enable continual learning and evaluation sets on multioutput models.
This commit is contained in:
parent
170bec0438
commit
10b6aebc5f
75
freqtrade/freqai/base_models/FreqaiMultiOutputRegressor.py
Normal file
75
freqtrade/freqai/base_models/FreqaiMultiOutputRegressor.py
Normal file
@ -0,0 +1,75 @@
|
||||
|
||||
from joblib import Parallel
|
||||
from sklearn.multioutput import MultiOutputRegressor, _fit_estimator
|
||||
from sklearn.utils.fixes import delayed
|
||||
from sklearn.utils.validation import has_fit_parameter
|
||||
|
||||
|
||||
class FreqaiMultiOutputRegressor(MultiOutputRegressor):
|
||||
|
||||
def fit(self, X, y, sample_weight=None, fit_params=None):
|
||||
"""Fit the model to data, separately for each output variable.
|
||||
Parameters
|
||||
----------
|
||||
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
||||
The input data.
|
||||
y : {array-like, sparse matrix} of shape (n_samples, n_outputs)
|
||||
Multi-output targets. An indicator matrix turns on multilabel
|
||||
estimation.
|
||||
sample_weight : array-like of shape (n_samples,), default=None
|
||||
Sample weights. If `None`, then samples are equally weighted.
|
||||
Only supported if the underlying regressor supports sample
|
||||
weights.
|
||||
fit_params : A list of dicts for the fit_params
|
||||
Parameters passed to the ``estimator.fit`` method of each step.
|
||||
Each dict may contain same or different values (e.g. different
|
||||
eval_sets or init_models)
|
||||
.. versionadded:: 0.23
|
||||
Returns
|
||||
-------
|
||||
self : object
|
||||
Returns a fitted instance.
|
||||
"""
|
||||
|
||||
if not hasattr(self.estimator, "fit"):
|
||||
raise ValueError("The base estimator should implement a fit method")
|
||||
|
||||
y = self._validate_data(X="no_validation", y=y, multi_output=True)
|
||||
|
||||
# if is_classifier(self):
|
||||
# check_classification_targets(y)
|
||||
|
||||
if y.ndim == 1:
|
||||
raise ValueError(
|
||||
"y must have at least two dimensions for "
|
||||
"multi-output regression but has only one."
|
||||
)
|
||||
|
||||
if sample_weight is not None and not has_fit_parameter(
|
||||
self.estimator, "sample_weight"
|
||||
):
|
||||
raise ValueError("Underlying estimator does not support sample weights.")
|
||||
|
||||
# fit_params_validated = _check_fit_params(X, fit_params)
|
||||
|
||||
if not fit_params:
|
||||
fit_params = [None] * y.shape[1]
|
||||
|
||||
# if not init_models:
|
||||
# init_models = [None] * y.shape[1]
|
||||
|
||||
self.estimators_ = Parallel(n_jobs=self.n_jobs)(
|
||||
delayed(_fit_estimator)(
|
||||
self.estimator, X, y[:, i], sample_weight, **fit_params[i]
|
||||
# init_model=init_models[i], eval_set=eval_sets[i],
|
||||
# **fit_params_validated
|
||||
)
|
||||
for i in range(y.shape[1])
|
||||
)
|
||||
|
||||
if hasattr(self.estimators_[0], "n_features_in_"):
|
||||
self.n_features_in_ = self.estimators_[0].n_features_in_
|
||||
if hasattr(self.estimators_[0], "feature_names_in_"):
|
||||
self.feature_names_in_ = self.estimators_[0].feature_names_in_
|
||||
|
||||
return
|
@ -3,8 +3,8 @@ from typing import Any, Dict
|
||||
|
||||
from catboost import CatBoostClassifier, Pool
|
||||
|
||||
from freqtrade.freqai.base_models.BaseClassifierModel import BaseClassifierModel
|
||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||
from freqtrade.freqai.prediction_models.BaseClassifierModel import BaseClassifierModel
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
@ -3,8 +3,8 @@ from typing import Any, Dict
|
||||
|
||||
from catboost import CatBoostRegressor, Pool
|
||||
|
||||
from freqtrade.freqai.base_models.BaseRegressionModel import BaseRegressionModel
|
||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||
from freqtrade.freqai.prediction_models.BaseRegressionModel import BaseRegressionModel
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
@ -1,11 +1,11 @@
|
||||
import logging
|
||||
from typing import Any, Dict
|
||||
|
||||
from catboost import CatBoostRegressor # , Pool
|
||||
from sklearn.multioutput import MultiOutputRegressor
|
||||
from catboost import CatBoostRegressor, Pool
|
||||
|
||||
from freqtrade.freqai.base_models.BaseRegressionModel import BaseRegressionModel
|
||||
from freqtrade.freqai.base_models.FreqaiMultiOutputRegressor import FreqaiMultiOutputRegressor
|
||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||
from freqtrade.freqai.prediction_models.BaseRegressionModel import BaseRegressionModel
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@ -32,17 +32,34 @@ class CatboostRegressorMultiTarget(BaseRegressionModel):
|
||||
|
||||
X = data_dictionary["train_features"]
|
||||
y = data_dictionary["train_labels"]
|
||||
eval_set = (data_dictionary["test_features"], data_dictionary["test_labels"])
|
||||
|
||||
sample_weight = data_dictionary["train_weights"]
|
||||
|
||||
if self.continual_learning:
|
||||
logger.warning('Continual learning not supported for MultiTarget models')
|
||||
|
||||
model = MultiOutputRegressor(estimator=cbr)
|
||||
model.fit(X=X, y=y, sample_weight=sample_weight) # , eval_set=eval_set)
|
||||
eval_sets = [None] * y.shape[1]
|
||||
|
||||
if self.freqai_info.get('data_split_parameters', {}).get('test_size', 0.1) != 0:
|
||||
train_score = model.score(X, y)
|
||||
test_score = model.score(*eval_set)
|
||||
logger.info(f"Train score {train_score}, Test score {test_score}")
|
||||
eval_sets = [None] * data_dictionary['test_labels'].shape[1]
|
||||
|
||||
for i in range(data_dictionary['test_labels'].shape[1]):
|
||||
eval_sets[i] = Pool(
|
||||
data=data_dictionary["test_features"],
|
||||
label=data_dictionary["test_labels"].iloc[:, i],
|
||||
weight=data_dictionary["test_weights"],
|
||||
)
|
||||
|
||||
init_model = self.get_init_model(dk.pair)
|
||||
|
||||
if init_model:
|
||||
init_models = init_model.estimators_
|
||||
else:
|
||||
init_models = [None] * y.shape[1]
|
||||
|
||||
fit_params = []
|
||||
for i in range(len(eval_sets)):
|
||||
fit_params.append(
|
||||
{'eval_set': eval_sets[i], 'init_model': init_models[i]})
|
||||
|
||||
model = FreqaiMultiOutputRegressor(estimator=cbr)
|
||||
model.fit(X=X, y=y, sample_weight=sample_weight, fit_params=fit_params)
|
||||
|
||||
return model
|
||||
|
@ -3,8 +3,8 @@ from typing import Any, Dict
|
||||
|
||||
from lightgbm import LGBMClassifier
|
||||
|
||||
from freqtrade.freqai.base_models.BaseClassifierModel import BaseClassifierModel
|
||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||
from freqtrade.freqai.prediction_models.BaseClassifierModel import BaseClassifierModel
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
@ -3,8 +3,8 @@ from typing import Any, Dict
|
||||
|
||||
from lightgbm import LGBMRegressor
|
||||
|
||||
from freqtrade.freqai.base_models.BaseRegressionModel import BaseRegressionModel
|
||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||
from freqtrade.freqai.prediction_models.BaseRegressionModel import BaseRegressionModel
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
@ -2,10 +2,10 @@ import logging
|
||||
from typing import Any, Dict
|
||||
|
||||
from lightgbm import LGBMRegressor
|
||||
from sklearn.multioutput import MultiOutputRegressor
|
||||
|
||||
from freqtrade.freqai.base_models.BaseRegressionModel import BaseRegressionModel
|
||||
from freqtrade.freqai.base_models.FreqaiMultiOutputRegressor import FreqaiMultiOutputRegressor
|
||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||
from freqtrade.freqai.prediction_models.BaseRegressionModel import BaseRegressionModel
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@ -29,15 +29,36 @@ class LightGBMRegressorMultiTarget(BaseRegressionModel):
|
||||
|
||||
X = data_dictionary["train_features"]
|
||||
y = data_dictionary["train_labels"]
|
||||
eval_set = (data_dictionary["test_features"], data_dictionary["test_labels"])
|
||||
sample_weight = data_dictionary["train_weights"]
|
||||
|
||||
if self.continual_learning:
|
||||
logger.warning('Continual learning not supported for MultiTarget models')
|
||||
eval_weights = None
|
||||
eval_sets = [None] * y.shape[1]
|
||||
|
||||
model = MultiOutputRegressor(estimator=lgb)
|
||||
model.fit(X=X, y=y, sample_weight=sample_weight) # , eval_set=eval_set)
|
||||
train_score = model.score(X, y)
|
||||
test_score = model.score(*eval_set)
|
||||
logger.info(f"Train score {train_score}, Test score {test_score}")
|
||||
if self.freqai_info.get('data_split_parameters', {}).get('test_size', 0.1) != 0:
|
||||
eval_weights = [data_dictionary["test_weights"]]
|
||||
eval_sets = [(None, None)] * data_dictionary['test_labels'].shape[1] # type: ignore
|
||||
for i in range(data_dictionary['test_labels'].shape[1]):
|
||||
eval_sets[i] = ( # type: ignore
|
||||
data_dictionary["test_features"],
|
||||
data_dictionary["test_labels"].iloc[:, i]
|
||||
)
|
||||
|
||||
init_model = self.get_init_model(dk.pair)
|
||||
if init_model:
|
||||
init_models = init_model.estimators_
|
||||
else:
|
||||
init_models = [None] * y.shape[1]
|
||||
|
||||
fit_params = []
|
||||
for i in range(len(eval_sets)):
|
||||
fit_params.append(
|
||||
{'eval_set': eval_sets[i], 'eval_sample_weight': eval_weights,
|
||||
'init_model': init_models[i]})
|
||||
|
||||
model = FreqaiMultiOutputRegressor(estimator=lgb)
|
||||
model.fit(X=X, y=y, sample_weight=sample_weight, fit_params=fit_params)
|
||||
|
||||
# model = FreqaiMultiOutputRegressor(estimator=lgb)
|
||||
# model.fit(X=X, y=y, sample_weight=sample_weight, init_models=init_models,
|
||||
# eval_sets=eval_sets, eval_sample_weight=eval_weights)
|
||||
return model
|
||||
|
@ -3,8 +3,8 @@ from typing import Any, Dict
|
||||
|
||||
from xgboost import XGBRegressor
|
||||
|
||||
from freqtrade.freqai.base_models.BaseRegressionModel import BaseRegressionModel
|
||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||
from freqtrade.freqai.prediction_models.BaseRegressionModel import BaseRegressionModel
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@ -31,6 +31,7 @@ class XGBoostRegressor(BaseRegressionModel):
|
||||
eval_set = None
|
||||
else:
|
||||
eval_set = [(data_dictionary["test_features"], data_dictionary["test_labels"])]
|
||||
eval_weights = [data_dictionary['test_weights']]
|
||||
|
||||
sample_weight = data_dictionary["train_weights"]
|
||||
|
||||
@ -38,6 +39,7 @@ class XGBoostRegressor(BaseRegressionModel):
|
||||
|
||||
model = XGBRegressor(**self.model_training_parameters)
|
||||
|
||||
model.fit(X=X, y=y, sample_weight=sample_weight, eval_set=eval_set, xgb_model=xgb_model)
|
||||
model.fit(X=X, y=y, sample_weight=sample_weight, eval_set=eval_set,
|
||||
sample_weight_eval_set=eval_weights, xgb_model=xgb_model)
|
||||
|
||||
return model
|
||||
|
@ -1,11 +1,11 @@
|
||||
import logging
|
||||
from typing import Any, Dict
|
||||
|
||||
from sklearn.multioutput import MultiOutputRegressor
|
||||
from xgboost import XGBRegressor
|
||||
|
||||
from freqtrade.freqai.base_models.BaseRegressionModel import BaseRegressionModel
|
||||
from freqtrade.freqai.base_models.FreqaiMultiOutputRegressor import FreqaiMultiOutputRegressor
|
||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||
from freqtrade.freqai.prediction_models.BaseRegressionModel import BaseRegressionModel
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@ -29,15 +29,32 @@ class XGBoostRegressorMultiTarget(BaseRegressionModel):
|
||||
|
||||
X = data_dictionary["train_features"]
|
||||
y = data_dictionary["train_labels"]
|
||||
eval_set = (data_dictionary["test_features"], data_dictionary["test_labels"])
|
||||
sample_weight = data_dictionary["train_weights"]
|
||||
|
||||
if self.continual_learning:
|
||||
logger.warning('Continual learning not supported for MultiTarget models')
|
||||
eval_weights = None
|
||||
eval_sets = [None] * y.shape[1]
|
||||
|
||||
if self.freqai_info.get('data_split_parameters', {}).get('test_size', 0.1) != 0:
|
||||
eval_weights = [data_dictionary["test_weights"]]
|
||||
for i in range(data_dictionary['test_labels'].shape[1]):
|
||||
eval_sets[i] = [( # type: ignore
|
||||
data_dictionary["test_features"],
|
||||
data_dictionary["test_labels"].iloc[:, i]
|
||||
)]
|
||||
|
||||
init_model = self.get_init_model(dk.pair)
|
||||
if init_model:
|
||||
init_models = init_model.estimators_
|
||||
else:
|
||||
init_models = [None] * y.shape[1]
|
||||
|
||||
fit_params = []
|
||||
for i in range(len(eval_sets)):
|
||||
fit_params.append(
|
||||
{'eval_set': eval_sets[i], 'sample_weight_eval_set': eval_weights,
|
||||
'xgb_model': init_models[i]})
|
||||
|
||||
model = FreqaiMultiOutputRegressor(estimator=xgb)
|
||||
model.fit(X=X, y=y, sample_weight=sample_weight, fit_params=fit_params)
|
||||
|
||||
model = MultiOutputRegressor(estimator=xgb)
|
||||
model.fit(X=X, y=y, sample_weight=sample_weight) # , eval_set=eval_set)
|
||||
train_score = model.score(X, y)
|
||||
test_score = model.score(*eval_set)
|
||||
logger.info(f"Train score {train_score}, Test score {test_score}")
|
||||
return model
|
||||
|
Loading…
Reference in New Issue
Block a user