Add config to hyperopt_loss_function documentation
This commit is contained in:
parent
eff0d46ea1
commit
11b20d6932
@ -59,7 +59,7 @@ class SuperDuperHyperOptLoss(IHyperOptLoss):
|
|||||||
@staticmethod
|
@staticmethod
|
||||||
def hyperopt_loss_function(results: DataFrame, trade_count: int,
|
def hyperopt_loss_function(results: DataFrame, trade_count: int,
|
||||||
min_date: datetime, max_date: datetime,
|
min_date: datetime, max_date: datetime,
|
||||||
processed: Dict[str, DataFrame],
|
config: Dict, processed: Dict[str, DataFrame],
|
||||||
*args, **kwargs) -> float:
|
*args, **kwargs) -> float:
|
||||||
"""
|
"""
|
||||||
Objective function, returns smaller number for better results
|
Objective function, returns smaller number for better results
|
||||||
@ -87,6 +87,7 @@ Currently, the arguments are:
|
|||||||
* `trade_count`: Amount of trades (identical to `len(results)`)
|
* `trade_count`: Amount of trades (identical to `len(results)`)
|
||||||
* `min_date`: Start date of the timerange used
|
* `min_date`: Start date of the timerange used
|
||||||
* `min_date`: End date of the timerange used
|
* `min_date`: End date of the timerange used
|
||||||
|
* `config`: Config object used (Note: Not all strategy-related parameters will be updated here if they are part of a hyperopt space).
|
||||||
* `processed`: Dict of Dataframes with the pair as keys containing the data used for backtesting.
|
* `processed`: Dict of Dataframes with the pair as keys containing the data used for backtesting.
|
||||||
|
|
||||||
This function needs to return a floating point number (`float`). Smaller numbers will be interpreted as better results. The parameters and balancing for this is up to you.
|
This function needs to return a floating point number (`float`). Smaller numbers will be interpreted as better results. The parameters and balancing for this is up to you.
|
||||||
|
@ -5,6 +5,7 @@ This module defines the interface for the loss-function for hyperopt
|
|||||||
|
|
||||||
from abc import ABC, abstractmethod
|
from abc import ABC, abstractmethod
|
||||||
from datetime import datetime
|
from datetime import datetime
|
||||||
|
from typing import Dict
|
||||||
|
|
||||||
from pandas import DataFrame
|
from pandas import DataFrame
|
||||||
|
|
||||||
@ -19,7 +20,9 @@ class IHyperOptLoss(ABC):
|
|||||||
@staticmethod
|
@staticmethod
|
||||||
@abstractmethod
|
@abstractmethod
|
||||||
def hyperopt_loss_function(results: DataFrame, trade_count: int,
|
def hyperopt_loss_function(results: DataFrame, trade_count: int,
|
||||||
min_date: datetime, max_date: datetime, *args, **kwargs) -> float:
|
min_date: datetime, max_date: datetime,
|
||||||
|
config: Dict, processed: Dict[str, DataFrame],
|
||||||
|
*args, **kwargs) -> float:
|
||||||
"""
|
"""
|
||||||
Objective function, returns smaller number for better results
|
Objective function, returns smaller number for better results
|
||||||
"""
|
"""
|
||||||
|
@ -36,7 +36,7 @@ class SampleHyperOptLoss(IHyperOptLoss):
|
|||||||
@staticmethod
|
@staticmethod
|
||||||
def hyperopt_loss_function(results: DataFrame, trade_count: int,
|
def hyperopt_loss_function(results: DataFrame, trade_count: int,
|
||||||
min_date: datetime, max_date: datetime,
|
min_date: datetime, max_date: datetime,
|
||||||
processed: Dict[str, DataFrame],
|
config: Dict, processed: Dict[str, DataFrame],
|
||||||
*args, **kwargs) -> float:
|
*args, **kwargs) -> float:
|
||||||
"""
|
"""
|
||||||
Objective function, returns smaller number for better results
|
Objective function, returns smaller number for better results
|
||||||
|
Loading…
Reference in New Issue
Block a user