting_init(mocker, default_conf) -> None:
"""
Test Backtesting._init() method
@ -322,13 +313,13 @@ def test_tickerdata_to_dataframe(default_conf, mocker) -> None:
Test Backtesting.tickerdata_to_dataframe() method
"""
mocker.patch('freqtrade.exchange.validate_pairs', MagicMock(return_value=True))
timerange = ((None, 'line'), None, -100)
timerange = TimeRange(None, 'line', 0, -100)
tick = optimize.load_tickerdata_file(None, 'UNITTEST/BTC', '1m', timerange=timerange)
tickerlist = {'UNITTEST/BTC': tick}
backtesting = Backtesting(default_conf)
data = backtesting.tickerdata_to_dataframe(tickerlist)
assert len(data['UNITTEST/BTC']) == 100
assert len(data['UNITTEST/BTC']) == 99
# Load Analyze to compare the result between Backtesting function and Analyze are the same
analyze = Analyze(default_conf)
@ -352,7 +343,7 @@ def test_get_timeframe(default_conf, mocker) -> None:
)
min_date, max_date = backtesting.get_timeframe(data)
assert min_date.isoformat() == '2017-11-04T23:02:00+00:00'
assert max_date.isoformat() == '2017-11-14T22:59:00+00:00'
assert max_date.isoformat() == '2017-11-14T22:58:00+00:00'
def test_generate_text_table(default_conf, mocker):
@ -374,16 +365,11 @@ def test_generate_text_table(default_conf, mocker):
)
result_str = (
'pair buy count avg profit % '
'total profit BTC avg duration profit loss\n'
'------- ----------- -------------- '
'------------------ -------------- -------- ------\n'
'ETH/BTC 2 15.00 '
'0.60000000 20.0 2 0\n'
'TOTAL 2 15.00 '
'0.60000000 20.0 2 0'
"""| pair | buy count | avg profit % | cum profit % | total profit BTC | avg duration | profit | loss |
|:--------|------------:|---------------:|---------------:|-------------------:|---------------:|---------:|-------:|
| ETH/BTC | 2 | 15.00 | 30.00 | 0.60000000 | 20.0 | 2 | 0 |
| TOTAL | 2 | 15.00 | 30.00 | 0.60000000 | 20.0 | 2 | 0 |"""
)
assert backtesting._generate_text_table(data={'ETH/BTC': {}}, results=results) == result_str
@ -428,6 +414,40 @@ def test_backtesting_start(default_conf, mocker, caplog) -> None:
assert log_has(line, caplog.record_tuples)
def test_backtesting_start_no_data(default_conf, mocker, caplog) -> None:
"""
Test Backtesting.start() method if no data is found
"""
def get_timeframe(input1, input2):
return Arrow(2017, 11, 14, 21, 17), Arrow(2017, 11, 14, 22, 59)
mocker.patch('freqtrade.freqtradebot.Analyze', MagicMock())
mocker.patch('freqtrade.optimize.load_data', MagicMock(return_value={}))
mocker.patch('freqtrade.exchange.get_ticker_history')
mocker.patch('freqtrade.exchange.validate_pairs', MagicMock(return_value=True))
mocker.patch.multiple(
'freqtrade.optimize.backtesting.Backtesting',
backtest=MagicMock(),
_generate_text_table=MagicMock(return_value='1'),
get_timeframe=get_timeframe,
)
conf = deepcopy(default_conf)
conf['exchange']['pair_whitelist'] = ['UNITTEST/BTC']
conf['ticker_interval'] = "1m"
conf['live'] = False
conf['datadir'] = None
conf['export'] = None
conf['timerange'] = '20180101-20180102'
backtesting = Backtesting(conf)
backtesting.start()
# check the logs, that will contain the backtest result
assert log_has('No data found. Terminating.', caplog.record_tuples)
def test_backtest(default_conf, fee, mocker) -> None:
"""
Test Backtesting.backtest() method
@ -574,6 +594,7 @@ def test_backtest_record(default_conf, fee, mocker):
results = backtesting.backtest(backtest_conf)
assert len(results) == 3
# Assert file_dump_json was only called once
print(names)
assert names == ['backtest-result.json']
records = records[0]
# Ensure records are of correct type
@ -618,10 +639,12 @@ def test_backtest_start_live(default_conf, mocker, caplog):
args = [
'--config', 'config.json',
'--strategy', 'DefaultStrategy',
'--datadir', 'freqtrade/tests/testdata',
'backtesting',
'--ticker-interval', '1m',
'--live',
'--timerange', '-100'
'--timerange', '-100',
'--realistic-simulation'
]
args = get_args(args)
start(args)
@ -631,13 +654,14 @@ def test_backtest_start_live(default_conf, mocker, caplog):
'Using ticker_interval: 1m ...',
'Parameter -l/--live detected ...',
'Using max_open_trades: 1 ...',
'Parameter --timerange detected: -100 ..',
'Parameter --datadir detected: freqtrade/tests/testdata ...',
'Parameter --timerange detected: -100 ...',
'Using data folder: freqtrade/tests/testdata ...',
'Using stake_currency: BTC ...',
'Using stake_amount: 0.001 ...',
'Downloading data for all pairs in whitelist ...',
'Measuring data from 2017-11-14T19:32:00+00:00 up to 2017-11-14T22:59:00+00:00 (0 days)..'
'Measuring data from 2017-11-14T19:31:00+00:00 up to 2017-11-14T22:58:00+00:00 (0 days)..',
'Parameter --realistic-simulation detected ...'
]
for line in exists:
log_has(line, caplog.record_tuples)
assert log_has(line, caplog.record_tuples)

View File

@ -389,10 +389,12 @@ def test_start_uses_mongotrials(mocker, init_hyperopt, default_conf) -> None:
# test buy_strategy_generator def populate_buy_trend
# test optimizer if 'ro_t1' in params
def test_format_results():
def test_format_results(init_hyperopt):
"""
Test Hyperopt.format_results()
"""
# Test with BTC as stake_currency
trades = [
('ETH/BTC', 2, 2, 123),
('LTC/BTC', 1, 1, 123),
@ -400,8 +402,21 @@ def test_format_results():
]
labels = ['currency', 'profit_percent', 'profit_BTC', 'duration']
df = pd.DataFrame.from_records(trades, columns=labels)
x = Hyperopt.format_results(df)
assert x.find(' 66.67%')
result = _HYPEROPT.format_results(df)
assert result.find(' 66.67%')
assert result.find('Total profit 1.00000000 BTC')
assert result.find('2.0000Σ %')
# Test with EUR as stake_currency
trades = [
('ETH/EUR', 2, 2, 123),
('LTC/EUR', 1, 1, 123),
('XPR/EUR', -1, -2, -246)
]
df = pd.DataFrame.from_records(trades, columns=labels)
result = _HYPEROPT.format_results(df)
assert result.find('Total profit 1.00000000 EUR')
def test_signal_handler(mocker, init_hyperopt):

View File

@ -11,6 +11,7 @@ from freqtrade.misc import file_dump_json
from freqtrade.optimize.__init__ import make_testdata_path, download_pairs, \
download_backtesting_testdata, load_tickerdata_file, trim_tickerlist, \
load_cached_data_for_updating
from freqtrade.arguments import TimeRange
from freqtrade.tests.conftest import log_has
# Change this if modifying UNITTEST/BTC testdatafile
@ -99,7 +100,21 @@ def test_load_data_with_new_pair_1min(ticker_history, mocker, caplog) -> None:
file = os.path.join(os.path.dirname(__file__), '..', 'testdata', 'MEME_BTC-1m.json')
_backup_file(file)
optimize.load_data(None, ticker_interval='1m', pairs=['MEME/BTC'])
# do not download a new pair if refresh_pairs isn't set
optimize.load_data(None,
ticker_interval='1m',
refresh_pairs=False,
pairs=['MEME/BTC'])
assert os.path.isfile(file) is False
assert log_has('No data for pair: "MEME/BTC", Interval: 1m. '
'Use --refresh-pairs-cached to download the data',
caplog.record_tuples)
# download a new pair if refresh_pairs is set
optimize.load_data(None,
ticker_interval='1m',
refresh_pairs=True,
pairs=['MEME/BTC'])
assert os.path.isfile(file) is True
assert log_has('Download the pair: "MEME/BTC", Interval: 1m', caplog.record_tuples)
_clean_test_file(file)
@ -162,7 +177,7 @@ def test_load_cached_data_for_updating(mocker) -> None:
# timeframe starts earlier than the cached data
# should fully update data
timerange = (('date', None), test_data[0][0] / 1000 - 1, None)
timerange = TimeRange('date', None, test_data[0][0] / 1000 - 1, 0)
data, start_ts = load_cached_data_for_updating(test_filename,
'1m',
timerange)
@ -173,13 +188,13 @@ def test_load_cached_data_for_updating(mocker) -> None:
num_lines = (test_data[-1][0] - test_data[1][0]) / 1000 / 60 + 120
data, start_ts = load_cached_data_for_updating(test_filename,
'1m',
((None, 'line'), None, -num_lines))
TimeRange(None, 'line', 0, -num_lines))
assert data == []
assert start_ts < test_data[0][0] - 1
# timeframe starts in the center of the cached data
# should return the chached data w/o the last item
timerange = (('date', None), test_data[0][0] / 1000 + 1, None)
timerange = TimeRange('date', None, test_data[0][0] / 1000 + 1, 0)
data, start_ts = load_cached_data_for_updating(test_filename,
'1m',
timerange)
@ -188,7 +203,7 @@ def test_load_cached_data_for_updating(mocker) -> None:
# same with 'line' timeframe
num_lines = (test_data[-1][0] - test_data[1][0]) / 1000 / 60 + 30
timerange = ((None, 'line'), None, -num_lines)
timerange = TimeRange(None, 'line', 0, -num_lines)
data, start_ts = load_cached_data_for_updating(test_filename,
'1m',
timerange)
@ -197,7 +212,7 @@ def test_load_cached_data_for_updating(mocker) -> None:
# timeframe starts after the chached data
# should return the chached data w/o the last item
timerange = (('date', None), test_data[-1][0] / 1000 + 1, None)
timerange = TimeRange('date', None, test_data[-1][0] / 1000 + 1, 0)
data, start_ts = load_cached_data_for_updating(test_filename,
'1m',
timerange)
@ -206,7 +221,7 @@ def test_load_cached_data_for_updating(mocker) -> None:
# same with 'line' timeframe
num_lines = 30
timerange = ((None, 'line'), None, -num_lines)
timerange = TimeRange(None, 'line', 0, -num_lines)
data, start_ts = load_cached_data_for_updating(test_filename,
'1m',
timerange)
@ -216,7 +231,7 @@ def test_load_cached_data_for_updating(mocker) -> None:
# no timeframe is set
# should return the chached data w/o the last item
num_lines = 30
timerange = ((None, 'line'), None, -num_lines)
timerange = TimeRange(None, 'line', 0, -num_lines)
data, start_ts = load_cached_data_for_updating(test_filename,
'1m',
timerange)
@ -225,7 +240,7 @@ def test_load_cached_data_for_updating(mocker) -> None:
# no datafile exist
# should return timestamp start time
timerange = (('date', None), now_ts - 10000, None)
timerange = TimeRange('date', None, now_ts - 10000, 0)
data, start_ts = load_cached_data_for_updating(test_filename + 'unexist',
'1m',
timerange)
@ -234,7 +249,7 @@ def test_load_cached_data_for_updating(mocker) -> None:
# same with 'line' timeframe
num_lines = 30
timerange = ((None, 'line'), None, -num_lines)
timerange = TimeRange(None, 'line', 0, -num_lines)
data, start_ts = load_cached_data_for_updating(test_filename + 'unexist',
'1m',
timerange)
@ -329,7 +344,7 @@ def test_trim_tickerlist() -> None:
# Test the pattern ^(-\d+)$
# This pattern uses the latest N elements
timerange = ((None, 'line'), None, -5)
timerange = TimeRange(None, 'line', 0, -5)
ticker = trim_tickerlist(ticker_list, timerange)
ticker_len = len(ticker)
@ -339,7 +354,7 @@ def test_trim_tickerlist() -> None:
# Test the pattern ^(\d+)-$
# This pattern keep X element from the end
timerange = (('line', None), 5, None)
timerange = TimeRange('line', None, 5, 0)
ticker = trim_tickerlist(ticker_list, timerange)
ticker_len = len(ticker)
@ -349,7 +364,7 @@ def test_trim_tickerlist() -> None:
# Test the pattern ^(\d+)-(\d+)$
# This pattern extract a window
timerange = (('index', 'index'), 5, 10)
timerange = TimeRange('index', 'index', 5, 10)
ticker = trim_tickerlist(ticker_list, timerange)
ticker_len = len(ticker)
@ -360,7 +375,7 @@ def test_trim_tickerlist() -> None:
# Test the pattern ^(\d{8})-(\d{8})$
# This pattern extract a window between the dates
timerange = (('date', 'date'), ticker_list[5][0] / 1000, ticker_list[10][0] / 1000 - 1)
timerange = TimeRange('date', 'date', ticker_list[5][0] / 1000, ticker_list[10][0] / 1000 - 1)
ticker = trim_tickerlist(ticker_list, timerange)
ticker_len = len(ticker)
@ -371,7 +386,7 @@ def test_trim_tickerlist() -> None:
# Test the pattern ^-(\d{8})$
# This pattern extracts elements from the start to the date
timerange = ((None, 'date'), None, ticker_list[10][0] / 1000 - 1)
timerange = TimeRange(None, 'date', 0, ticker_list[10][0] / 1000 - 1)
ticker = trim_tickerlist(ticker_list, timerange)
ticker_len = len(ticker)
@ -381,7 +396,7 @@ def test_trim_tickerlist() -> None:
# Test the pattern ^(\d{8})-$
# This pattern extracts elements from the date to now
timerange = (('date', None), ticker_list[10][0] / 1000 - 1, None)
timerange = TimeRange('date', None, ticker_list[10][0] / 1000 - 1, None)
ticker = trim_tickerlist(ticker_list, timerange)
ticker_len = len(ticker)
@ -391,7 +406,7 @@ def test_trim_tickerlist() -> None:
# Test a wrong pattern
# This pattern must return the list unchanged
timerange = ((None, None), None, 5)
timerange = TimeRange(None, None, None, 5)
ticker = trim_tickerlist(ticker_list, timerange)
ticker_len = len(ticker)

View File

@ -7,8 +7,6 @@ Unit test file for rpc/rpc.py
from datetime import datetime
from unittest.mock import MagicMock
from sqlalchemy import create_engine
from freqtrade.freqtradebot import FreqtradeBot
from freqtrade.persistence import Trade
from freqtrade.rpc.rpc import RPC
@ -39,7 +37,7 @@ def test_rpc_trade_status(default_conf, ticker, fee, mocker) -> None:
get_fee=fee
)
freqtradebot = FreqtradeBot(default_conf, create_engine('sqlite://'))
freqtradebot = FreqtradeBot(default_conf)
rpc = RPC(freqtradebot)
freqtradebot.state = State.STOPPED
@ -89,7 +87,7 @@ def test_rpc_status_table(default_conf, ticker, fee, mocker) -> None:
get_fee=fee
)
freqtradebot = FreqtradeBot(default_conf, create_engine('sqlite://'))
freqtradebot = FreqtradeBot(default_conf)
rpc = RPC(freqtradebot)
freqtradebot.state = State.STOPPED
@ -125,7 +123,7 @@ def test_rpc_daily_profit(default_conf, update, ticker, fee,
get_fee=fee
)
freqtradebot = FreqtradeBot(default_conf, create_engine('sqlite://'))
freqtradebot = FreqtradeBot(default_conf)
stake_currency = default_conf['stake_currency']
fiat_display_currency = default_conf['fiat_display_currency']
@ -182,7 +180,7 @@ def test_rpc_trade_statistics(default_conf, ticker, ticker_sell_up, fee,
get_fee=fee
)
freqtradebot = FreqtradeBot(default_conf, create_engine('sqlite://'))
freqtradebot = FreqtradeBot(default_conf)
stake_currency = default_conf['stake_currency']
fiat_display_currency = default_conf['fiat_display_currency']
@ -208,15 +206,30 @@ def test_rpc_trade_statistics(default_conf, ticker, ticker_sell_up, fee,
trade.close_date = datetime.utcnow()
trade.is_open = False
freqtradebot.create_trade()
trade = Trade.query.first()
# Simulate fulfilled LIMIT_BUY order for trade
trade.update(limit_buy_order)
# Update the ticker with a market going up
mocker.patch.multiple(
'freqtrade.freqtradebot.exchange',
validate_pairs=MagicMock(),
get_ticker=ticker_sell_up
)
trade.update(limit_sell_order)
trade.close_date = datetime.utcnow()
trade.is_open = False
(error, stats) = rpc.rpc_trade_statistics(stake_currency, fiat_display_currency)
assert not error
assert prec_satoshi(stats['profit_closed_coin'], 6.217e-05)
assert prec_satoshi(stats['profit_closed_percent'], 6.2)
assert prec_satoshi(stats['profit_closed_fiat'], 0.93255)
assert prec_satoshi(stats['profit_all_coin'], 6.217e-05)
assert prec_satoshi(stats['profit_all_percent'], 6.2)
assert prec_satoshi(stats['profit_all_fiat'], 0.93255)
assert stats['trade_count'] == 1
assert prec_satoshi(stats['profit_all_coin'], 5.632e-05)
assert prec_satoshi(stats['profit_all_percent'], 2.81)
assert prec_satoshi(stats['profit_all_fiat'], 0.8448)
assert stats['trade_count'] == 2
assert stats['first_trade_date'] == 'just now'
assert stats['latest_trade_date'] == 'just now'
assert stats['avg_duration'] == '0:00:00'
@ -245,7 +258,7 @@ def test_rpc_trade_statistics_closed(mocker, default_conf, ticker, fee,
get_fee=fee
)
freqtradebot = FreqtradeBot(default_conf, create_engine('sqlite://'))
freqtradebot = FreqtradeBot(default_conf)
stake_currency = default_conf['stake_currency']
fiat_display_currency = default_conf['fiat_display_currency']
@ -316,7 +329,7 @@ def test_rpc_balance_handle(default_conf, mocker):
get_balances=MagicMock(return_value=mock_balance)
)
freqtradebot = FreqtradeBot(default_conf, create_engine('sqlite://'))
freqtradebot = FreqtradeBot(default_conf)
rpc = RPC(freqtradebot)
(error, res) = rpc.rpc_balance(default_conf['fiat_display_currency'])
@ -346,7 +359,7 @@ def test_rpc_start(mocker, default_conf) -> None:
get_ticker=MagicMock()
)
freqtradebot = FreqtradeBot(default_conf, create_engine('sqlite://'))
freqtradebot = FreqtradeBot(default_conf)
rpc = RPC(freqtradebot)
freqtradebot.state = State.STOPPED
@ -374,7 +387,7 @@ def test_rpc_stop(mocker, default_conf) -> None:
get_ticker=MagicMock()
)
freqtradebot = FreqtradeBot(default_conf, create_engine('sqlite://'))
freqtradebot = FreqtradeBot(default_conf)
rpc = RPC(freqtradebot)
freqtradebot.state = State.RUNNING
@ -413,7 +426,7 @@ def test_rpc_forcesell(default_conf, ticker, fee, mocker) -> None:
get_fee=fee,
)
freqtradebot = FreqtradeBot(default_conf, create_engine('sqlite://'))
freqtradebot = FreqtradeBot(default_conf)
rpc = RPC(freqtradebot)
freqtradebot.state = State.STOPPED
@ -451,20 +464,44 @@ def test_rpc_forcesell(default_conf, ticker, fee, mocker) -> None:
freqtradebot.state = State.RUNNING
assert cancel_order_mock.call_count == 0
# make an limit-buy open trade
trade = Trade.query.filter(Trade.id == '1').first()
filled_amount = trade.amount / 2
mocker.patch(
'freqtrade.freqtradebot.exchange.get_order',
return_value={
'status': 'open',
'type': 'limit',
'side': 'buy'
'side': 'buy',
'filled': filled_amount
}
)
# check that the trade is called, which is done
# by ensuring exchange.cancel_order is called
# check that the trade is called, which is done by ensuring exchange.cancel_order is called
# and trade amount is updated
(error, res) = rpc.rpc_forcesell('1')
assert not error
assert res == ''
assert cancel_order_mock.call_count == 1
assert trade.amount == filled_amount
freqtradebot.create_trade()
trade = Trade.query.filter(Trade.id == '2').first()
amount = trade.amount
# make an limit-buy open trade, if there is no 'filled', don't sell it
mocker.patch(
'freqtrade.freqtradebot.exchange.get_order',
return_value={
'status': 'open',
'type': 'limit',
'side': 'buy',
'filled': None
}
)
# check that the trade is called, which is done by ensuring exchange.cancel_order is called
(error, res) = rpc.rpc_forcesell('2')
assert not error
assert res == ''
assert cancel_order_mock.call_count == 2
assert trade.amount == amount
freqtradebot.create_trade()
# make an limit-sell open trade
@ -476,11 +513,11 @@ def test_rpc_forcesell(default_conf, ticker, fee, mocker) -> None:
'side': 'sell'
}
)
(error, res) = rpc.rpc_forcesell('2')
(error, res) = rpc.rpc_forcesell('3')
assert not error
assert res == ''
# status quo, no exchange calls
assert cancel_order_mock.call_count == 1
assert cancel_order_mock.call_count == 2
def test_performance_handle(default_conf, ticker, limit_buy_order, fee,
@ -499,7 +536,7 @@ def test_performance_handle(default_conf, ticker, limit_buy_order, fee,
get_fee=fee
)
freqtradebot = FreqtradeBot(default_conf, create_engine('sqlite://'))
freqtradebot = FreqtradeBot(default_conf)
rpc = RPC(freqtradebot)
# Create some test data
@ -538,7 +575,7 @@ def test_rpc_count(mocker, default_conf, ticker, fee) -> None:
get_fee=fee,
)
freqtradebot = FreqtradeBot(default_conf, create_engine('sqlite://'))
freqtradebot = FreqtradeBot(default_conf)
rpc = RPC(freqtradebot)
(error, trades) = rpc.rpc_count()

View File

@ -11,7 +11,6 @@ from datetime import datetime
from random import randint
from unittest.mock import MagicMock
from sqlalchemy import create_engine
from telegram import Update, Message, Chat
from telegram.error import NetworkError
@ -71,12 +70,12 @@ def test_init(default_conf, mocker, caplog) -> None:
assert start_polling.call_count == 0
# number of handles registered
assert start_polling.dispatcher.add_handler.call_count == 11
assert start_polling.dispatcher.add_handler.call_count > 0
assert start_polling.start_polling.call_count == 1
message_str = "rpc.telegram is listening for following commands: [['status'], ['profit'], " \
"['balance'], ['start'], ['stop'], ['forcesell'], ['performance'], ['daily'], " \
"['count'], ['help'], ['version']]"
"['count'], ['reload_conf'], ['help'], ['version']]"
assert log_has(message_str, caplog.record_tuples)
@ -156,7 +155,7 @@ def test_authorized_only(default_conf, mocker, caplog) -> None:
conf = deepcopy(default_conf)
conf['telegram']['enabled'] = False
dummy = DummyCls(FreqtradeBot(conf, create_engine('sqlite://')))
dummy = DummyCls(FreqtradeBot(conf))
dummy.dummy_handler(bot=MagicMock(), update=update)
assert dummy.state['called'] is True
assert log_has(
@ -187,7 +186,7 @@ def test_authorized_only_unauthorized(default_conf, mocker, caplog) -> None:
conf = deepcopy(default_conf)
conf['telegram']['enabled'] = False
dummy = DummyCls(FreqtradeBot(conf, create_engine('sqlite://')))
dummy = DummyCls(FreqtradeBot(conf))
dummy.dummy_handler(bot=MagicMock(), update=update)
assert dummy.state['called'] is False
assert not log_has(
@ -217,7 +216,7 @@ def test_authorized_only_exception(default_conf, mocker, caplog) -> None:
conf = deepcopy(default_conf)
conf['telegram']['enabled'] = False
dummy = DummyCls(FreqtradeBot(conf, create_engine('sqlite://')))
dummy = DummyCls(FreqtradeBot(conf))
dummy.dummy_exception(bot=MagicMock(), update=update)
assert dummy.state['called'] is False
assert not log_has(
@ -263,7 +262,7 @@ def test_status(default_conf, update, mocker, fee, ticker) -> None:
)
mocker.patch('freqtrade.freqtradebot.RPCManager', MagicMock())
freqtradebot = FreqtradeBot(conf, create_engine('sqlite://'))
freqtradebot = FreqtradeBot(conf)
telegram = Telegram(freqtradebot)
# Create some test data
@ -301,7 +300,7 @@ def test_status_handle(default_conf, update, ticker, fee, mocker) -> None:
)
mocker.patch('freqtrade.freqtradebot.RPCManager', MagicMock())
freqtradebot = FreqtradeBot(default_conf, create_engine('sqlite://'))
freqtradebot = FreqtradeBot(default_conf)
telegram = Telegram(freqtradebot)
freqtradebot.state = State.STOPPED
@ -348,7 +347,7 @@ def test_status_table_handle(default_conf, update, ticker, fee, mocker) -> None:
conf = deepcopy(default_conf)
conf['stake_amount'] = 15.0
freqtradebot = FreqtradeBot(conf, create_engine('sqlite://'))
freqtradebot = FreqtradeBot(conf)
telegram = Telegram(freqtradebot)
freqtradebot.state = State.STOPPED
@ -402,7 +401,7 @@ def test_daily_handle(default_conf, update, ticker, limit_buy_order, fee,
)
mocker.patch('freqtrade.freqtradebot.RPCManager', MagicMock())
freqtradebot = FreqtradeBot(default_conf, create_engine('sqlite://'))
freqtradebot = FreqtradeBot(default_conf)
telegram = Telegram(freqtradebot)
# Create some test data
@ -470,7 +469,7 @@ def test_daily_wrong_input(default_conf, update, ticker, mocker) -> None:
)
mocker.patch('freqtrade.freqtradebot.RPCManager', MagicMock())
freqtradebot = FreqtradeBot(default_conf, create_engine('sqlite://'))
freqtradebot = FreqtradeBot(default_conf)
telegram = Telegram(freqtradebot)
# Try invalid data
@ -511,7 +510,7 @@ def test_profit_handle(default_conf, update, ticker, ticker_sell_up, fee,
)
mocker.patch('freqtrade.freqtradebot.RPCManager', MagicMock())
freqtradebot = FreqtradeBot(default_conf, create_engine('sqlite://'))
freqtradebot = FreqtradeBot(default_conf)
telegram = Telegram(freqtradebot)
telegram._profit(bot=MagicMock(), update=update)
@ -608,7 +607,7 @@ def test_telegram_balance_handle(default_conf, update, mocker) -> None:
send_msg=msg_mock
)
freqtradebot = FreqtradeBot(default_conf, create_engine('sqlite://'))
freqtradebot = FreqtradeBot(default_conf)
telegram = Telegram(freqtradebot)
telegram._balance(bot=MagicMock(), update=update)
@ -638,7 +637,7 @@ def test_zero_balance_handle(default_conf, update, mocker) -> None:
send_msg=msg_mock
)
freqtradebot = FreqtradeBot(default_conf, create_engine('sqlite://'))
freqtradebot = FreqtradeBot(default_conf)
telegram = Telegram(freqtradebot)
telegram._balance(bot=MagicMock(), update=update)
@ -661,7 +660,7 @@ def test_start_handle(default_conf, update, mocker) -> None:
)
mocker.patch('freqtrade.freqtradebot.RPCManager', MagicMock())
freqtradebot = FreqtradeBot(default_conf, create_engine('sqlite://'))
freqtradebot = FreqtradeBot(default_conf)
telegram = Telegram(freqtradebot)
freqtradebot.state = State.STOPPED
@ -685,7 +684,7 @@ def test_start_handle_already_running(default_conf, update, mocker) -> None:
)
mocker.patch('freqtrade.freqtradebot.RPCManager', MagicMock())
freqtradebot = FreqtradeBot(default_conf, create_engine('sqlite://'))
freqtradebot = FreqtradeBot(default_conf)
telegram = Telegram(freqtradebot)
freqtradebot.state = State.RUNNING
@ -710,7 +709,7 @@ def test_stop_handle(default_conf, update, mocker) -> None:
)
mocker.patch('freqtrade.freqtradebot.RPCManager', MagicMock())
freqtradebot = FreqtradeBot(default_conf, create_engine('sqlite://'))
freqtradebot = FreqtradeBot(default_conf)
telegram = Telegram(freqtradebot)
freqtradebot.state = State.RUNNING
@ -735,7 +734,7 @@ def test_stop_handle_already_stopped(default_conf, update, mocker) -> None:
)
mocker.patch('freqtrade.freqtradebot.RPCManager', MagicMock())
freqtradebot = FreqtradeBot(default_conf, create_engine('sqlite://'))
freqtradebot = FreqtradeBot(default_conf)
telegram = Telegram(freqtradebot)
freqtradebot.state = State.STOPPED
@ -746,6 +745,29 @@ def test_stop_handle_already_stopped(default_conf, update, mocker) -> None:
assert 'already stopped' in msg_mock.call_args_list[0][0][0]
def test_reload_conf_handle(default_conf, update, mocker) -> None:
""" Test _reload_conf() method """
patch_coinmarketcap(mocker)
mocker.patch('freqtrade.freqtradebot.exchange.init', MagicMock())
msg_mock = MagicMock()
mocker.patch.multiple(
'freqtrade.rpc.telegram.Telegram',
_init=MagicMock(),
send_msg=msg_mock
)
mocker.patch('freqtrade.freqtradebot.RPCManager', MagicMock())
freqtradebot = FreqtradeBot(default_conf)
telegram = Telegram(freqtradebot)
freqtradebot.state = State.RUNNING
assert freqtradebot.state == State.RUNNING
telegram._reload_conf(bot=MagicMock(), update=update)
assert freqtradebot.state == State.RELOAD_CONF
assert msg_mock.call_count == 1
assert 'Reloading config' in msg_mock.call_args_list[0][0][0]
def test_forcesell_handle(default_conf, update, ticker, fee, ticker_sell_up, mocker) -> None:
"""
Test _forcesell() method
@ -762,7 +784,7 @@ def test_forcesell_handle(default_conf, update, ticker, fee, ticker_sell_up, moc
get_fee=fee
)
freqtradebot = FreqtradeBot(default_conf, create_engine('sqlite://'))
freqtradebot = FreqtradeBot(default_conf)
telegram = Telegram(freqtradebot)
# Create some test data
@ -802,7 +824,7 @@ def test_forcesell_down_handle(default_conf, update, ticker, fee, ticker_sell_do
get_fee=fee
)
freqtradebot = FreqtradeBot(default_conf, create_engine('sqlite://'))
freqtradebot = FreqtradeBot(default_conf)
telegram = Telegram(freqtradebot)
# Create some test data
@ -847,7 +869,7 @@ def test_forcesell_all_handle(default_conf, update, ticker, fee, mocker) -> None
get_fee=fee
)
freqtradebot = FreqtradeBot(default_conf, create_engine('sqlite://'))
freqtradebot = FreqtradeBot(default_conf)
telegram = Telegram(freqtradebot)
# Create some test data
@ -880,7 +902,7 @@ def test_forcesell_handle_invalid(default_conf, update, mocker) -> None:
)
mocker.patch('freqtrade.freqtradebot.exchange.validate_pairs', MagicMock())
freqtradebot = FreqtradeBot(default_conf, create_engine('sqlite://'))
freqtradebot = FreqtradeBot(default_conf)
telegram = Telegram(freqtradebot)
# Trader is not running
@ -927,7 +949,7 @@ def test_performance_handle(default_conf, update, ticker, fee,
get_fee=fee
)
mocker.patch('freqtrade.freqtradebot.RPCManager', MagicMock())
freqtradebot = FreqtradeBot(default_conf, create_engine('sqlite://'))
freqtradebot = FreqtradeBot(default_conf)
telegram = Telegram(freqtradebot)
# Create some test data
@ -962,7 +984,7 @@ def test_performance_handle_invalid(default_conf, update, mocker) -> None:
send_msg=msg_mock
)
mocker.patch('freqtrade.freqtradebot.exchange.validate_pairs', MagicMock())
freqtradebot = FreqtradeBot(default_conf, create_engine('sqlite://'))
freqtradebot = FreqtradeBot(default_conf)
telegram = Telegram(freqtradebot)
# Trader is not running
@ -991,7 +1013,7 @@ def test_count_handle(default_conf, update, ticker, fee, mocker) -> None:
buy=MagicMock(return_value={'id': 'mocked_order_id'})
)
mocker.patch('freqtrade.optimize.backtesting.exchange.get_fee', fee)
freqtradebot = FreqtradeBot(default_conf, create_engine('sqlite://'))
freqtradebot = FreqtradeBot(default_conf)
telegram = Telegram(freqtradebot)
freqtradebot.state = State.STOPPED
@ -1027,7 +1049,7 @@ def test_help_handle(default_conf, update, mocker) -> None:
_init=MagicMock(),
send_msg=msg_mock
)
freqtradebot = FreqtradeBot(default_conf, create_engine('sqlite://'))
freqtradebot = FreqtradeBot(default_conf)
telegram = Telegram(freqtradebot)
telegram._help(bot=MagicMock(), update=update)
@ -1047,7 +1069,7 @@ def test_version_handle(default_conf, update, mocker) -> None:
_init=MagicMock(),
send_msg=msg_mock
)
freqtradebot = FreqtradeBot(default_conf, create_engine('sqlite://'))
freqtradebot = FreqtradeBot(default_conf)
telegram = Telegram(freqtradebot)
telegram._version(bot=MagicMock(), update=update)
@ -1064,7 +1086,7 @@ def test_send_msg(default_conf, mocker) -> None:
mocker.patch('freqtrade.rpc.telegram.Telegram._init', MagicMock())
conf = deepcopy(default_conf)
bot = MagicMock()
freqtradebot = FreqtradeBot(conf, create_engine('sqlite://'))
freqtradebot = FreqtradeBot(conf)
telegram = Telegram(freqtradebot)
telegram._config['telegram']['enabled'] = False
@ -1087,7 +1109,7 @@ def test_send_msg_network_error(default_conf, mocker, caplog) -> None:
conf = deepcopy(default_conf)
bot = MagicMock()
bot.send_message = MagicMock(side_effect=NetworkError('Oh snap'))
freqtradebot = FreqtradeBot(conf, create_engine('sqlite://'))
freqtradebot = FreqtradeBot(conf)
telegram = Telegram(freqtradebot)
telegram._config['telegram']['enabled'] = True

View File

@ -28,10 +28,10 @@ def test_load_strategy(result):
def test_load_strategy_from_url(result):
resolver = StrategyResolver()
resolver._load_strategy('https://raw.githubusercontent.com/berlinguyinca'
'/freqtrade-trading-strategies'
'/master/user_data/strategies/Simple.py')
assert hasattr(resolver.strategy, 'populate_indicators')
resolver._load_strategy('https://freq.isaac.international/'
'dev/strategies/GBPAQEFGGWCMWVFU34P'
'MVGS4P2NJR4IDFNVI4LTCZAKJAD3JCXUMBI4J/AverageStrategy/code')
assert hasattr(resolver.strategy, 'minimal_roi')
assert 'adx' in resolver.strategy.populate_indicators(result)
@ -42,7 +42,8 @@ def test_load_strategy_custom_directory(result):
if os.name == 'nt':
with pytest.raises(
FileNotFoundError,
match="FileNotFoundError: [WinError 3] The system cannot find the path specified: '{}'".format(extra_dir)):
match="FileNotFoundError: [WinError 3] The system cannot find the "
"path specified: '{}'".format(extra_dir)):
resolver._load_strategy('TestStrategy', extra_dir)
else:
with pytest.raises(

View File

@ -13,6 +13,7 @@ from pandas import DataFrame
from freqtrade.analyze import Analyze, SignalType
from freqtrade.optimize.__init__ import load_tickerdata_file
from freqtrade.arguments import TimeRange
from freqtrade.tests.conftest import log_has
# Avoid to reinit the same object again and again
@ -45,7 +46,7 @@ def test_analyze_object() -> None:
def test_dataframe_correct_length(result):
dataframe = Analyze.parse_ticker_dataframe(result)
assert len(result.index) == len(dataframe.index)
assert len(result.index) - 1 == len(dataframe.index) # last partial candle removed
def test_dataframe_correct_columns(result):
@ -183,8 +184,8 @@ def test_tickerdata_to_dataframe(default_conf) -> None:
"""
analyze = Analyze(default_conf)
timerange = ((None, 'line'), None, -100)
timerange = TimeRange(None, 'line', 0, -100)
tick = load_tickerdata_file(None, 'UNITTEST/BTC', '1m', timerange=timerange)
tickerlist = {'UNITTEST/BTC': tick}
data = analyze.tickerdata_to_dataframe(tickerlist)
assert len(data['UNITTEST/BTC']) == 100
assert len(data['UNITTEST/BTC']) == 99 # partial candle was removed

View File

@ -9,7 +9,7 @@ import logging
import pytest
from freqtrade.arguments import Arguments
from freqtrade.arguments import Arguments, TimeRange
def test_arguments_object() -> None:
@ -46,6 +46,11 @@ def test_parse_args_config() -> None:
assert args.config == '/dev/null'
def test_parse_args_db_url() -> None:
args = Arguments(['--db-url', 'sqlite:///test.sqlite'], '').get_parsed_arg()
assert args.db_url == 'sqlite:///test.sqlite'
def test_parse_args_verbose() -> None:
args = Arguments(['-v'], '').get_parsed_arg()
assert args.loglevel == logging.DEBUG
@ -58,6 +63,7 @@ def test_scripts_options() -> None:
arguments = Arguments(['-p', 'ETH/BTC'], '')
arguments.scripts_options()
args = arguments.get_parsed_arg()
print(args.pair)
assert args.pair == 'ETH/BTC'
@ -107,14 +113,24 @@ def test_parse_args_dynamic_whitelist_invalid_values() -> None:
def test_parse_timerange_incorrect() -> None:
assert ((None, 'line'), None, -200) == Arguments.parse_timerange('-200')
assert (('line', None), 200, None) == Arguments.parse_timerange('200-')
assert (('index', 'index'), 200, 500) == Arguments.parse_timerange('200-500')
assert TimeRange(None, 'line', 0, -200) == Arguments.parse_timerange('-200')
assert TimeRange('line', None, 200, 0) == Arguments.parse_timerange('200-')
assert TimeRange('index', 'index', 200, 500) == Arguments.parse_timerange('200-500')
assert (('date', None), 1274486400, None) == Arguments.parse_timerange('20100522-')
assert ((None, 'date'), None, 1274486400) == Arguments.parse_timerange('-20100522')
assert TimeRange('date', None, 1274486400, 0) == Arguments.parse_timerange('20100522-')
assert TimeRange(None, 'date', 0, 1274486400) == Arguments.parse_timerange('-20100522')
timerange = Arguments.parse_timerange('20100522-20150730')
assert timerange == (('date', 'date'), 1274486400, 1438214400)
assert timerange == TimeRange('date', 'date', 1274486400, 1438214400)
# Added test for unix timestamp - BTC genesis date
assert TimeRange('date', None, 1231006505, 0) == Arguments.parse_timerange('1231006505-')
assert TimeRange(None, 'date', 0, 1233360000) == Arguments.parse_timerange('-1233360000')
timerange = Arguments.parse_timerange('1231006505-1233360000')
assert TimeRange('date', 'date', 1231006505, 1233360000) == timerange
# TODO: Find solution for the following case (passing timestamp in ms)
timerange = Arguments.parse_timerange('1231006505000-1233360000000')
assert TimeRange('date', 'date', 1231006505, 1233360000) != timerange
with pytest.raises(Exception, match=r'Incorrect syntax.*'):
Arguments.parse_timerange('-')
@ -159,3 +175,19 @@ def test_parse_args_hyperopt_custom() -> None:
assert call_args.subparser == 'hyperopt'
assert call_args.spaces == ['buy']
assert call_args.func is not None
def test_testdata_dl_options() -> None:
args = [
'--pairs-file', 'file_with_pairs',
'--export', 'export/folder',
'--days', '30',
'--exchange', 'binance'
]
arguments = Arguments(args, '')
arguments.testdata_dl_options()
args = arguments.parse_args()
assert args.pairs_file == 'file_with_pairs'
assert args.export == 'export/folder'
assert args.days == 30
assert args.exchange == 'binance'

View File

@ -6,6 +6,7 @@ Unit test file for configuration.py
import json
from copy import deepcopy
from unittest.mock import MagicMock
from argparse import Namespace
import pytest
from jsonschema import ValidationError
@ -37,7 +38,7 @@ def test_load_config_invalid_pair(default_conf) -> None:
conf['exchange']['pair_whitelist'].append('ETH-BTC')
with pytest.raises(ValidationError, match=r'.*does not match.*'):
configuration = Configuration([])
configuration = Configuration(Namespace())
configuration._validate_config(conf)
@ -49,7 +50,7 @@ def test_load_config_missing_attributes(default_conf) -> None:
conf.pop('exchange')
with pytest.raises(ValidationError, match=r'.*\'exchange\' is a required property.*'):
configuration = Configuration([])
configuration = Configuration(Namespace())
configuration._validate_config(conf)
@ -61,7 +62,7 @@ def test_load_config_file(default_conf, mocker, caplog) -> None:
read_data=json.dumps(default_conf)
))
configuration = Configuration([])
configuration = Configuration(Namespace())
validated_conf = configuration._load_config_file('somefile')
assert file_mock.call_count == 1
assert validated_conf.items() >= default_conf.items()
@ -79,12 +80,12 @@ def test_load_config_max_open_trades_zero(default_conf, mocker, caplog) -> None:
read_data=json.dumps(conf)
))
Configuration([])._load_config_file('somefile')
Configuration(Namespace())._load_config_file('somefile')
assert file_mock.call_count == 1
assert log_has('Validating configuration ...', caplog.record_tuples)
def test_load_config_file_exception(mocker, caplog) -> None:
def test_load_config_file_exception(mocker) -> None:
"""
Test Configuration._load_config_file() method
"""
@ -92,14 +93,10 @@ def test_load_config_file_exception(mocker, caplog) -> None:
'freqtrade.configuration.open',
MagicMock(side_effect=FileNotFoundError('File not found'))
)
configuration = Configuration([])
configuration = Configuration(Namespace())
with pytest.raises(SystemExit):
with pytest.raises(OperationalException, match=r'.*Config file "somefile" not found!*'):
configuration._load_config_file('somefile')
assert log_has(
'Config file "somefile" not found. Please create your config file',
caplog.record_tuples
)
def test_load_config(default_conf, mocker) -> None:
@ -117,7 +114,6 @@ def test_load_config(default_conf, mocker) -> None:
assert validated_conf.get('strategy') == 'DefaultStrategy'
assert validated_conf.get('strategy_path') is None
assert 'dynamic_whitelist' not in validated_conf
assert 'dry_run_db' not in validated_conf
def test_load_config_with_params(default_conf, mocker) -> None:
@ -128,13 +124,13 @@ def test_load_config_with_params(default_conf, mocker) -> None:
read_data=json.dumps(default_conf)
))
args = [
arglist = [
'--dynamic-whitelist', '10',
'--strategy', 'TestStrategy',
'--strategy-path', '/some/path',
'--dry-run-db',
'--db-url', 'sqlite:///someurl',
]
args = Arguments(args, '').get_parsed_arg()
args = Arguments(arglist, '').get_parsed_arg()
configuration = Configuration(args)
validated_conf = configuration.load_config()
@ -142,7 +138,7 @@ def test_load_config_with_params(default_conf, mocker) -> None:
assert validated_conf.get('dynamic_whitelist') == 10
assert validated_conf.get('strategy') == 'TestStrategy'
assert validated_conf.get('strategy_path') == '/some/path'
assert validated_conf.get('dry_run_db') is True
assert validated_conf.get('db_url') == 'sqlite:///someurl'
def test_load_custom_strategy(default_conf, mocker) -> None:
@ -174,12 +170,12 @@ def test_show_info(default_conf, mocker, caplog) -> None:
read_data=json.dumps(default_conf)
))
args = [
arglist = [
'--dynamic-whitelist', '10',
'--strategy', 'TestStrategy',
'--dry-run-db'
'--db-url', 'sqlite:///tmp/testdb',
]
args = Arguments(args, '').get_parsed_arg()
args = Arguments(arglist, '').get_parsed_arg()
configuration = Configuration(args)
configuration.get_config()
@ -191,23 +187,8 @@ def test_show_info(default_conf, mocker, caplog) -> None:
caplog.record_tuples
)
assert log_has(
'Parameter --dry-run-db detected ...',
caplog.record_tuples
)
assert log_has(
'Dry_run will use the DB file: "tradesv3.dry_run.sqlite"',
caplog.record_tuples
)
# Test the Dry run condition
configuration.config.update({'dry_run': False})
configuration._load_common_config(configuration.config)
assert log_has(
'Dry run is disabled. (--dry_run_db ignored)',
caplog.record_tuples
)
assert log_has('Using DB: "sqlite:///tmp/testdb"', caplog.record_tuples)
assert log_has('Dry run is enabled', caplog.record_tuples)
def test_setup_configuration_without_arguments(mocker, default_conf, caplog) -> None:
@ -218,13 +199,13 @@ def test_setup_configuration_without_arguments(mocker, default_conf, caplog) ->
read_data=json.dumps(default_conf)
))
args = [
arglist = [
'--config', 'config.json',
'--strategy', 'DefaultStrategy',
'backtesting'
]
args = Arguments(args, '').get_parsed_arg()
args = Arguments(arglist, '').get_parsed_arg()
configuration = Configuration(args)
config = configuration.get_config()
@ -235,7 +216,7 @@ def test_setup_configuration_without_arguments(mocker, default_conf, caplog) ->
assert 'pair_whitelist' in config['exchange']
assert 'datadir' in config
assert log_has(
'Parameter --datadir detected: {} ...'.format(config['datadir']),
'Using data folder: {} ...'.format(config['datadir']),
caplog.record_tuples
)
assert 'ticker_interval' in config
@ -262,7 +243,7 @@ def test_setup_configuration_with_arguments(mocker, default_conf, caplog) -> Non
read_data=json.dumps(default_conf)
))
args = [
arglist = [
'--config', 'config.json',
'--strategy', 'DefaultStrategy',
'--datadir', '/foo/bar',
@ -275,7 +256,7 @@ def test_setup_configuration_with_arguments(mocker, default_conf, caplog) -> Non
'--export', '/bar/foo'
]
args = Arguments(args, '').get_parsed_arg()
args = Arguments(arglist, '').get_parsed_arg()
configuration = Configuration(args)
config = configuration.get_config()
@ -286,7 +267,7 @@ def test_setup_configuration_with_arguments(mocker, default_conf, caplog) -> Non
assert 'pair_whitelist' in config['exchange']
assert 'datadir' in config
assert log_has(
'Parameter --datadir detected: {} ...'.format(config['datadir']),
'Using data folder: {} ...'.format(config['datadir']),
caplog.record_tuples
)
assert 'ticker_interval' in config
@ -326,14 +307,14 @@ def test_hyperopt_with_arguments(mocker, default_conf, caplog) -> None:
read_data=json.dumps(default_conf)
))
args = [
arglist = [
'hyperopt',
'--epochs', '10',
'--use-mongodb',
'--spaces', 'all',
]
args = Arguments(args, '').get_parsed_arg()
args = Arguments(arglist, '').get_parsed_arg()
configuration = Configuration(args)
config = configuration.get_config()
@ -357,7 +338,7 @@ def test_check_exchange(default_conf) -> None:
Test the configuration validator with a missing attribute
"""
conf = deepcopy(default_conf)
configuration = Configuration([])
configuration = Configuration(Namespace())
# Test a valid exchange
conf.get('exchange').update({'name': 'BITTREX'})

View File

@ -6,8 +6,10 @@ from unittest.mock import MagicMock
import pytest
from requests.exceptions import RequestException
from freqtrade.fiat_convert import CryptoFiat, CryptoToFiatConverter
from freqtrade.tests.conftest import patch_coinmarketcap
from freqtrade.tests.conftest import log_has, patch_coinmarketcap
def test_pair_convertion_object():
@ -88,6 +90,13 @@ def test_fiat_convert_find_price(mocker):
assert fiat_convert.get_price(crypto_symbol='BTC', fiat_symbol='EUR') == 13000.2
def test_fiat_convert_unsupported_crypto(mocker, caplog):
mocker.patch('freqtrade.fiat_convert.CryptoToFiatConverter._cryptomap', return_value=[])
fiat_convert = CryptoToFiatConverter()
assert fiat_convert._find_price(crypto_symbol='CRYPTO_123', fiat_symbol='EUR') == 0.0
assert log_has('unsupported crypto-symbol CRYPTO_123 - returning 0.0', caplog.record_tuples)
def test_fiat_convert_get_price(mocker):
api_mock = MagicMock(return_value={
'price_usd': 28000.0,
@ -124,6 +133,20 @@ def test_fiat_convert_get_price(mocker):
assert fiat_convert._pairs[0]._expiration is not expiration
def test_fiat_convert_same_currencies(mocker):
patch_coinmarketcap(mocker)
fiat_convert = CryptoToFiatConverter()
assert fiat_convert.get_price(crypto_symbol='USD', fiat_symbol='USD') == 1.0
def test_fiat_convert_two_FIAT(mocker):
patch_coinmarketcap(mocker)
fiat_convert = CryptoToFiatConverter()
assert fiat_convert.get_price(crypto_symbol='USD', fiat_symbol='EUR') == 0.0
def test_loadcryptomap(mocker):
patch_coinmarketcap(mocker)
@ -133,6 +156,22 @@ def test_loadcryptomap(mocker):
assert fiat_convert._cryptomap["BTC"] == "1"
def test_fiat_init_network_exception(mocker):
# Because CryptoToFiatConverter is a Singleton we reset the listings
listmock = MagicMock(side_effect=RequestException)
mocker.patch.multiple(
'freqtrade.fiat_convert.Market',
listings=listmock,
)
# with pytest.raises(RequestEsxception):
fiat_convert = CryptoToFiatConverter()
fiat_convert._cryptomap = {}
fiat_convert._load_cryptomap()
length_cryptomap = len(fiat_convert._cryptomap)
assert length_cryptomap == 0
def test_fiat_convert_without_network():
# Because CryptoToFiatConverter is a Singleton we reset the value of _coinmarketcap
@ -144,3 +183,22 @@ def test_fiat_convert_without_network():
assert fiat_convert._coinmarketcap is None
assert fiat_convert._find_price(crypto_symbol='BTC', fiat_symbol='USD') == 0.0
CryptoToFiatConverter._coinmarketcap = cmc_temp
def test_convert_amount(mocker):
mocker.patch('freqtrade.fiat_convert.CryptoToFiatConverter.get_price', return_value=12345.0)
fiat_convert = CryptoToFiatConverter()
result = fiat_convert.convert_amount(
crypto_amount=1.23,
crypto_symbol="BTC",
fiat_symbol="USD"
)
assert result == 15184.35
result = fiat_convert.convert_amount(
crypto_amount=1.23,
crypto_symbol="BTC",
fiat_symbol="BTC"
)
assert result == 1.23

View File

@ -13,7 +13,6 @@ from unittest.mock import MagicMock
import arrow
import pytest
import requests
from sqlalchemy import create_engine
from freqtrade import DependencyException, OperationalException, TemporaryError
from freqtrade.freqtradebot import FreqtradeBot
@ -36,7 +35,7 @@ def get_patched_freqtradebot(mocker, config) -> FreqtradeBot:
mocker.patch('freqtrade.freqtradebot.exchange.init', MagicMock())
patch_coinmarketcap(mocker)
return FreqtradeBot(config, create_engine('sqlite://'))
return FreqtradeBot(config)
def patch_get_signal(mocker, value=(True, False)) -> None:
@ -69,7 +68,7 @@ def test_freqtradebot_object() -> None:
Test the FreqtradeBot object has the mandatory public methods
"""
assert hasattr(FreqtradeBot, 'worker')
assert hasattr(FreqtradeBot, 'clean')
assert hasattr(FreqtradeBot, 'cleanup')
assert hasattr(FreqtradeBot, 'create_trade')
assert hasattr(FreqtradeBot, 'get_target_bid')
assert hasattr(FreqtradeBot, 'process_maybe_execute_buy')
@ -94,7 +93,7 @@ def test_freqtradebot(mocker, default_conf) -> None:
assert freqtrade.state is State.STOPPED
def test_clean(mocker, default_conf, caplog) -> None:
def test_cleanup(mocker, default_conf, caplog) -> None:
"""
Test clean() method
"""
@ -102,11 +101,8 @@ def test_clean(mocker, default_conf, caplog) -> None:
mocker.patch('freqtrade.persistence.cleanup', mock_cleanup)
freqtrade = get_patched_freqtradebot(mocker, default_conf)
assert freqtrade.state == State.RUNNING
assert freqtrade.clean()
assert freqtrade.state == State.STOPPED
assert log_has('Stopping trader and cleaning up modules...', caplog.record_tuples)
freqtrade.cleanup()
assert log_has('Cleaning up modules ...', caplog.record_tuples)
assert mock_cleanup.call_count == 1
@ -237,7 +233,7 @@ def test_create_trade(default_conf, ticker, limit_buy_order, fee, mocker) -> Non
# Save state of current whitelist
whitelist = deepcopy(default_conf['exchange']['pair_whitelist'])
freqtrade = FreqtradeBot(default_conf, create_engine('sqlite://'))
freqtrade = FreqtradeBot(default_conf)
freqtrade.create_trade()
trade = Trade.query.first()
@ -274,7 +270,7 @@ def test_create_trade_minimal_amount(default_conf, ticker, limit_buy_order, fee,
conf = deepcopy(default_conf)
conf['stake_amount'] = 0.0005
freqtrade = FreqtradeBot(conf, create_engine('sqlite://'))
freqtrade = FreqtradeBot(conf)
freqtrade.create_trade()
rate, amount = buy_mock.call_args[0][1], buy_mock.call_args[0][2]
@ -296,7 +292,7 @@ def test_create_trade_no_stake_amount(default_conf, ticker, limit_buy_order, fee
get_balance=MagicMock(return_value=default_conf['stake_amount'] * 0.5),
get_fee=fee,
)
freqtrade = FreqtradeBot(default_conf, create_engine('sqlite://'))
freqtrade = FreqtradeBot(default_conf)
with pytest.raises(DependencyException, match=r'.*stake amount.*'):
freqtrade.create_trade()
@ -320,7 +316,7 @@ def test_create_trade_no_pairs(default_conf, ticker, limit_buy_order, fee, mocke
conf = deepcopy(default_conf)
conf['exchange']['pair_whitelist'] = ["ETH/BTC"]
conf['exchange']['pair_blacklist'] = ["ETH/BTC"]
freqtrade = FreqtradeBot(conf, create_engine('sqlite://'))
freqtrade = FreqtradeBot(conf)
freqtrade.create_trade()
@ -347,7 +343,7 @@ def test_create_trade_no_pairs_after_blacklist(default_conf, ticker,
conf = deepcopy(default_conf)
conf['exchange']['pair_whitelist'] = ["ETH/BTC"]
conf['exchange']['pair_blacklist'] = ["ETH/BTC"]
freqtrade = FreqtradeBot(conf, create_engine('sqlite://'))
freqtrade = FreqtradeBot(conf)
freqtrade.create_trade()
@ -375,7 +371,7 @@ def test_create_trade_no_signal(default_conf, fee, mocker) -> None:
conf = deepcopy(default_conf)
conf['stake_amount'] = 10
freqtrade = FreqtradeBot(conf, create_engine('sqlite://'))
freqtrade = FreqtradeBot(conf)
Trade.query = MagicMock()
Trade.query.filter = MagicMock()
@ -399,7 +395,7 @@ def test_process_trade_creation(default_conf, ticker, limit_buy_order,
get_order=MagicMock(return_value=limit_buy_order),
get_fee=fee,
)
freqtrade = FreqtradeBot(default_conf, create_engine('sqlite://'))
freqtrade = FreqtradeBot(default_conf)
trades = Trade.query.filter(Trade.is_open.is_(True)).all()
assert not trades
@ -440,7 +436,7 @@ def test_process_exchange_failures(default_conf, ticker, markets, mocker) -> Non
)
sleep_mock = mocker.patch('time.sleep', side_effect=lambda _: None)
freqtrade = FreqtradeBot(default_conf, create_engine('sqlite://'))
freqtrade = FreqtradeBot(default_conf)
result = freqtrade._process()
assert result is False
assert sleep_mock.has_calls()
@ -460,7 +456,7 @@ def test_process_operational_exception(default_conf, ticker, markets, mocker) ->
get_markets=markets,
buy=MagicMock(side_effect=OperationalException)
)
freqtrade = FreqtradeBot(default_conf, create_engine('sqlite://'))
freqtrade = FreqtradeBot(default_conf)
assert freqtrade.state == State.RUNNING
result = freqtrade._process()
@ -486,7 +482,7 @@ def test_process_trade_handling(
get_order=MagicMock(return_value=limit_buy_order),
get_fee=fee,
)
freqtrade = FreqtradeBot(default_conf, create_engine('sqlite://'))
freqtrade = FreqtradeBot(default_conf)
trades = Trade.query.filter(Trade.is_open.is_(True)).all()
assert not trades
@ -503,27 +499,27 @@ def test_balance_fully_ask_side(mocker) -> None:
"""
Test get_target_bid() method
"""
freqtrade = get_patched_freqtradebot(mocker, {'bid_strategy': {'ask_last_balance': 0.0}})
freqtrade = get_patched_freqtradebot(mocker, {'bid_strategy': {'use_book_order':False,'book_order_top':6,'ask_last_balance': 0.0}})
assert freqtrade.get_target_bid({'ask': 20, 'last': 10}) == 20
assert freqtrade.get_target_bid('ETH/BTC') >= 0.07
def test_balance_fully_last_side(mocker) -> None:
"""
Test get_target_bid() method
"""
freqtrade = get_patched_freqtradebot(mocker, {'bid_strategy': {'ask_last_balance': 1.0}})
freqtrade = get_patched_freqtradebot(mocker, {'bid_strategy': {'use_book_order':False,'book_order_top':6,'ask_last_balance': 1.0}})
assert freqtrade.get_target_bid({'ask': 20, 'last': 10}) == 10
assert freqtrade.get_target_bid('ETH/BTC') >= 0.07
def test_balance_bigger_last_ask(mocker) -> None:
"""
Test get_target_bid() method
"""
freqtrade = get_patched_freqtradebot(mocker, {'bid_strategy': {'ask_last_balance': 1.0}})
freqtrade = get_patched_freqtradebot(mocker, {'bid_strategy': {'use_book_order':False,'book_order_top':6,'ask_last_balance': 1.0}})
assert freqtrade.get_target_bid({'ask': 5, 'last': 10}) == 5
assert freqtrade.get_target_bid('ETH/BTC') >= 0.07
def test_process_maybe_execute_buy(mocker, default_conf) -> None:
@ -570,8 +566,10 @@ def test_process_maybe_execute_sell(mocker, default_conf, limit_buy_order, caplo
trade.open_fee = 0.001
assert not freqtrade.process_maybe_execute_sell(trade)
# Test amount not modified by fee-logic
assert not log_has('Applying fee to amount for Trade {} from 90.99181073 to 90.81'.format(
trade), caplog.record_tuples)
assert not log_has(
'Applying fee to amount for Trade {} from 90.99181073 to 90.81'.format(trade),
caplog.record_tuples
)
mocker.patch('freqtrade.freqtradebot.FreqtradeBot.get_real_amount', return_value=90.81)
# test amount modified by fee-logic
@ -582,6 +580,38 @@ def test_process_maybe_execute_sell(mocker, default_conf, limit_buy_order, caplo
# Assert we call handle_trade() if trade is feasible for execution
assert freqtrade.process_maybe_execute_sell(trade)
regexp = re.compile('Found open order for.*')
assert filter(regexp.match, caplog.record_tuples)
def test_process_maybe_execute_sell_exception(mocker, default_conf,
limit_buy_order, caplog) -> None:
"""
Test the exceptions in process_maybe_execute_sell()
"""
freqtrade = get_patched_freqtradebot(mocker, default_conf)
mocker.patch('freqtrade.freqtradebot.exchange.get_order', return_value=limit_buy_order)
trade = MagicMock()
trade.open_order_id = '123'
trade.open_fee = 0.001
# Test raise of OperationalException exception
mocker.patch(
'freqtrade.freqtradebot.FreqtradeBot.get_real_amount',
side_effect=OperationalException()
)
freqtrade.process_maybe_execute_sell(trade)
assert log_has('could not update trade amount: ', caplog.record_tuples)
# Test raise of DependencyException exception
mocker.patch(
'freqtrade.freqtradebot.FreqtradeBot.get_real_amount',
side_effect=DependencyException()
)
freqtrade.process_maybe_execute_sell(trade)
assert log_has('Unable to sell trade: ', caplog.record_tuples)
def test_handle_trade(default_conf, limit_buy_order, limit_sell_order, fee, mocker) -> None:
"""
@ -603,7 +633,7 @@ def test_handle_trade(default_conf, limit_buy_order, limit_sell_order, fee, mock
)
patch_coinmarketcap(mocker, value={'price_usd': 15000.0})
freqtrade = FreqtradeBot(default_conf, create_engine('sqlite://'))
freqtrade = FreqtradeBot(default_conf)
freqtrade.create_trade()
@ -646,7 +676,7 @@ def test_handle_overlpapping_signals(default_conf, ticker, limit_buy_order, fee,
get_fee=fee,
)
freqtrade = FreqtradeBot(conf, create_engine('sqlite://'))
freqtrade = FreqtradeBot(conf)
freqtrade.create_trade()
@ -705,7 +735,7 @@ def test_handle_trade_roi(default_conf, ticker, limit_buy_order, fee, mocker, ca
)
mocker.patch('freqtrade.freqtradebot.Analyze.min_roi_reached', return_value=True)
freqtrade = FreqtradeBot(conf, create_engine('sqlite://'))
freqtrade = FreqtradeBot(conf)
freqtrade.create_trade()
trade = Trade.query.first()
@ -742,7 +772,7 @@ def test_handle_trade_experimental(
)
mocker.patch('freqtrade.freqtradebot.Analyze.min_roi_reached', return_value=False)
freqtrade = FreqtradeBot(conf, create_engine('sqlite://'))
freqtrade = FreqtradeBot(conf)
freqtrade.create_trade()
trade = Trade.query.first()
@ -770,7 +800,7 @@ def test_close_trade(default_conf, ticker, limit_buy_order, limit_sell_order, fe
buy=MagicMock(return_value={'id': limit_buy_order['id']}),
get_fee=fee,
)
freqtrade = FreqtradeBot(default_conf, create_engine('sqlite://'))
freqtrade = FreqtradeBot(default_conf)
# Create trade and sell it
freqtrade.create_trade()
@ -801,7 +831,7 @@ def test_check_handle_timedout_buy(default_conf, ticker, limit_buy_order_old, fe
cancel_order=cancel_order_mock,
get_fee=fee
)
freqtrade = FreqtradeBot(default_conf, create_engine('sqlite://'))
freqtrade = FreqtradeBot(default_conf)
trade_buy = Trade(
pair='ETH/BTC',
@ -841,7 +871,7 @@ def test_check_handle_timedout_sell(default_conf, ticker, limit_sell_order_old,
get_order=MagicMock(return_value=limit_sell_order_old),
cancel_order=cancel_order_mock
)
freqtrade = FreqtradeBot(default_conf, create_engine('sqlite://'))
freqtrade = FreqtradeBot(default_conf)
trade_sell = Trade(
pair='ETH/BTC',
@ -881,7 +911,7 @@ def test_check_handle_timedout_partial(default_conf, ticker, limit_buy_order_old
get_order=MagicMock(return_value=limit_buy_order_old_partial),
cancel_order=cancel_order_mock
)
freqtrade = FreqtradeBot(default_conf, create_engine('sqlite://'))
freqtrade = FreqtradeBot(default_conf)
trade_buy = Trade(
pair='ETH/BTC',
@ -929,7 +959,7 @@ def test_check_handle_timedout_exception(default_conf, ticker, mocker, caplog) -
get_order=MagicMock(side_effect=requests.exceptions.RequestException('Oh snap')),
cancel_order=cancel_order_mock
)
freqtrade = FreqtradeBot(default_conf, create_engine('sqlite://'))
freqtrade = FreqtradeBot(default_conf)
trade_buy = Trade(
pair='ETH/BTC',
@ -968,7 +998,7 @@ def test_handle_timedout_limit_buy(mocker, default_conf) -> None:
cancel_order=cancel_order_mock
)
freqtrade = FreqtradeBot(default_conf, create_engine('sqlite://'))
freqtrade = FreqtradeBot(default_conf)
Trade.session = MagicMock()
trade = MagicMock()
@ -994,7 +1024,7 @@ def test_handle_timedout_limit_sell(mocker, default_conf) -> None:
cancel_order=cancel_order_mock
)
freqtrade = FreqtradeBot(default_conf, create_engine('sqlite://'))
freqtrade = FreqtradeBot(default_conf)
trade = MagicMock()
order = {'remaining': 1,
@ -1021,7 +1051,7 @@ def test_execute_sell_up(default_conf, ticker, fee, ticker_sell_up, mocker) -> N
get_fee=fee
)
mocker.patch('freqtrade.fiat_convert.CryptoToFiatConverter._find_price', return_value=15000.0)
freqtrade = FreqtradeBot(default_conf, create_engine('sqlite://'))
freqtrade = FreqtradeBot(default_conf)
# Create some test data
freqtrade.create_trade()
@ -1062,7 +1092,7 @@ def test_execute_sell_down(default_conf, ticker, fee, ticker_sell_down, mocker)
get_ticker=ticker,
get_fee=fee
)
freqtrade = FreqtradeBot(default_conf, create_engine('sqlite://'))
freqtrade = FreqtradeBot(default_conf)
# Create some test data
freqtrade.create_trade()
@ -1102,7 +1132,7 @@ def test_execute_sell_without_conf_sell_up(default_conf, ticker, fee,
get_ticker=ticker,
get_fee=fee
)
freqtrade = FreqtradeBot(default_conf, create_engine('sqlite://'))
freqtrade = FreqtradeBot(default_conf)
# Create some test data
freqtrade.create_trade()
@ -1143,7 +1173,7 @@ def test_execute_sell_without_conf_sell_down(default_conf, ticker, fee,
get_ticker=ticker,
get_fee=fee
)
freqtrade = FreqtradeBot(default_conf, create_engine('sqlite://'))
freqtrade = FreqtradeBot(default_conf)
# Create some test data
freqtrade.create_trade()
@ -1192,7 +1222,7 @@ def test_sell_profit_only_enable_profit(default_conf, limit_buy_order, fee, mock
'use_sell_signal': True,
'sell_profit_only': True,
}
freqtrade = FreqtradeBot(conf, create_engine('sqlite://'))
freqtrade = FreqtradeBot(conf)
freqtrade.create_trade()
trade = Trade.query.first()
@ -1225,7 +1255,7 @@ def test_sell_profit_only_disable_profit(default_conf, limit_buy_order, fee, moc
'use_sell_signal': True,
'sell_profit_only': False,
}
freqtrade = FreqtradeBot(conf, create_engine('sqlite://'))
freqtrade = FreqtradeBot(conf)
freqtrade.create_trade()
trade = Trade.query.first()
@ -1258,7 +1288,7 @@ def test_sell_profit_only_enable_loss(default_conf, limit_buy_order, fee, mocker
'use_sell_signal': True,
'sell_profit_only': True,
}
freqtrade = FreqtradeBot(conf, create_engine('sqlite://'))
freqtrade = FreqtradeBot(conf)
freqtrade.create_trade()
trade = Trade.query.first()
@ -1293,7 +1323,7 @@ def test_sell_profit_only_disable_loss(default_conf, limit_buy_order, fee, mocke
'sell_profit_only': False,
}
freqtrade = FreqtradeBot(conf, create_engine('sqlite://'))
freqtrade = FreqtradeBot(conf)
freqtrade.create_trade()
trade = Trade.query.first()
@ -1321,7 +1351,7 @@ def test_get_real_amount_quote(default_conf, trades_for_order, buy_order_fee, ca
open_rate=0.245441,
open_order_id="123456"
)
freqtrade = FreqtradeBot(default_conf, create_engine('sqlite://'))
freqtrade = FreqtradeBot(default_conf)
# Amount is reduced by "fee"
assert freqtrade.get_real_amount(trade, buy_order_fee) == amount - (amount * 0.001)
assert log_has('Applying fee on amount for Trade(id=None, pair=LTC/ETH, amount=8.00000000, '
@ -1348,7 +1378,7 @@ def test_get_real_amount_no_trade(default_conf, buy_order_fee, caplog, mocker):
open_rate=0.245441,
open_order_id="123456"
)
freqtrade = FreqtradeBot(default_conf, create_engine('sqlite://'))
freqtrade = FreqtradeBot(default_conf)
# Amount is reduced by "fee"
assert freqtrade.get_real_amount(trade, buy_order_fee) == amount
assert log_has('Applying fee on amount for Trade(id=None, pair=LTC/ETH, amount=8.00000000, '
@ -1356,7 +1386,7 @@ def test_get_real_amount_no_trade(default_conf, buy_order_fee, caplog, mocker):
caplog.record_tuples)
def test_get_real_amount_stake(default_conf, trades_for_order, buy_order_fee, caplog, mocker):
def test_get_real_amount_stake(default_conf, trades_for_order, buy_order_fee, mocker):
"""
Test get_real_amount - fees in Stake currency
"""
@ -1375,7 +1405,7 @@ def test_get_real_amount_stake(default_conf, trades_for_order, buy_order_fee, ca
open_rate=0.245441,
open_order_id="123456"
)
freqtrade = FreqtradeBot(default_conf, create_engine('sqlite://'))
freqtrade = FreqtradeBot(default_conf)
# Amount does not change
assert freqtrade.get_real_amount(trade, buy_order_fee) == amount
@ -1401,7 +1431,7 @@ def test_get_real_amount_BNB(default_conf, trades_for_order, buy_order_fee, mock
open_rate=0.245441,
open_order_id="123456"
)
freqtrade = FreqtradeBot(default_conf, create_engine('sqlite://'))
freqtrade = FreqtradeBot(default_conf)
# Amount does not change
assert freqtrade.get_real_amount(trade, buy_order_fee) == amount
@ -1424,7 +1454,7 @@ def test_get_real_amount_multi(default_conf, trades_for_order2, buy_order_fee, c
open_rate=0.245441,
open_order_id="123456"
)
freqtrade = FreqtradeBot(default_conf, create_engine('sqlite://'))
freqtrade = FreqtradeBot(default_conf)
# Amount is reduced by "fee"
assert freqtrade.get_real_amount(trade, buy_order_fee) == amount - (amount * 0.001)
assert log_has('Applying fee on amount for Trade(id=None, pair=LTC/ETH, amount=8.00000000, '
@ -1452,7 +1482,7 @@ def test_get_real_amount_fromorder(default_conf, trades_for_order, buy_order_fee
open_rate=0.245441,
open_order_id="123456"
)
freqtrade = FreqtradeBot(default_conf, create_engine('sqlite://'))
freqtrade = FreqtradeBot(default_conf)
# Amount is reduced by "fee"
assert freqtrade.get_real_amount(trade, limit_buy_order) == amount - 0.004
assert log_has('Applying fee on amount for Trade(id=None, pair=LTC/ETH, amount=8.00000000, '
@ -1480,7 +1510,7 @@ def test_get_real_amount_invalid_order(default_conf, trades_for_order, buy_order
open_rate=0.245441,
open_order_id="123456"
)
freqtrade = FreqtradeBot(default_conf, create_engine('sqlite://'))
freqtrade = FreqtradeBot(default_conf)
# Amount does not change
assert freqtrade.get_real_amount(trade, limit_buy_order) == amount
@ -1505,6 +1535,31 @@ def test_get_real_amount_invalid(default_conf, trades_for_order, buy_order_fee,
open_rate=0.245441,
open_order_id="123456"
)
freqtrade = FreqtradeBot(default_conf, create_engine('sqlite://'))
freqtrade = FreqtradeBot(default_conf)
# Amount does not change
assert freqtrade.get_real_amount(trade, buy_order_fee) == amount
def test_get_real_amount_open_trade(default_conf, mocker):
"""
Test get_real_amount condition trade.fee_open == 0 or order['status'] == 'open'
"""
patch_get_signal(mocker)
patch_RPCManager(mocker)
patch_coinmarketcap(mocker)
mocker.patch('freqtrade.exchange.validate_pairs', MagicMock(return_value=True))
amount = 12345
trade = Trade(
pair='LTC/ETH',
amount=amount,
exchange='binance',
open_rate=0.245441,
open_order_id="123456"
)
order = {
'id': 'mocked_order',
'amount': amount,
'status': 'open',
}
freqtrade = FreqtradeBot(default_conf)
assert freqtrade.get_real_amount(trade, order) == amount

View File

@ -3,11 +3,16 @@ Unit test file for main.py
"""
import logging
from copy import deepcopy
from unittest.mock import MagicMock
import pytest
from freqtrade.main import main, set_loggers
from freqtrade import OperationalException
from freqtrade.arguments import Arguments
from freqtrade.freqtradebot import FreqtradeBot
from freqtrade.main import main, set_loggers, reconfigure
from freqtrade.state import State
from freqtrade.tests.conftest import log_has
@ -60,7 +65,7 @@ def test_set_loggers() -> None:
assert value2 is logging.INFO
def test_main(mocker, caplog) -> None:
def test_main_fatal_exception(mocker, default_conf, caplog) -> None:
"""
Test main() function
In this test we are skipping the while True loop by throwing an exception.
@ -68,26 +73,140 @@ def test_main(mocker, caplog) -> None:
mocker.patch.multiple(
'freqtrade.freqtradebot.FreqtradeBot',
_init_modules=MagicMock(),
worker=MagicMock(
side_effect=KeyboardInterrupt
),
clean=MagicMock(),
worker=MagicMock(side_effect=Exception),
cleanup=MagicMock(),
)
mocker.patch(
'freqtrade.configuration.Configuration._load_config_file',
lambda *args, **kwargs: default_conf
)
mocker.patch('freqtrade.freqtradebot.CryptoToFiatConverter', MagicMock())
mocker.patch('freqtrade.freqtradebot.RPCManager', MagicMock())
args = ['-c', 'config.json.example']
# Test Main + the KeyboardInterrupt exception
with pytest.raises(SystemExit) as pytest_wrapped_e:
main(args)
log_has('Starting freqtrade', caplog.record_tuples)
log_has('Got SIGINT, aborting ...', caplog.record_tuples)
assert pytest_wrapped_e.type == SystemExit
assert pytest_wrapped_e.value.code == 42
# Test the BaseException case
mocker.patch(
'freqtrade.freqtradebot.FreqtradeBot.worker',
MagicMock(side_effect=BaseException)
)
with pytest.raises(SystemExit):
main(args)
log_has('Got fatal exception!', caplog.record_tuples)
assert log_has('Using config: config.json.example ...', caplog.record_tuples)
assert log_has('Fatal exception!', caplog.record_tuples)
def test_main_keyboard_interrupt(mocker, default_conf, caplog) -> None:
"""
Test main() function
In this test we are skipping the while True loop by throwing an exception.
"""
mocker.patch.multiple(
'freqtrade.freqtradebot.FreqtradeBot',
_init_modules=MagicMock(),
worker=MagicMock(side_effect=KeyboardInterrupt),
cleanup=MagicMock(),
)
mocker.patch(
'freqtrade.configuration.Configuration._load_config_file',
lambda *args, **kwargs: default_conf
)
mocker.patch('freqtrade.freqtradebot.CryptoToFiatConverter', MagicMock())
mocker.patch('freqtrade.freqtradebot.RPCManager', MagicMock())
args = ['-c', 'config.json.example']
# Test Main + the KeyboardInterrupt exception
with pytest.raises(SystemExit):
main(args)
assert log_has('Using config: config.json.example ...', caplog.record_tuples)
assert log_has('SIGINT received, aborting ...', caplog.record_tuples)
def test_main_operational_exception(mocker, default_conf, caplog) -> None:
"""
Test main() function
In this test we are skipping the while True loop by throwing an exception.
"""
mocker.patch.multiple(
'freqtrade.freqtradebot.FreqtradeBot',
_init_modules=MagicMock(),
worker=MagicMock(side_effect=OperationalException('Oh snap!')),
cleanup=MagicMock(),
)
mocker.patch(
'freqtrade.configuration.Configuration._load_config_file',
lambda *args, **kwargs: default_conf
)
mocker.patch('freqtrade.freqtradebot.CryptoToFiatConverter', MagicMock())
mocker.patch('freqtrade.freqtradebot.RPCManager', MagicMock())
args = ['-c', 'config.json.example']
# Test Main + the KeyboardInterrupt exception
with pytest.raises(SystemExit):
main(args)
assert log_has('Using config: config.json.example ...', caplog.record_tuples)
assert log_has('Oh snap!', caplog.record_tuples)
def test_main_reload_conf(mocker, default_conf, caplog) -> None:
"""
Test main() function
In this test we are skipping the while True loop by throwing an exception.
"""
mocker.patch.multiple(
'freqtrade.freqtradebot.FreqtradeBot',
_init_modules=MagicMock(),
worker=MagicMock(return_value=State.RELOAD_CONF),
cleanup=MagicMock(),
)
mocker.patch(
'freqtrade.configuration.Configuration._load_config_file',
lambda *args, **kwargs: default_conf
)
mocker.patch('freqtrade.freqtradebot.CryptoToFiatConverter', MagicMock())
mocker.patch('freqtrade.freqtradebot.RPCManager', MagicMock())
# Raise exception as side effect to avoid endless loop
reconfigure_mock = mocker.patch(
'freqtrade.main.reconfigure', MagicMock(side_effect=Exception)
)
with pytest.raises(SystemExit):
main(['-c', 'config.json.example'])
assert reconfigure_mock.call_count == 1
assert log_has('Using config: config.json.example ...', caplog.record_tuples)
def test_reconfigure(mocker, default_conf) -> None:
""" Test recreate() function """
mocker.patch.multiple(
'freqtrade.freqtradebot.FreqtradeBot',
_init_modules=MagicMock(),
worker=MagicMock(side_effect=OperationalException('Oh snap!')),
cleanup=MagicMock(),
)
mocker.patch(
'freqtrade.configuration.Configuration._load_config_file',
lambda *args, **kwargs: default_conf
)
mocker.patch('freqtrade.freqtradebot.CryptoToFiatConverter', MagicMock())
mocker.patch('freqtrade.freqtradebot.RPCManager', MagicMock())
freqtrade = FreqtradeBot(default_conf)
# Renew mock to return modified data
conf = deepcopy(default_conf)
conf['stake_amount'] += 1
mocker.patch(
'freqtrade.configuration.Configuration._load_config_file',
lambda *args, **kwargs: conf
)
# reconfigure should return a new instance
freqtrade2 = reconfigure(
freqtrade,
Arguments(['-c', 'config.json.example'], '').get_parsed_arg()
)
# Verify we have a new instance with the new config
assert freqtrade is not freqtrade2
assert freqtrade.config['stake_amount'] + 1 == freqtrade2.config['stake_amount']

View File

@ -39,7 +39,7 @@ def test_datesarray_to_datetimearray(ticker_history):
assert dates[0].minute == 50
date_len = len(dates)
assert date_len == 3
assert date_len == 2
def test_common_datearray(default_conf) -> None:

View File

@ -1,9 +1,11 @@
# pragma pylint: disable=missing-docstring, C0103
import os
from copy import deepcopy
from unittest.mock import MagicMock
import pytest
from sqlalchemy import create_engine
from freqtrade import constants, OperationalException
from freqtrade.persistence import Trade, init, clean_dry_run_db
@ -21,77 +23,54 @@ def test_init_create_session(default_conf, mocker):
assert 'Session' in type(Trade.session).__name__
def test_init_dry_run_db(default_conf, mocker):
default_conf.update({'dry_run_db': True})
mocker.patch.dict('freqtrade.persistence._CONF', default_conf)
def test_init_custom_db_url(default_conf, mocker):
conf = deepcopy(default_conf)
# First, protect the existing 'tradesv3.dry_run.sqlite' (Do not delete user data)
dry_run_db = 'tradesv3.dry_run.sqlite'
dry_run_db_swp = dry_run_db + '.swp'
# Update path to a value other than default, but still in-memory
conf.update({'db_url': 'sqlite:///tmp/freqtrade2_test.sqlite'})
create_engine_mock = mocker.patch('freqtrade.persistence.create_engine', MagicMock())
mocker.patch.dict('freqtrade.persistence._CONF', conf)
if os.path.isfile(dry_run_db):
os.rename(dry_run_db, dry_run_db_swp)
# Check if the new tradesv3.dry_run.sqlite was created
init(default_conf)
assert os.path.isfile(dry_run_db) is True
# Delete the file made for this unitest and rollback to the previous
# tradesv3.dry_run.sqlite file
# 1. Delete file from the test
if os.path.isfile(dry_run_db):
os.remove(dry_run_db)
# 2. Rollback to the initial file
if os.path.isfile(dry_run_db_swp):
os.rename(dry_run_db_swp, dry_run_db)
init(conf)
assert create_engine_mock.call_count == 1
assert create_engine_mock.mock_calls[0][1][0] == 'sqlite:///tmp/freqtrade2_test.sqlite'
def test_init_dry_run_without_db(default_conf, mocker):
default_conf.update({'dry_run_db': False})
mocker.patch.dict('freqtrade.persistence._CONF', default_conf)
def test_init_invalid_db_url(default_conf, mocker):
conf = deepcopy(default_conf)
# First, protect the existing 'tradesv3.dry_run.sqlite' (Do not delete user data)
dry_run_db = 'tradesv3.dry_run.sqlite'
dry_run_db_swp = dry_run_db + '.swp'
# Update path to a value other than default, but still in-memory
conf.update({'db_url': 'unknown:///some.url'})
mocker.patch.dict('freqtrade.persistence._CONF', conf)
if os.path.isfile(dry_run_db):
os.rename(dry_run_db, dry_run_db_swp)
# Check if the new tradesv3.dry_run.sqlite was created
init(default_conf)
assert os.path.isfile(dry_run_db) is False
# Rollback to the initial 'tradesv3.dry_run.sqlite' file
if os.path.isfile(dry_run_db_swp):
os.rename(dry_run_db_swp, dry_run_db)
with pytest.raises(OperationalException, match=r'.*no valid database URL*'):
init(conf)
def test_init_prod_db(default_conf, mocker):
default_conf.update({'dry_run': False})
mocker.patch.dict('freqtrade.persistence._CONF', default_conf)
conf = deepcopy(default_conf)
conf.update({'dry_run': False})
conf.update({'db_url': constants.DEFAULT_DB_PROD_URL})
# First, protect the existing 'tradesv3.sqlite' (Do not delete user data)
prod_db = 'tradesv3.sqlite'
prod_db_swp = prod_db + '.swp'
create_engine_mock = mocker.patch('freqtrade.persistence.create_engine', MagicMock())
mocker.patch.dict('freqtrade.persistence._CONF', conf)
if os.path.isfile(prod_db):
os.rename(prod_db, prod_db_swp)
init(conf)
assert create_engine_mock.call_count == 1
assert create_engine_mock.mock_calls[0][1][0] == 'sqlite:///tradesv3.sqlite'
# Check if the new tradesv3.sqlite was created
init(default_conf)
assert os.path.isfile(prod_db) is True
# Delete the file made for this unitest and rollback to the previous tradesv3.sqlite file
def test_init_dryrun_db(default_conf, mocker):
conf = deepcopy(default_conf)
conf.update({'dry_run': True})
conf.update({'db_url': constants.DEFAULT_DB_DRYRUN_URL})
# 1. Delete file from the test
if os.path.isfile(prod_db):
os.remove(prod_db)
create_engine_mock = mocker.patch('freqtrade.persistence.create_engine', MagicMock())
mocker.patch.dict('freqtrade.persistence._CONF', conf)
# Rollback to the initial 'tradesv3.sqlite' file
if os.path.isfile(prod_db_swp):
os.rename(prod_db_swp, prod_db)
init(conf)
assert create_engine_mock.call_count == 1
assert create_engine_mock.mock_calls[0][1][0] == 'sqlite://'
@pytest.mark.usefixtures("init_persistence")
@ -328,7 +307,7 @@ def test_calc_profit_percent(limit_buy_order, limit_sell_order, fee):
def test_clean_dry_run_db(default_conf, fee):
init(default_conf, create_engine('sqlite://'))
init(default_conf)
# Simulate dry_run entries
trade = Trade(
@ -377,7 +356,7 @@ def test_clean_dry_run_db(default_conf, fee):
assert len(Trade.query.filter(Trade.open_order_id.isnot(None)).all()) == 1
def test_migrate_old(default_conf, fee):
def test_migrate_old(mocker, default_conf, fee):
"""
Test Database migration(starting with old pairformat)
"""
@ -409,11 +388,13 @@ def test_migrate_old(default_conf, fee):
amount=amount
)
engine = create_engine('sqlite://')
mocker.patch('freqtrade.persistence.create_engine', lambda *args, **kwargs: engine)
# Create table using the old format
engine.execute(create_table_old)
engine.execute(insert_table_old)
# Run init to test migration
init(default_conf, engine)
init(default_conf)
assert len(Trade.query.filter(Trade.id == 1).all()) == 1
trade = Trade.query.filter(Trade.id == 1).first()
@ -428,7 +409,7 @@ def test_migrate_old(default_conf, fee):
assert trade.exchange == "bittrex"
def test_migrate_new(default_conf, fee):
def test_migrate_new(mocker, default_conf, fee):
"""
Test Database migration (starting with new pairformat)
"""
@ -444,6 +425,8 @@ def test_migrate_new(default_conf, fee):
close_profit FLOAT,
stake_amount FLOAT NOT NULL,
amount FLOAT,
initial_stop_loss FLOAT,
max_rate FLOAT,
open_date DATETIME NOT NULL,
close_date DATETIME,
open_order_id VARCHAR,
@ -460,11 +443,13 @@ def test_migrate_new(default_conf, fee):
amount=amount
)
engine = create_engine('sqlite://')
mocker.patch('freqtrade.persistence.create_engine', lambda *args, **kwargs: engine)
# Create table using the old format
engine.execute(create_table_old)
engine.execute(insert_table_old)
# Run init to test migration
init(default_conf, engine)
init(default_conf)
assert len(Trade.query.filter(Trade.id == 1).all()) == 1
trade = Trade.query.filter(Trade.id == 1).first()

View File

@ -1,5 +1,4 @@
if [ ! -f "ta-lib/CHANGELOG.TXT" ]; then
curl -O -L http://prdownloads.sourceforge.net/ta-lib/ta-lib-0.4.0-src.tar.gz
tar zxvf ta-lib-0.4.0-src.tar.gz
cd ta-lib && ./configure && make && sudo make install && cd ..
else

View File

@ -1,5 +1,5 @@
ccxt==1.14.24
SQLAlchemy==1.2.7
ccxt==1.14.177
SQLAlchemy==1.2.8
python-telegram-bot==10.1.0
arrow==0.12.1
cachetools==2.1.0
@ -10,9 +10,9 @@ pandas==0.23.0
scikit-learn==0.19.1
scipy==1.1.0
jsonschema==2.6.0
numpy==1.14.3
numpy==1.14.4
TA-Lib==0.4.17
pytest==3.5.1
pytest==3.6.1
pytest-mock==1.10.0
pytest-cov==2.5.1
hyperopt==0.1
@ -24,7 +24,3 @@ coinmarketcap==5.0.3
simplejson==3.15.0
# Required for plotting data
#plotly==2.3.0
# required for the lambda module
moto
boto3

View File

@ -14,141 +14,24 @@ arguments = arguments.Arguments(sys.argv[1:], 'download utility')
arguments.testdata_dl_options()
args = arguments.parse_args()
TICKER_INTERVALS = ['1m', '5m', '15m', '30m', '1h', '4h']
PAIRS = [
"ETH/BTC",
"LTC/BTC",
"BNB/BTC",
"NEO/BTC",
"GAS/BTC",
"MCO/BTC",
"WTC/BTC",
"QTUM/BTC",
"OMG/BTC",
"ZRX/BTC",
"STRAT/BTC",
"SNGLS/BTC",
"BQX/BTC",
"KNC/BTC",
"FUN/BTC",
"SNM/BTC",
"LINK/BTC",
"XVG/BTC",
"SALT/BTC",
"IOTA/BTC",
"MDA/BTC",
"MTL/BTC",
"SUB/BTC",
"EOS/BTC",
"SNT/BTC",
"ETC/BTC",
"MTH/BTC",
"ENG/BTC",
"DNT/BTC",
"BNT/BTC",
"AST/BTC",
"DASH/BTC",
"ICN/BTC",
"OAX/BTC",
"BTG/BTC",
"EVX/BTC",
"REQ/BTC",
"LRC/BTC",
"VIB/BTC",
"HSR/BTC",
"TRX/BTC",
"POWR/BTC",
"ARK/BTC",
"XRP/BTC",
"MOD/BTC",
"ENJ/BTC",
"STORJ/BTC",
"VEN/BTC",
"KMD/BTC",
"RCN/BTC",
"NULS/BTC",
"RDN/BTC",
"XMR/BTC",
"DLT/BTC",
"AMB/BTC",
"BAT/BTC",
"ZEC/BTC",
"BCPT/BTC",
"ARN/BTC",
"GVT/BTC",
"CDT/BTC",
"GXS/BTC",
"POE/BTC",
"QSP/BTC",
"BTS/BTC",
"XZC/BTC",
"LSK/BTC",
"TNT/BTC",
"FUEL/BTC",
"MANA/BTC",
"BCD/BTC",
"DGD/BTC",
"ADX/BTC",
"ADA/BTC",
"PPT/BTC",
"CMT/BTC",
"XLM/BTC",
"CND/BTC",
"LEND/BTC",
"WABI/BTC",
"TNB/BTC",
"WAVES/BTC",
"ICX/BTC",
"GTO/BTC",
"OST/BTC",
"ELF/BTC",
"AION/BTC",
"NEBL/BTC",
"BRD/BTC",
"EDO/BTC",
"WINGS/BTC",
"NAV/BTC",
"LUN/BTC",
"TRIG/BTC",
"APPC/BTC",
"VIBE/BTC",
"RLC/BTC",
"INS/BTC",
"PIVX/BTC",
"IOST/BTC",
"CHAT/BTC",
"STEEM/BTC",
"VIA/BTC",
"BLZ/BTC",
"AE/BTC",
"RPX/BTC",
"NCASH/BTC",
"POA/BTC",
"ZIL/BTC",
"ONT/BTC",
"STORM/BTC",
"XEM/BTC",
"WAN/BTC",
"QLC/BTC",
"SYS/BTC",
"WPR/BTC",
"GRS/BTC",
"CLOAK/BTC",
"GNT/BTC",
"LOOM/BTC",
"BCN/BTC",
"REP/BTC"
]
timeframes = args.timeframes
if args.pairs_file:
with open(args.pairs_file) as file:
PAIRS = json.load(file)
PAIRS = list(set(PAIRS))
dl_path = DEFAULT_DL_PATH
if args.export and os.path.exists(args.export):
dl_path = os.path.join(DEFAULT_DL_PATH, args.exchange)
if args.export:
dl_path = args.export
if not os.path.isdir(dl_path):
sys.exit(f'Directory {dl_path} does not exist.')
pairs_file = args.pairs_file if args.pairs_file else os.path.join(dl_path, 'pairs.json')
if not os.path.isfile(pairs_file):
sys.exit(f'No pairs file found with path {pairs_file}.')
with open(pairs_file) as file:
PAIRS = list(set(json.load(file)))
PAIRS.sort()
since_time = None
if args.days:
since_time = arrow.utcnow().shift(days=-args.days).timestamp * 1000
@ -159,9 +42,16 @@ print(f'About to download pairs: {PAIRS} to {dl_path}')
exchange._API = exchange.init_ccxt({'key': '',
'secret': '',
'name': args.exchange})
pairs_not_available = []
# Make sure API markets is initialized
exchange._API.load_markets()
for pair in PAIRS:
for tick_interval in TICKER_INTERVALS:
if pair not in exchange._API.markets:
pairs_not_available.append(pair)
print(f"skipping pair {pair}")
continue
for tick_interval in timeframes:
print(f'downloading pair {pair}, interval {tick_interval}')
data = exchange.get_ticker_history(pair, tick_interval, since_ms=since_time)
@ -177,3 +67,7 @@ for pair in PAIRS:
pair_print = pair.replace('/', '_')
filename = f'{pair_print}-{tick_interval}.json'
misc.file_dump_json(os.path.join(dl_path, filename), data)
if pairs_not_available:
print(f"Pairs [{','.join(pairs_not_available)}] not availble.")

View File

@ -8,9 +8,12 @@ Mandatory Cli parameters:
Optional Cli parameters
-c / --config: specify configuration file
-s / --strategy: strategy to use
--timerange: specify what timerange of data to use.
-d / --datadir: path to pair backtest data
--timerange: specify what timerange of data to use
--export-filename: Specify where the backtest export is located.
"""
import logging
import os
import sys
import json
from argparse import Namespace
@ -90,7 +93,18 @@ def plot_profit(args: Namespace) -> None:
'Impossible to load the strategy. Please check the file "user_data/strategies/%s.py"',
config.get('strategy')
)
exit()
exit(1)
# Load the profits results
try:
filename = args.exportfilename
with open(filename) as file:
data = json.load(file)
except FileNotFoundError:
logger.critical(
'File "backtest-result.json" not found. This script require backtesting '
'results to run.\nPlease run a backtesting with the parameter --export.')
exit(1)
# Take pairs from the cli otherwise switch to the pair in the config file
if args.pair:
@ -140,18 +154,7 @@ def plot_profit(args: Namespace) -> None:
num += 1
avgclose /= num
# Load the profits results
# And make an profits-growth array
try:
filename = 'backtest-result.json'
with open(filename) as file:
data = json.load(file)
except FileNotFoundError:
logger.critical('File "backtest-result.json" not found. This script require backtesting '
'results to run.\nPlease run a backtesting with the parameter --export.')
exit(0)
# make an profits-growth array
pg = make_profit_array(data, num_iterations, min_date, tick_interval, filter_pairs)
#
@ -184,7 +187,7 @@ def plot_profit(args: Namespace) -> None:
)
fig.append_trace(pair_profit, 3, 1)
plot(fig, filename='freqtrade-profit-plot.html')
plot(fig, filename=os.path.join('user_data', 'freqtrade-profit-plot.html'))
def define_index(min_date: int, max_date: int, interval: str) -> int:

View File

@ -2,3 +2,9 @@
#ignore =
max-line-length = 100
max-complexity = 12
[mypy]
ignore_missing_imports = True
[mypy-freqtrade.tests.*]
ignore_errors = True

View File

@ -12,7 +12,7 @@ from freqtrade import __version__
setup(name='freqtrade',
version=__version__,
description='Simple High Frequency Trading Bot for crypto currencies',
url='https://github.com/gcarq/freqtrade',
url='https://github.com/freqtrade/freqtrade',
author='gcarq and contributors',
author_email='michael.egger@tsn.at',
license='GPLv3',

View File

@ -2,16 +2,17 @@
#encoding=utf8
function updateenv () {
echo "
-------------------------
Update your virtual env
-------------------------
"
echo "-------------------------"
echo "Update your virtual env"
echo "-------------------------"
source .env/bin/activate
pip3.6 install --upgrade pip
pip3 install -r requirements.txt --upgrade
pip3 install -r requirements.txt
pip3 install -e .
echo "pip3 install in-progress. Please wait..."
pip3.6 install --quiet --upgrade pip
pip3 install --quiet -r requirements.txt --upgrade
pip3 install --quiet -r requirements.txt
pip3 install --quiet -e .
echo "pip3 install completed"
echo
}
# Install tab lib
@ -29,10 +30,11 @@ function install_macos () {
echo "-------------------------"
echo "Install Brew"
echo "-------------------------"
echo
/usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"
fi
brew install python3 wget ta-lib
test_and_fix_python_on_mac
}
# Install bot Debian_ubuntu
@ -54,7 +56,6 @@ function reset () {
echo "----------------------------"
echo "Reset branch and virtual env"
echo "----------------------------"
echo
if [ "1" == $(git branch -vv |grep -cE "\* develop|\* master") ]
then
if [ -d ".env" ]; then
@ -77,34 +78,53 @@ function reset () {
echo "Reset ignored because you are not on 'master' or 'develop'."
fi
echo
python3.6 -m venv .env
updateenv
}
function test_and_fix_python_on_mac() {
if ! [ -x "$(command -v python3.6)" ]
then
echo "-------------------------"
echo "Fixing Python"
echo "-------------------------"
echo "Python 3.6 is not linked in your system. Fixing it..."
brew link --overwrite python
echo
fi
}
function config_generator () {
echo "Starting to generate config.json"
echo "-------------------------"
echo
echo "General configuration"
echo "-------------------------"
default_max_trades=3
read -p "Max open trades: (Default: $default_max_trades) " max_trades
max_trades=${max_trades:-$default_max_trades}
default_stake_amount=0.05
read -p "Stake amount: (Default: $default_stake_amount) " stake_amount
stake_amount=${stake_amount:-$default_stake_amount}
default_stake_currency="BTC"
read -p "Stake currency: (Default: $default_stake_currency) " stake_currency
stake_currency=${stake_currency:-$default_stake_currency}
default_fiat_currency="USD"
read -p "Fiat currency: (Default: $default_fiat_currency) " fiat_currency
fiat_currency=${fiat_currency:-$default_fiat_currency}
echo
read -p "Max open trades: (Default: 3) " max_trades
read -p "Stake amount: (Default: 0.05) " stake_amount
read -p "Stake currency: (Default: BTC) " stake_currency
read -p "Fiat currency: (Default: USD) " fiat_currency
echo "Exchange config generator"
echo "------------------------"
echo "Bittrex config generator"
echo "------------------------"
echo
read -p "Exchange API key: " api_key
read -p "Exchange API Secret: " api_secret
echo "-------------------------"
echo
echo "Telegram config generator"
echo "-------------------------"
read -p "Telegram Token: " token
@ -123,6 +143,10 @@ function config_generator () {
}
function config () {
echo "-------------------------"
echo "Config file generator"
echo "-------------------------"
if [ -f config.json ]
then
read -p "A config file already exist, do you want to override it [Y/N]? "
@ -136,22 +160,26 @@ function config () {
config_generator
fi
echo
echo "-------------------------"
echo "Config file generated"
echo "-------------------------"
echo "Edit ./config.json to modify Pair and other configurations."
echo
}
function install () {
echo "-------------------------"
echo "Install mandatory dependencies"
echo "-------------------------"
echo
if [ "$(uname -s)" == "Darwin" ]
then
echo "- You are on macOS"
echo "macOS detected. Setup for this system in-progress"
install_macos
elif [ -x "$(command -v apt-get)" ]
then
echo "- You are on Debian/Ubuntu"
echo "Debian/Ubuntu detected. Setup for this system in-progress"
install_debian
else
echo "This script does not support your OS."
@ -159,12 +187,13 @@ function install () {
echo "Wait 10 seconds to continue the next install steps or use ctrl+c to interrupt this shell."
sleep 10
fi
echo
reset
echo "
- Install complete.
"
config
echo "You can now use the bot by executing 'source .env/bin/activate; python3 freqtrade/main.py'."
echo "-------------------------"
echo "Run the bot"
echo "-------------------------"
echo "You can now use the bot by executing 'source .env/bin/activate; python3.6 freqtrade/main.py'."
}
function plot () {

BIN
ta-lib-0.4.0-src.tar.gz Normal file

Binary file not shown.

View File

@ -0,0 +1,94 @@
# --- Do not remove these libs ---
from freqtrade.strategy.interface import IStrategy
from typing import Dict, List
from hyperopt import hp
from functools import reduce
from pandas import DataFrame
# --------------------------------
import talib.abstract as ta
import freqtrade.vendor.qtpylib.indicators as qtpylib
import numpy # noqa
class Long(IStrategy):
"""
author@: Gert Wohlgemuth
"""
# Minimal ROI designed for the strategy.
# This attribute will be overridden if the config file contains "minimal_roi"
minimal_roi = {
"60": 0.05,
"30": 0.06,
"20": 0.07,
"0": 0.08
}
# Optimal stoploss designed for the strategy
# This attribute will be overridden if the config file contains "stoploss"
stoploss = -0.15
# Optimal ticker interval for the strategy
ticker_interval = 60
def populate_indicators(self, dataframe: DataFrame) -> DataFrame:
macd = ta.MACD(dataframe)
dataframe['macd'] = macd['macd']
dataframe['macdsignal'] = macd['macdsignal']
dataframe['macdhist'] = macd['macdhist']
dataframe['cci'] = ta.CCI(dataframe)
dataframe['tema'] = ta.TEMA(dataframe, timeperiod=50)
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
dataframe['bb_lowerband'] = bollinger['lower']
dataframe['bb_middleband'] = bollinger['mid']
dataframe['bb_upperband'] = bollinger['upper']
# RSI
dataframe['rsi'] = ta.RSI(dataframe)
# Inverse Fisher transform on RSI, values [-1.0, 1.0] (https://goo.gl/2JGGoy)
rsi = 0.1 * (dataframe['rsi'] - 50)
dataframe['fisher_rsi'] = (numpy.exp(2 * rsi) - 1) / (numpy.exp(2 * rsi) + 1)
# SAR Parabol
dataframe['sar'] = ta.SAR(dataframe)
return dataframe
def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:
"""
Based on TA indicators, populates the buy signal for the given dataframe
:param dataframe: DataFrame
:return: DataFrame with buy column
"""
dataframe.loc[
(
(dataframe['macd'] > dataframe['macdsignal']) &
(dataframe['macd'] > 0) &
(dataframe['cci'] <= 0.0)
),
'buy'] = 1
return dataframe
def populate_sell_trend(self, dataframe: DataFrame) -> DataFrame:
"""
Based on TA indicators, populates the sell signal for the given dataframe
:param dataframe: DataFrame
:return: DataFrame with buy column
"""
dataframe.loc[
(
# (dataframe['tema'] < dataframe['close'])
(dataframe['sar'] > dataframe['close']) &
(dataframe['fisher_rsi'] > 0.3)
),
'sell'] = 1
return dataframe

View File

@ -0,0 +1,75 @@
# --- Do not remove these libs ---
from freqtrade.strategy.interface import IStrategy
from typing import Dict, List
from hyperopt import hp
from functools import reduce
from pandas import DataFrame
# --------------------------------
import talib.abstract as ta
import freqtrade.vendor.qtpylib.indicators as qtpylib
class Quickie(IStrategy):
"""
author@: Gert Wohlgemuth
idea:
momentum based strategie. The main idea is that it closes trades very quickly, while avoiding excessive losses. Hence a rather moderate stop loss in this case
"""
# Minimal ROI designed for the strategy.
# This attribute will be overridden if the config file contains "minimal_roi"
minimal_roi = {
"60": 0.005,
"10": 0.01,
}
# Optimal stoploss designed for the strategy
# This attribute will be overridden if the config file contains "stoploss"
stoploss = -0.25
# Optimal ticker interval for the strategy
ticker_interval = 5
def populate_indicators(self, dataframe: DataFrame) -> DataFrame:
dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9)
dataframe['adx'] = ta.ADX(dataframe)
dataframe['sma_200'] = ta.SMA(dataframe, timeperiod=200)
dataframe['sma_50'] = ta.SMA(dataframe, timeperiod=50)
# required for graphing
bollinger = qtpylib.bollinger_bands(dataframe['close'], window=20, stds=2)
dataframe['bb_lowerband'] = bollinger['lower']
dataframe['bb_middleband'] = bollinger['mid']
dataframe['bb_upperband'] = bollinger['upper']
return dataframe
def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:
dataframe.loc[
(
(
(dataframe['adx'] > 30) &
(dataframe['tema'] < dataframe['bb_middleband']) &
(dataframe['tema'] > dataframe['tema'].shift(1)) &
(dataframe['sma_200'] > dataframe['close'])
)
),
'buy'] = 1
return dataframe
def populate_sell_trend(self, dataframe: DataFrame) -> DataFrame:
dataframe.loc[
(
(
(dataframe['adx'] > 70) &
(dataframe['tema'] > dataframe['bb_middleband']) &
(dataframe['tema'] < dataframe['tema'].shift(1))
)
),
'sell'] = 1
return dataframe

View File

@ -0,0 +1,76 @@
# --- Do not remove these libs ---
from freqtrade.strategy.interface import IStrategy
from typing import Dict, List
from hyperopt import hp
from functools import reduce
from pandas import DataFrame
# --------------------------------
import talib.abstract as ta
import freqtrade.vendor.qtpylib.indicators as qtpylib
class Simple(IStrategy):
"""
author@: Gert Wohlgemuth
idea:
this strategy is based on the book, 'The Simple Strategy' and can be found in detail here:
https://www.amazon.com/Simple-Strategy-Powerful-Trading-Futures-ebook/dp/B00E66QPCG/ref=sr_1_1?ie=UTF8&qid=1525202675&sr=8-1&keywords=the+simple+strategy
"""
# Minimal ROI designed for the strategy.
# since this strategy is planned around 5 minutes, we assume any time we have a 5% profit we should call it a day
# This attribute will be overridden if the config file contains "minimal_roi"
minimal_roi = {
"0": 0.01
}
# Optimal stoploss designed for the strategy
# This attribute will be overridden if the config file contains "stoploss"
stoploss = -0.25
# Optimal ticker interval for the strategy
ticker_interval = 5
def populate_indicators(self, dataframe: DataFrame) -> DataFrame:
# MACD
macd = ta.MACD(dataframe)
dataframe['macd'] = macd['macd']
dataframe['macdsignal'] = macd['macdsignal']
dataframe['macdhist'] = macd['macdhist']
# RSI
dataframe['rsi'] = ta.RSI(dataframe, timeperiod=7)
# required for graphing
bollinger = qtpylib.bollinger_bands(dataframe['close'], window=12, stds=2)
dataframe['bb_lowerband'] = bollinger['lower']
dataframe['bb_upperband'] = bollinger['upper']
dataframe['bb_middleband'] = bollinger['mid']
return dataframe
def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:
dataframe.loc[
(
(
(dataframe['macd'] > 0) # over 0
& (dataframe['macd'] > dataframe['macdsignal']) # over signal
& (dataframe['bb_upperband'] > dataframe['bb_upperband'].shift(1)) # pointed up
& (dataframe['rsi'] > 70) # optional filter, need to investigate
)
),
'buy'] = 1
return dataframe
def populate_sell_trend(self, dataframe: DataFrame) -> DataFrame:
# different strategy used for sell points, due to be able to duplicate it to 100%
dataframe.loc[
(
(dataframe['rsi'] > 80)
),
'sell'] = 1
return dataframe

View File

@ -0,0 +1,90 @@
# --- Do not remove these libs ---
from freqtrade.strategy.interface import IStrategy
from typing import Dict, List
from hyperopt import hp
from functools import reduce
from pandas import DataFrame
# --------------------------------
import talib.abstract as ta
import freqtrade.vendor.qtpylib.indicators as qtpylib
class ZLC(IStrategy):
"""
author@: Gert Wohlgemuth
"""
# Minimal ROI designed for the strategy.
# This attribute will be overridden if the config file contains "minimal_roi"
minimal_roi = {
"60": 0.01,
"30": 0.03,
"20": 0.04,
"0": 0.01
}
# Optimal stoploss designed for the strategy
# This attribute will be overridden if the config file contains "stoploss"
stoploss = -0.3
# Optimal ticker interval for the strategy
ticker_interval = 5
def populate_indicators(self, dataframe: DataFrame) -> DataFrame:
dataframe['cci-slow'] = ta.CCI(dataframe, timeperiod=25)
dataframe['cci-fast'] = ta.CCI(dataframe, timeperiod=50)
dataframe['expo'] = ta.EMA(dataframe, timeperiod=35)
# required for graphing
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
dataframe['bb_lowerband'] = bollinger['lower']
dataframe['bb_middleband'] = bollinger['mid']
dataframe['bb_upperband'] = bollinger['upper']
macd = ta.MACD(dataframe)
dataframe['macd'] = macd['macd']
dataframe['macdsignal'] = macd['macdsignal']
dataframe['macdhist'] = macd['macdhist']
return dataframe
def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:
"""
Based on TA indicators, populates the buy signal for the given dataframe
:param dataframe: DataFrame
:return: DataFrame with buy column
"""
dataframe.loc[
(
#don't buy on peak tops
(dataframe['close'] < dataframe['bb_middleband'])
# this is the main concept of evaluating buys
& (dataframe['cci-fast'] > 0)
& (dataframe['cci-slow'] > 0)
& (dataframe['close'] > dataframe['expo'])
)
,
'buy'] = 1
return dataframe
def populate_sell_trend(self, dataframe: DataFrame) -> DataFrame:
"""
Based on TA indicators, populates the sell signal for the given dataframe
:param dataframe: DataFrame
:return: DataFrame with buy column
"""
dataframe.loc[
(dataframe['close'] >= dataframe['bb_upperband']) |
(
(dataframe['cci-fast'] < 0)
& (dataframe['cci-slow'] < 0)
& (dataframe['close'] < dataframe['expo'])
)
,
'sell'] = 0
return dataframe

View File

@ -14,7 +14,7 @@ import numpy # noqa
class TestStrategy(IStrategy):
"""
This is a test strategy to inspire you.
More information in https://github.com/gcarq/freqtrade/blob/develop/docs/bot-optimization.md
More information in https://github.com/freqtrade/freqtrade/blob/develop/docs/bot-optimization.md
You can:
- Rename the class name (Do not forget to update class_name)