diff --git a/freqtrade/optimize/backtesting.py b/freqtrade/optimize/backtesting.py index 833e7c145..e3fb9b946 100644 --- a/freqtrade/optimize/backtesting.py +++ b/freqtrade/optimize/backtesting.py @@ -186,14 +186,15 @@ def start(args): data = {} pairs = config['exchange']['pair_whitelist'] + logger.info('Using stake_currency: %s ...', config['stake_currency']) + logger.info('Using stake_amount: %s ...', config['stake_amount']) + if args.live: logger.info('Downloading data for all pairs in whitelist ...') for pair in pairs: data[pair] = exchange.get_ticker_history(pair, strategy.ticker_interval) else: logger.info('Using local backtesting data (using whitelist in given config) ...') - logger.info('Using stake_currency: %s ...', config['stake_currency']) - logger.info('Using stake_amount: %s ...', config['stake_amount']) timerange = misc.parse_timerange(args.timerange) data = optimize.load_data(args.datadir, diff --git a/freqtrade/tests/conftest.py b/freqtrade/tests/conftest.py index 2b1d14268..edeb89a59 100644 --- a/freqtrade/tests/conftest.py +++ b/freqtrade/tests/conftest.py @@ -261,6 +261,7 @@ def ticker_history_without_bv(): ] +# FIX: Perhaps change result fixture to use BTC_UNITEST instead? @pytest.fixture def result(): with open('freqtrade/tests/testdata/BTC_ETH-1.json') as data_file: diff --git a/freqtrade/tests/optimize/test_backtesting.py b/freqtrade/tests/optimize/test_backtesting.py index bf060e374..2af79d761 100644 --- a/freqtrade/tests/optimize/test_backtesting.py +++ b/freqtrade/tests/optimize/test_backtesting.py @@ -1,9 +1,10 @@ # pragma pylint: disable=missing-docstring, W0212, line-too-long, C0103 - +import random import logging import math from unittest.mock import MagicMock import pandas as pd +import numpy as np from freqtrade import exchange, optimize from freqtrade.exchange import Bittrex from freqtrade.optimize import preprocess @@ -18,6 +19,70 @@ def trim_dictlist(dict_list, num): return new +# use for mock freqtrade.exchange.get_ticker_history' +def _load_pair_as_ticks(pair, tickfreq): + ticks = optimize.load_data(None, ticker_interval=8, pairs=[pair]) + ticks = trim_dictlist(ticks, -200) + return ticks[pair] + + +# FIX: fixturize this? +def _make_backtest_conf(conf=None, + pair='BTC_UNITEST', + record=None): + data = optimize.load_data(None, ticker_interval=8, pairs=[pair]) + data = trim_dictlist(data, -200) + return {'stake_amount': conf['stake_amount'], + 'processed': optimize.preprocess(data), + 'max_open_trades': 10, + 'realistic': True, + 'record': record} + + +def _trend(signals, buy_value, sell_value): + n = len(signals['low']) + buy = np.zeros(n) + sell = np.zeros(n) + for i in range(0, len(signals['buy'])): + if random.random() > 0.5: # Both buy and sell signals at same timeframe + buy[i] = buy_value + sell[i] = sell_value + signals['buy'] = buy + signals['sell'] = sell + return signals + + +def _trend_alternate(dataframe=None): + signals = dataframe + low = signals['low'] + n = len(low) + buy = np.zeros(n) + sell = np.zeros(n) + for i in range(0, len(buy)): + if i % 2 == 0: + buy[i] = 1 + else: + sell[i] = 1 + signals['buy'] = buy + signals['sell'] = sell + return dataframe + + +def _run_backtest_1(strategy, fun, backtest_conf): + # strategy is a global (hidden as a singleton), so we + # emulate strategy being pure, by override/restore here + # if we dont do this, the override in strategy will carry over + # to other tests + old_buy = strategy.populate_buy_trend + old_sell = strategy.populate_sell_trend + strategy.populate_buy_trend = fun # Override + strategy.populate_sell_trend = fun # Override + results = backtest(backtest_conf) + strategy.populate_buy_trend = old_buy # restore override + strategy.populate_sell_trend = old_sell # restore override + return results + + def test_generate_text_table(): results = pd.DataFrame( { @@ -127,19 +192,88 @@ def simple_backtest(config, contour, num_results): assert len(results) == num_results -# Test backtest on offline data -# loaded by freqdata/optimize/__init__.py::load_data() +# Test backtest using offline data (testdata directory) -def test_backtest2(default_conf, mocker, default_strategy): +def test_backtest_ticks(default_conf, mocker, default_strategy): mocker.patch.dict('freqtrade.main._CONF', default_conf) - data = optimize.load_data(None, ticker_interval=5, pairs=['BTC_ETH']) - data = trim_dictlist(data, -200) - results = backtest({'stake_amount': default_conf['stake_amount'], - 'processed': optimize.preprocess(data), - 'max_open_trades': 10, - 'realistic': True}) - assert not results.empty + ticks = [1, 5] + fun = default_strategy.populate_buy_trend + for tick in ticks: + backtest_conf = _make_backtest_conf(conf=default_conf) + results = _run_backtest_1(default_strategy, fun, backtest_conf) + assert not results.empty + + +def test_backtest_clash_buy_sell(default_conf, mocker, default_strategy): + mocker.patch.dict('freqtrade.main._CONF', default_conf) + + # Override the default buy trend function in our default_strategy + def fun(dataframe=None): + buy_value = 1 + sell_value = 1 + return _trend(dataframe, buy_value, sell_value) + + backtest_conf = _make_backtest_conf(conf=default_conf) + results = _run_backtest_1(default_strategy, fun, backtest_conf) + assert results.empty + + +def test_backtest_only_sell(default_conf, mocker, default_strategy): + mocker.patch.dict('freqtrade.main._CONF', default_conf) + + # Override the default buy trend function in our default_strategy + def fun(dataframe=None): + buy_value = 0 + sell_value = 1 + return _trend(dataframe, buy_value, sell_value) + + backtest_conf = _make_backtest_conf(conf=default_conf) + results = _run_backtest_1(default_strategy, fun, backtest_conf) + assert results.empty + + +def test_backtest_alternate_buy_sell(default_conf, mocker, default_strategy): + mocker.patch.dict('freqtrade.main._CONF', default_conf) + backtest_conf = _make_backtest_conf(conf=default_conf, pair='BTC_UNITEST') + results = _run_backtest_1(default_strategy, _trend_alternate, + backtest_conf) + assert len(results) == 3 + + +def test_backtest_record(default_conf, mocker, default_strategy): + names = [] + records = [] + mocker.patch.dict('freqtrade.main._CONF', default_conf) + mocker.patch('freqtrade.misc.file_dump_json', + new=lambda n, r: (names.append(n), records.append(r))) + backtest_conf = _make_backtest_conf( + conf=default_conf, + pair='BTC_UNITEST', + record="trades" + ) + results = _run_backtest_1(default_strategy, _trend_alternate, + backtest_conf) + assert len(results) == 3 + # Assert file_dump_json was only called once + assert names == ['backtest-result.json'] + records = records[0] + # Ensure records are of correct type + assert len(records) == 3 + # ('BTC_UNITEST', 0.00331158, '1510684320', '1510691700', 0, 117) + # Below follows just a typecheck of the schema/type of trade-records + oix = None + for (pair, profit, date_buy, date_sell, buy_index, dur) in records: + assert pair == 'BTC_UNITEST' + isinstance(profit, float) + # FIX: buy/sell should be converted to ints + isinstance(date_buy, str) + isinstance(date_sell, str) + isinstance(buy_index, pd._libs.tslib.Timestamp) + if oix: + assert buy_index > oix + oix = buy_index + assert dur > 0 def test_processed(default_conf, mocker, default_strategy): @@ -191,3 +325,29 @@ def test_backtest_start(default_conf, mocker, caplog): assert ('freqtrade.optimize.backtesting', logging.INFO, line) in caplog.record_tuples + + +def test_backtest_start_live(default_strategy, default_conf, mocker, caplog): + caplog.set_level(logging.INFO) + default_conf['exchange']['pair_whitelist'] = ['BTC_UNITEST'] + mocker.patch('freqtrade.exchange.get_ticker_history', + new=lambda n, i: _load_pair_as_ticks(n, i)) + mocker.patch.dict('freqtrade.main._CONF', default_conf) + mocker.patch('freqtrade.misc.load_config', new=lambda s: default_conf) + args = MagicMock() + args.ticker_interval = 1 + args.level = 10 + args.live = True + args.datadir = None + args.export = None + args.timerange = '-100' # needed due to MagicMock malleability + backtesting.start(args) + # check the logs, that will contain the backtest result + exists = ['Using max_open_trades: 1 ...', + 'Using stake_amount: 0.001 ...', + 'Measuring data from 2017-11-14T19:32:00+00:00 ' + 'up to 2017-11-14T22:59:00+00:00 (0 days)..'] + for line in exists: + assert ('freqtrade.optimize.backtesting', + logging.INFO, + line) in caplog.record_tuples diff --git a/freqtrade/tests/optimize/test_hyperopt.py b/freqtrade/tests/optimize/test_hyperopt.py index f127ac8fd..93cb6ba8b 100644 --- a/freqtrade/tests/optimize/test_hyperopt.py +++ b/freqtrade/tests/optimize/test_hyperopt.py @@ -1,9 +1,15 @@ # pragma pylint: disable=missing-docstring,W0212,C0103 import logging +from unittest.mock import MagicMock + +import pandas as pd + from freqtrade.optimize.hyperopt import calculate_loss, TARGET_TRADES, EXPECTED_MAX_PROFIT, start, \ log_results, save_trials, read_trials, generate_roi_table +import freqtrade.optimize.hyperopt as hyperopt + def test_loss_calculation_prefer_correct_trade_count(): correct = calculate_loss(1, TARGET_TRADES, 20) @@ -250,3 +256,26 @@ def test_roi_table_generation(): 'roi_p3': 3, } assert generate_roi_table(params) == {'0': 6, '15': 3, '25': 1, '30': 0} + + +# test log_trials_result +# test buy_strategy_generator def populate_buy_trend +# test optimizer if 'ro_t1' in params + +def test_format_results(): + trades = [('BTC_ETH', 2, 2, 123), + ('BTC_LTC', 1, 1, 123), + ('BTC_XRP', -1, -2, -246)] + labels = ['currency', 'profit_percent', 'profit_BTC', 'duration'] + df = pd.DataFrame.from_records(trades, columns=labels) + x = hyperopt.format_results(df) + assert x.find(' 66.67%') + + +def test_signal_handler(mocker): + m = MagicMock() + mocker.patch('sys.exit', m) + mocker.patch('freqtrade.optimize.hyperopt.save_trials', m) + mocker.patch('freqtrade.optimize.hyperopt.log_trials_result', m) + hyperopt.signal_handler(9, None) + assert m.call_count == 3 diff --git a/freqtrade/tests/test_analyze.py b/freqtrade/tests/test_analyze.py index 41a6c1c2f..aa685c3df 100644 --- a/freqtrade/tests/test_analyze.py +++ b/freqtrade/tests/test_analyze.py @@ -19,8 +19,8 @@ def test_dataframe_correct_columns(result): def test_dataframe_correct_length(result): - # no idea what this check truly does - should we just remove it? - assert len(result.index) == 14397 + dataframe = parse_ticker_dataframe(result) + assert len(result.index) == len(dataframe.index) def test_populates_buy_trend(result):