enable continual learning and evaluation sets on multioutput models.

This commit is contained in:
robcaulk
2022-09-10 16:54:13 +02:00
parent 170bec0438
commit 10b6aebc5f
12 changed files with 170 additions and 38 deletions

View File

@@ -1,11 +1,11 @@
import logging
from typing import Any, Dict
from catboost import CatBoostRegressor # , Pool
from sklearn.multioutput import MultiOutputRegressor
from catboost import CatBoostRegressor, Pool
from freqtrade.freqai.base_models.BaseRegressionModel import BaseRegressionModel
from freqtrade.freqai.base_models.FreqaiMultiOutputRegressor import FreqaiMultiOutputRegressor
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
from freqtrade.freqai.prediction_models.BaseRegressionModel import BaseRegressionModel
logger = logging.getLogger(__name__)
@@ -32,17 +32,34 @@ class CatboostRegressorMultiTarget(BaseRegressionModel):
X = data_dictionary["train_features"]
y = data_dictionary["train_labels"]
eval_set = (data_dictionary["test_features"], data_dictionary["test_labels"])
sample_weight = data_dictionary["train_weights"]
if self.continual_learning:
logger.warning('Continual learning not supported for MultiTarget models')
model = MultiOutputRegressor(estimator=cbr)
model.fit(X=X, y=y, sample_weight=sample_weight) # , eval_set=eval_set)
eval_sets = [None] * y.shape[1]
if self.freqai_info.get('data_split_parameters', {}).get('test_size', 0.1) != 0:
train_score = model.score(X, y)
test_score = model.score(*eval_set)
logger.info(f"Train score {train_score}, Test score {test_score}")
eval_sets = [None] * data_dictionary['test_labels'].shape[1]
for i in range(data_dictionary['test_labels'].shape[1]):
eval_sets[i] = Pool(
data=data_dictionary["test_features"],
label=data_dictionary["test_labels"].iloc[:, i],
weight=data_dictionary["test_weights"],
)
init_model = self.get_init_model(dk.pair)
if init_model:
init_models = init_model.estimators_
else:
init_models = [None] * y.shape[1]
fit_params = []
for i in range(len(eval_sets)):
fit_params.append(
{'eval_set': eval_sets[i], 'init_model': init_models[i]})
model = FreqaiMultiOutputRegressor(estimator=cbr)
model.fit(X=X, y=y, sample_weight=sample_weight, fit_params=fit_params)
return model