Merge branch 'develop' into feat/externalsignals
This commit is contained in:
@@ -4,7 +4,7 @@ from typing import Any, Dict
|
||||
from sqlalchemy import func
|
||||
|
||||
from freqtrade.configuration.config_setup import setup_utils_configuration
|
||||
from freqtrade.enums.runmode import RunMode
|
||||
from freqtrade.enums import RunMode
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
@@ -84,6 +84,7 @@ def validate_config_consistency(conf: Dict[str, Any], preliminary: bool = False)
|
||||
_validate_protections(conf)
|
||||
_validate_unlimited_amount(conf)
|
||||
_validate_ask_orderbook(conf)
|
||||
_validate_freqai_hyperopt(conf)
|
||||
validate_migrated_strategy_settings(conf)
|
||||
|
||||
# validate configuration before returning
|
||||
@@ -323,6 +324,14 @@ def _validate_pricing_rules(conf: Dict[str, Any]) -> None:
|
||||
del conf['ask_strategy']
|
||||
|
||||
|
||||
def _validate_freqai_hyperopt(conf: Dict[str, Any]) -> None:
|
||||
freqai_enabled = conf.get('freqai', {}).get('enabled', False)
|
||||
analyze_per_epoch = conf.get('analyze_per_epoch', False)
|
||||
if analyze_per_epoch and freqai_enabled:
|
||||
raise OperationalException(
|
||||
'Using analyze-per-epoch parameter is not supported with a FreqAI strategy.')
|
||||
|
||||
|
||||
def _strategy_settings(conf: Dict[str, Any]) -> None:
|
||||
|
||||
process_deprecated_setting(conf, None, 'use_sell_signal', None, 'use_exit_signal')
|
||||
|
@@ -228,9 +228,9 @@ def _download_pair_history(pair: str, *,
|
||||
)
|
||||
|
||||
logger.debug("Current Start: %s",
|
||||
f"{data.iloc[0]['date']:%Y-%m-%d %H:%M:%S}" if not data.empty else 'None')
|
||||
f"{data.iloc[0]['date']:DATETIME_PRINT_FORMAT}" if not data.empty else 'None')
|
||||
logger.debug("Current End: %s",
|
||||
f"{data.iloc[-1]['date']:%Y-%m-%d %H:%M:%S}" if not data.empty else 'None')
|
||||
f"{data.iloc[-1]['date']:DATETIME_PRINT_FORMAT}" if not data.empty else 'None')
|
||||
|
||||
# Default since_ms to 30 days if nothing is given
|
||||
new_data = exchange.get_historic_ohlcv(pair=pair,
|
||||
@@ -254,9 +254,9 @@ def _download_pair_history(pair: str, *,
|
||||
fill_missing=False, drop_incomplete=False)
|
||||
|
||||
logger.debug("New Start: %s",
|
||||
f"{data.iloc[0]['date']:%Y-%m-%d %H:%M:%S}" if not data.empty else 'None')
|
||||
f"{data.iloc[0]['date']:DATETIME_PRINT_FORMAT}" if not data.empty else 'None')
|
||||
logger.debug("New End: %s",
|
||||
f"{data.iloc[-1]['date']:%Y-%m-%d %H:%M:%S}" if not data.empty else 'None')
|
||||
f"{data.iloc[-1]['date']:DATETIME_PRINT_FORMAT}" if not data.empty else 'None')
|
||||
|
||||
data_handler.ohlcv_store(pair, timeframe, data=data, candle_type=candle_type)
|
||||
return True
|
||||
|
@@ -4,8 +4,7 @@ from typing import Dict, List, Optional, Tuple
|
||||
import ccxt
|
||||
|
||||
from freqtrade.constants import BuySell
|
||||
from freqtrade.enums import MarginMode, TradingMode
|
||||
from freqtrade.enums.candletype import CandleType
|
||||
from freqtrade.enums import CandleType, MarginMode, TradingMode
|
||||
from freqtrade.exceptions import DDosProtection, OperationalException, TemporaryError
|
||||
from freqtrade.exchange import Exchange, date_minus_candles
|
||||
from freqtrade.exchange.common import retrier
|
||||
|
@@ -21,12 +21,12 @@ class BaseClassifierModel(IFreqaiModel):
|
||||
"""
|
||||
|
||||
def train(
|
||||
self, unfiltered_dataframe: DataFrame, pair: str, dk: FreqaiDataKitchen
|
||||
self, unfiltered_df: DataFrame, pair: str, dk: FreqaiDataKitchen, **kwargs
|
||||
) -> Any:
|
||||
"""
|
||||
Filter the training data and train a model to it. Train makes heavy use of the datakitchen
|
||||
for storing, saving, loading, and analyzing the data.
|
||||
:param unfiltered_dataframe: Full dataframe for the current training period
|
||||
:param unfiltered_df: Full dataframe for the current training period
|
||||
:param metadata: pair metadata from strategy.
|
||||
:return:
|
||||
:model: Trained model which can be used to inference (self.predict)
|
||||
@@ -36,14 +36,14 @@ class BaseClassifierModel(IFreqaiModel):
|
||||
|
||||
# filter the features requested by user in the configuration file and elegantly handle NaNs
|
||||
features_filtered, labels_filtered = dk.filter_features(
|
||||
unfiltered_dataframe,
|
||||
unfiltered_df,
|
||||
dk.training_features_list,
|
||||
dk.label_list,
|
||||
training_filter=True,
|
||||
)
|
||||
|
||||
start_date = unfiltered_dataframe["date"].iloc[0].strftime("%Y-%m-%d")
|
||||
end_date = unfiltered_dataframe["date"].iloc[-1].strftime("%Y-%m-%d")
|
||||
start_date = unfiltered_df["date"].iloc[0].strftime("%Y-%m-%d")
|
||||
end_date = unfiltered_df["date"].iloc[-1].strftime("%Y-%m-%d")
|
||||
logger.info(f"-------------------- Training on data from {start_date} to "
|
||||
f"{end_date}--------------------")
|
||||
# split data into train/test data.
|
||||
@@ -61,32 +61,32 @@ class BaseClassifierModel(IFreqaiModel):
|
||||
)
|
||||
logger.info(f'Training model on {len(data_dictionary["train_features"])} data points')
|
||||
|
||||
model = self.fit(data_dictionary)
|
||||
model = self.fit(data_dictionary, dk)
|
||||
|
||||
logger.info(f"--------------------done training {pair}--------------------")
|
||||
|
||||
return model
|
||||
|
||||
def predict(
|
||||
self, unfiltered_dataframe: DataFrame, dk: FreqaiDataKitchen, first: bool = False
|
||||
self, unfiltered_df: DataFrame, dk: FreqaiDataKitchen, **kwargs
|
||||
) -> Tuple[DataFrame, npt.NDArray[np.int_]]:
|
||||
"""
|
||||
Filter the prediction features data and predict with it.
|
||||
:param: unfiltered_dataframe: Full dataframe for the current backtest period.
|
||||
:param: unfiltered_df: Full dataframe for the current backtest period.
|
||||
:return:
|
||||
:pred_df: dataframe containing the predictions
|
||||
:do_predict: np.array of 1s and 0s to indicate places where freqai needed to remove
|
||||
data (NaNs) or felt uncertain about data (PCA and DI index)
|
||||
"""
|
||||
|
||||
dk.find_features(unfiltered_dataframe)
|
||||
filtered_dataframe, _ = dk.filter_features(
|
||||
unfiltered_dataframe, dk.training_features_list, training_filter=False
|
||||
dk.find_features(unfiltered_df)
|
||||
filtered_df, _ = dk.filter_features(
|
||||
unfiltered_df, dk.training_features_list, training_filter=False
|
||||
)
|
||||
filtered_dataframe = dk.normalize_data_from_metadata(filtered_dataframe)
|
||||
dk.data_dictionary["prediction_features"] = filtered_dataframe
|
||||
filtered_df = dk.normalize_data_from_metadata(filtered_df)
|
||||
dk.data_dictionary["prediction_features"] = filtered_df
|
||||
|
||||
self.data_cleaning_predict(dk, filtered_dataframe)
|
||||
self.data_cleaning_predict(dk, filtered_df)
|
||||
|
||||
predictions = self.model.predict(dk.data_dictionary["prediction_features"])
|
||||
pred_df = DataFrame(predictions, columns=dk.label_list)
|
@@ -20,12 +20,12 @@ class BaseRegressionModel(IFreqaiModel):
|
||||
"""
|
||||
|
||||
def train(
|
||||
self, unfiltered_dataframe: DataFrame, pair: str, dk: FreqaiDataKitchen
|
||||
self, unfiltered_df: DataFrame, pair: str, dk: FreqaiDataKitchen, **kwargs
|
||||
) -> Any:
|
||||
"""
|
||||
Filter the training data and train a model to it. Train makes heavy use of the datakitchen
|
||||
for storing, saving, loading, and analyzing the data.
|
||||
:param unfiltered_dataframe: Full dataframe for the current training period
|
||||
:param unfiltered_df: Full dataframe for the current training period
|
||||
:param metadata: pair metadata from strategy.
|
||||
:return:
|
||||
:model: Trained model which can be used to inference (self.predict)
|
||||
@@ -35,14 +35,14 @@ class BaseRegressionModel(IFreqaiModel):
|
||||
|
||||
# filter the features requested by user in the configuration file and elegantly handle NaNs
|
||||
features_filtered, labels_filtered = dk.filter_features(
|
||||
unfiltered_dataframe,
|
||||
unfiltered_df,
|
||||
dk.training_features_list,
|
||||
dk.label_list,
|
||||
training_filter=True,
|
||||
)
|
||||
|
||||
start_date = unfiltered_dataframe["date"].iloc[0].strftime("%Y-%m-%d")
|
||||
end_date = unfiltered_dataframe["date"].iloc[-1].strftime("%Y-%m-%d")
|
||||
start_date = unfiltered_df["date"].iloc[0].strftime("%Y-%m-%d")
|
||||
end_date = unfiltered_df["date"].iloc[-1].strftime("%Y-%m-%d")
|
||||
logger.info(f"-------------------- Training on data from {start_date} to "
|
||||
f"{end_date}--------------------")
|
||||
# split data into train/test data.
|
||||
@@ -60,33 +60,33 @@ class BaseRegressionModel(IFreqaiModel):
|
||||
)
|
||||
logger.info(f'Training model on {len(data_dictionary["train_features"])} data points')
|
||||
|
||||
model = self.fit(data_dictionary)
|
||||
model = self.fit(data_dictionary, dk)
|
||||
|
||||
logger.info(f"--------------------done training {pair}--------------------")
|
||||
|
||||
return model
|
||||
|
||||
def predict(
|
||||
self, unfiltered_dataframe: DataFrame, dk: FreqaiDataKitchen, first: bool = False
|
||||
self, unfiltered_df: DataFrame, dk: FreqaiDataKitchen, **kwargs
|
||||
) -> Tuple[DataFrame, npt.NDArray[np.int_]]:
|
||||
"""
|
||||
Filter the prediction features data and predict with it.
|
||||
:param: unfiltered_dataframe: Full dataframe for the current backtest period.
|
||||
:param: unfiltered_df: Full dataframe for the current backtest period.
|
||||
:return:
|
||||
:pred_df: dataframe containing the predictions
|
||||
:do_predict: np.array of 1s and 0s to indicate places where freqai needed to remove
|
||||
data (NaNs) or felt uncertain about data (PCA and DI index)
|
||||
"""
|
||||
|
||||
dk.find_features(unfiltered_dataframe)
|
||||
filtered_dataframe, _ = dk.filter_features(
|
||||
unfiltered_dataframe, dk.training_features_list, training_filter=False
|
||||
dk.find_features(unfiltered_df)
|
||||
filtered_df, _ = dk.filter_features(
|
||||
unfiltered_df, dk.training_features_list, training_filter=False
|
||||
)
|
||||
filtered_dataframe = dk.normalize_data_from_metadata(filtered_dataframe)
|
||||
dk.data_dictionary["prediction_features"] = filtered_dataframe
|
||||
filtered_df = dk.normalize_data_from_metadata(filtered_df)
|
||||
dk.data_dictionary["prediction_features"] = filtered_df
|
||||
|
||||
# optional additional data cleaning/analysis
|
||||
self.data_cleaning_predict(dk, filtered_dataframe)
|
||||
self.data_cleaning_predict(dk, filtered_df)
|
||||
|
||||
predictions = self.model.predict(dk.data_dictionary["prediction_features"])
|
||||
pred_df = DataFrame(predictions, columns=dk.label_list)
|
@@ -17,12 +17,12 @@ class BaseTensorFlowModel(IFreqaiModel):
|
||||
"""
|
||||
|
||||
def train(
|
||||
self, unfiltered_dataframe: DataFrame, pair: str, dk: FreqaiDataKitchen
|
||||
self, unfiltered_df: DataFrame, pair: str, dk: FreqaiDataKitchen, **kwargs
|
||||
) -> Any:
|
||||
"""
|
||||
Filter the training data and train a model to it. Train makes heavy use of the datakitchen
|
||||
for storing, saving, loading, and analyzing the data.
|
||||
:param unfiltered_dataframe: Full dataframe for the current training period
|
||||
:param unfiltered_df: Full dataframe for the current training period
|
||||
:param metadata: pair metadata from strategy.
|
||||
:return:
|
||||
:model: Trained model which can be used to inference (self.predict)
|
||||
@@ -32,14 +32,14 @@ class BaseTensorFlowModel(IFreqaiModel):
|
||||
|
||||
# filter the features requested by user in the configuration file and elegantly handle NaNs
|
||||
features_filtered, labels_filtered = dk.filter_features(
|
||||
unfiltered_dataframe,
|
||||
unfiltered_df,
|
||||
dk.training_features_list,
|
||||
dk.label_list,
|
||||
training_filter=True,
|
||||
)
|
||||
|
||||
start_date = unfiltered_dataframe["date"].iloc[0].strftime("%Y-%m-%d")
|
||||
end_date = unfiltered_dataframe["date"].iloc[-1].strftime("%Y-%m-%d")
|
||||
start_date = unfiltered_df["date"].iloc[0].strftime("%Y-%m-%d")
|
||||
end_date = unfiltered_df["date"].iloc[-1].strftime("%Y-%m-%d")
|
||||
logger.info(f"-------------------- Training on data from {start_date} to "
|
||||
f"{end_date}--------------------")
|
||||
# split data into train/test data.
|
||||
@@ -57,7 +57,7 @@ class BaseTensorFlowModel(IFreqaiModel):
|
||||
)
|
||||
logger.info(f'Training model on {len(data_dictionary["train_features"])} data points')
|
||||
|
||||
model = self.fit(data_dictionary)
|
||||
model = self.fit(data_dictionary, dk)
|
||||
|
||||
logger.info(f"--------------------done training {pair}--------------------")
|
||||
|
65
freqtrade/freqai/base_models/FreqaiMultiOutputRegressor.py
Normal file
65
freqtrade/freqai/base_models/FreqaiMultiOutputRegressor.py
Normal file
@@ -0,0 +1,65 @@
|
||||
|
||||
from joblib import Parallel
|
||||
from sklearn.multioutput import MultiOutputRegressor, _fit_estimator
|
||||
from sklearn.utils.fixes import delayed
|
||||
from sklearn.utils.validation import has_fit_parameter
|
||||
|
||||
|
||||
class FreqaiMultiOutputRegressor(MultiOutputRegressor):
|
||||
|
||||
def fit(self, X, y, sample_weight=None, fit_params=None):
|
||||
"""Fit the model to data, separately for each output variable.
|
||||
Parameters
|
||||
----------
|
||||
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
||||
The input data.
|
||||
y : {array-like, sparse matrix} of shape (n_samples, n_outputs)
|
||||
Multi-output targets. An indicator matrix turns on multilabel
|
||||
estimation.
|
||||
sample_weight : array-like of shape (n_samples,), default=None
|
||||
Sample weights. If `None`, then samples are equally weighted.
|
||||
Only supported if the underlying regressor supports sample
|
||||
weights.
|
||||
fit_params : A list of dicts for the fit_params
|
||||
Parameters passed to the ``estimator.fit`` method of each step.
|
||||
Each dict may contain same or different values (e.g. different
|
||||
eval_sets or init_models)
|
||||
.. versionadded:: 0.23
|
||||
Returns
|
||||
-------
|
||||
self : object
|
||||
Returns a fitted instance.
|
||||
"""
|
||||
|
||||
if not hasattr(self.estimator, "fit"):
|
||||
raise ValueError("The base estimator should implement a fit method")
|
||||
|
||||
y = self._validate_data(X="no_validation", y=y, multi_output=True)
|
||||
|
||||
if y.ndim == 1:
|
||||
raise ValueError(
|
||||
"y must have at least two dimensions for "
|
||||
"multi-output regression but has only one."
|
||||
)
|
||||
|
||||
if sample_weight is not None and not has_fit_parameter(
|
||||
self.estimator, "sample_weight"
|
||||
):
|
||||
raise ValueError("Underlying estimator does not support sample weights.")
|
||||
|
||||
if not fit_params:
|
||||
fit_params = [None] * y.shape[1]
|
||||
|
||||
self.estimators_ = Parallel(n_jobs=self.n_jobs)(
|
||||
delayed(_fit_estimator)(
|
||||
self.estimator, X, y[:, i], sample_weight, **fit_params[i]
|
||||
)
|
||||
for i in range(y.shape[1])
|
||||
)
|
||||
|
||||
if hasattr(self.estimators_[0], "n_features_in_"):
|
||||
self.n_features_in_ = self.estimators_[0].n_features_in_
|
||||
if hasattr(self.estimators_[0], "feature_names_in_"):
|
||||
self.feature_names_in_ = self.estimators_[0].feature_names_in_
|
||||
|
||||
return
|
@@ -184,7 +184,7 @@ class FreqaiDataKitchen:
|
||||
|
||||
def filter_features(
|
||||
self,
|
||||
unfiltered_dataframe: DataFrame,
|
||||
unfiltered_df: DataFrame,
|
||||
training_feature_list: List,
|
||||
label_list: List = list(),
|
||||
training_filter: bool = True,
|
||||
@@ -195,31 +195,35 @@ class FreqaiDataKitchen:
|
||||
0s in the prediction dataset. However, prediction dataset do_predict will reflect any
|
||||
row that had a NaN and will shield user from that prediction.
|
||||
:params:
|
||||
:unfiltered_dataframe: the full dataframe for the present training period
|
||||
:unfiltered_df: the full dataframe for the present training period
|
||||
:training_feature_list: list, the training feature list constructed by
|
||||
self.build_feature_list() according to user specified parameters in the configuration file.
|
||||
:labels: the labels for the dataset
|
||||
:training_filter: boolean which lets the function know if it is training data or
|
||||
prediction data to be filtered.
|
||||
:returns:
|
||||
:filtered_dataframe: dataframe cleaned of NaNs and only containing the user
|
||||
:filtered_df: dataframe cleaned of NaNs and only containing the user
|
||||
requested feature set.
|
||||
:labels: labels cleaned of NaNs.
|
||||
"""
|
||||
filtered_dataframe = unfiltered_dataframe.filter(training_feature_list, axis=1)
|
||||
filtered_dataframe = filtered_dataframe.replace([np.inf, -np.inf], np.nan)
|
||||
filtered_df = unfiltered_df.filter(training_feature_list, axis=1)
|
||||
filtered_df = filtered_df.replace([np.inf, -np.inf], np.nan)
|
||||
|
||||
drop_index = pd.isnull(filtered_dataframe).any(1) # get the rows that have NaNs,
|
||||
drop_index = pd.isnull(filtered_df).any(1) # get the rows that have NaNs,
|
||||
drop_index = drop_index.replace(True, 1).replace(False, 0) # pep8 requirement.
|
||||
if (training_filter):
|
||||
const_cols = list((filtered_df.nunique() == 1).loc[lambda x: x].index)
|
||||
if const_cols:
|
||||
filtered_df = filtered_df.filter(filtered_df.columns.difference(const_cols))
|
||||
logger.warning(f"Removed features {const_cols} with constant values.")
|
||||
# we don't care about total row number (total no. datapoints) in training, we only care
|
||||
# about removing any row with NaNs
|
||||
# if labels has multiple columns (user wants to train multiple modelEs), we detect here
|
||||
labels = unfiltered_dataframe.filter(label_list, axis=1)
|
||||
labels = unfiltered_df.filter(label_list, axis=1)
|
||||
drop_index_labels = pd.isnull(labels).any(1)
|
||||
drop_index_labels = drop_index_labels.replace(True, 1).replace(False, 0)
|
||||
dates = unfiltered_dataframe['date']
|
||||
filtered_dataframe = filtered_dataframe[
|
||||
dates = unfiltered_df['date']
|
||||
filtered_df = filtered_df[
|
||||
(drop_index == 0) & (drop_index_labels == 0)
|
||||
] # dropping values
|
||||
labels = labels[
|
||||
@@ -229,13 +233,13 @@ class FreqaiDataKitchen:
|
||||
(drop_index == 0) & (drop_index_labels == 0)
|
||||
]
|
||||
logger.info(
|
||||
f"dropped {len(unfiltered_dataframe) - len(filtered_dataframe)} training points"
|
||||
f" due to NaNs in populated dataset {len(unfiltered_dataframe)}."
|
||||
f"dropped {len(unfiltered_df) - len(filtered_df)} training points"
|
||||
f" due to NaNs in populated dataset {len(unfiltered_df)}."
|
||||
)
|
||||
if (1 - len(filtered_dataframe) / len(unfiltered_dataframe)) > 0.1 and self.live:
|
||||
worst_indicator = str(unfiltered_dataframe.count().idxmin())
|
||||
if (1 - len(filtered_df) / len(unfiltered_df)) > 0.1 and self.live:
|
||||
worst_indicator = str(unfiltered_df.count().idxmin())
|
||||
logger.warning(
|
||||
f" {(1 - len(filtered_dataframe)/len(unfiltered_dataframe)) * 100:.0f} percent "
|
||||
f" {(1 - len(filtered_df)/len(unfiltered_df)) * 100:.0f} percent "
|
||||
" of training data dropped due to NaNs, model may perform inconsistent "
|
||||
f"with expectations. Verify {worst_indicator}"
|
||||
)
|
||||
@@ -244,9 +248,9 @@ class FreqaiDataKitchen:
|
||||
else:
|
||||
# we are backtesting so we need to preserve row number to send back to strategy,
|
||||
# so now we use do_predict to avoid any prediction based on a NaN
|
||||
drop_index = pd.isnull(filtered_dataframe).any(1)
|
||||
drop_index = pd.isnull(filtered_df).any(1)
|
||||
self.data["filter_drop_index_prediction"] = drop_index
|
||||
filtered_dataframe.fillna(0, inplace=True)
|
||||
filtered_df.fillna(0, inplace=True)
|
||||
# replacing all NaNs with zeros to avoid issues in 'prediction', but any prediction
|
||||
# that was based on a single NaN is ultimately protected from buys with do_predict
|
||||
drop_index = ~drop_index
|
||||
@@ -255,11 +259,11 @@ class FreqaiDataKitchen:
|
||||
logger.info(
|
||||
"dropped %s of %s prediction data points due to NaNs.",
|
||||
len(self.do_predict) - self.do_predict.sum(),
|
||||
len(filtered_dataframe),
|
||||
len(filtered_df),
|
||||
)
|
||||
labels = []
|
||||
|
||||
return filtered_dataframe, labels
|
||||
return filtered_df, labels
|
||||
|
||||
def build_data_dictionary(
|
||||
self,
|
||||
@@ -461,6 +465,27 @@ class FreqaiDataKitchen:
|
||||
|
||||
return df
|
||||
|
||||
def remove_training_from_backtesting(
|
||||
self
|
||||
) -> DataFrame:
|
||||
"""
|
||||
Function which takes the backtesting time range and
|
||||
remove training data from dataframe, keeping only the
|
||||
startup_candle_count candles
|
||||
"""
|
||||
startup_candle_count = self.config.get('startup_candle_count', 0)
|
||||
tf = self.config['timeframe']
|
||||
tr = self.config["timerange"]
|
||||
|
||||
backtesting_timerange = TimeRange.parse_timerange(tr)
|
||||
if startup_candle_count > 0 and backtesting_timerange:
|
||||
backtesting_timerange.subtract_start(timeframe_to_seconds(tf) * startup_candle_count)
|
||||
|
||||
start = datetime.fromtimestamp(backtesting_timerange.startts, tz=timezone.utc)
|
||||
df = self.return_dataframe
|
||||
df = df.loc[df["date"] >= start, :]
|
||||
return df
|
||||
|
||||
def principal_component_analysis(self) -> None:
|
||||
"""
|
||||
Performs Principal Component Analysis on the data for dimensionality reduction
|
||||
@@ -954,6 +979,7 @@ class FreqaiDataKitchen:
|
||||
to_keep = [col for col in dataframe.columns if not col.startswith("&")]
|
||||
self.return_dataframe = pd.concat([dataframe[to_keep], self.full_df], axis=1)
|
||||
|
||||
self.return_dataframe = self.remove_training_from_backtesting()
|
||||
self.full_df = DataFrame()
|
||||
|
||||
return
|
||||
@@ -1200,7 +1226,6 @@ class FreqaiDataKitchen:
|
||||
def save_backtesting_prediction(
|
||||
self, append_df: DataFrame
|
||||
) -> None:
|
||||
|
||||
"""
|
||||
Save prediction dataframe from backtesting to h5 file format
|
||||
:param append_df: dataframe for backtesting period
|
||||
@@ -1214,7 +1239,6 @@ class FreqaiDataKitchen:
|
||||
def get_backtesting_prediction(
|
||||
self
|
||||
) -> DataFrame:
|
||||
|
||||
"""
|
||||
Get prediction dataframe from h5 file format
|
||||
"""
|
||||
|
@@ -14,6 +14,7 @@ from numpy.typing import NDArray
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade.configuration import TimeRange
|
||||
from freqtrade.constants import DATETIME_PRINT_FORMAT
|
||||
from freqtrade.enums import RunMode
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.exchange import timeframe_to_seconds
|
||||
@@ -87,10 +88,17 @@ class IFreqaiModel(ABC):
|
||||
self.begin_time: float = 0
|
||||
self.begin_time_train: float = 0
|
||||
self.base_tf_seconds = timeframe_to_seconds(self.config['timeframe'])
|
||||
self.continual_learning = self.freqai_info.get('continual_learning', False)
|
||||
|
||||
self._threads: List[threading.Thread] = []
|
||||
self._stop_event = threading.Event()
|
||||
|
||||
def __getstate__(self):
|
||||
"""
|
||||
Return an empty state to be pickled in hyperopt
|
||||
"""
|
||||
return ({})
|
||||
|
||||
def assert_config(self, config: Dict[str, Any]) -> None:
|
||||
|
||||
if not config.get("freqai", {}):
|
||||
@@ -232,10 +240,10 @@ class IFreqaiModel(ABC):
|
||||
trained_timestamp = tr_train
|
||||
tr_train_startts_str = datetime.fromtimestamp(
|
||||
tr_train.startts,
|
||||
tz=timezone.utc).strftime("%Y-%m-%d %H:%M:%S")
|
||||
tz=timezone.utc).strftime(DATETIME_PRINT_FORMAT)
|
||||
tr_train_stopts_str = datetime.fromtimestamp(
|
||||
tr_train.stopts,
|
||||
tz=timezone.utc).strftime("%Y-%m-%d %H:%M:%S")
|
||||
tz=timezone.utc).strftime(DATETIME_PRINT_FORMAT)
|
||||
logger.info(
|
||||
f"Training {metadata['pair']}, {self.pair_it}/{self.total_pairs} pairs"
|
||||
f" from {tr_train_startts_str} to {tr_train_stopts_str}, {train_it}/{total_trains} "
|
||||
@@ -669,21 +677,30 @@ class IFreqaiModel(ABC):
|
||||
self.train_time = 0
|
||||
return
|
||||
|
||||
def get_init_model(self, pair: str) -> Any:
|
||||
if pair not in self.dd.model_dictionary or not self.continual_learning:
|
||||
init_model = None
|
||||
else:
|
||||
init_model = self.dd.model_dictionary[pair]
|
||||
|
||||
return init_model
|
||||
|
||||
# Following methods which are overridden by user made prediction models.
|
||||
# See freqai/prediction_models/CatboostPredictionModel.py for an example.
|
||||
|
||||
@abstractmethod
|
||||
def train(self, unfiltered_dataframe: DataFrame, pair: str, dk: FreqaiDataKitchen) -> Any:
|
||||
def train(self, unfiltered_df: DataFrame, pair: str,
|
||||
dk: FreqaiDataKitchen, **kwargs) -> Any:
|
||||
"""
|
||||
Filter the training data and train a model to it. Train makes heavy use of the datahandler
|
||||
for storing, saving, loading, and analyzing the data.
|
||||
:param unfiltered_dataframe: Full dataframe for the current training period
|
||||
:param unfiltered_df: Full dataframe for the current training period
|
||||
:param metadata: pair metadata from strategy.
|
||||
:return: Trained model which can be used to inference (self.predict)
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
def fit(self, data_dictionary: Dict[str, Any]) -> Any:
|
||||
def fit(self, data_dictionary: Dict[str, Any], dk: FreqaiDataKitchen, **kwargs) -> Any:
|
||||
"""
|
||||
Most regressors use the same function names and arguments e.g. user
|
||||
can drop in LGBMRegressor in place of CatBoostRegressor and all data
|
||||
@@ -696,11 +713,11 @@ class IFreqaiModel(ABC):
|
||||
|
||||
@abstractmethod
|
||||
def predict(
|
||||
self, dataframe: DataFrame, dk: FreqaiDataKitchen, first: bool = True
|
||||
self, unfiltered_df: DataFrame, dk: FreqaiDataKitchen, **kwargs
|
||||
) -> Tuple[DataFrame, NDArray[np.int_]]:
|
||||
"""
|
||||
Filter the prediction features data and predict with it.
|
||||
:param unfiltered_dataframe: Full dataframe for the current backtest period.
|
||||
:param unfiltered_df: Full dataframe for the current backtest period.
|
||||
:param dk: FreqaiDataKitchen = Data management/analysis tool associated to present pair only
|
||||
:param first: boolean = whether this is the first prediction or not.
|
||||
:return:
|
||||
|
@@ -3,7 +3,8 @@ from typing import Any, Dict
|
||||
|
||||
from catboost import CatBoostClassifier, Pool
|
||||
|
||||
from freqtrade.freqai.prediction_models.BaseClassifierModel import BaseClassifierModel
|
||||
from freqtrade.freqai.base_models.BaseClassifierModel import BaseClassifierModel
|
||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@@ -16,7 +17,7 @@ class CatboostClassifier(BaseClassifierModel):
|
||||
has its own DataHandler where data is held, saved, loaded, and managed.
|
||||
"""
|
||||
|
||||
def fit(self, data_dictionary: Dict) -> Any:
|
||||
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
|
||||
"""
|
||||
User sets up the training and test data to fit their desired model here
|
||||
:params:
|
||||
@@ -36,6 +37,8 @@ class CatboostClassifier(BaseClassifierModel):
|
||||
**self.model_training_parameters,
|
||||
)
|
||||
|
||||
cbr.fit(train_data)
|
||||
init_model = self.get_init_model(dk.pair)
|
||||
|
||||
cbr.fit(train_data, init_model=init_model)
|
||||
|
||||
return cbr
|
||||
|
@@ -1,10 +1,10 @@
|
||||
import gc
|
||||
import logging
|
||||
from typing import Any, Dict
|
||||
|
||||
from catboost import CatBoostRegressor, Pool
|
||||
|
||||
from freqtrade.freqai.prediction_models.BaseRegressionModel import BaseRegressionModel
|
||||
from freqtrade.freqai.base_models.BaseRegressionModel import BaseRegressionModel
|
||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@@ -17,7 +17,7 @@ class CatboostRegressor(BaseRegressionModel):
|
||||
has its own DataHandler where data is held, saved, loaded, and managed.
|
||||
"""
|
||||
|
||||
def fit(self, data_dictionary: Dict) -> Any:
|
||||
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
|
||||
"""
|
||||
User sets up the training and test data to fit their desired model here
|
||||
:param data_dictionary: the dictionary constructed by DataHandler to hold
|
||||
@@ -38,16 +38,13 @@ class CatboostRegressor(BaseRegressionModel):
|
||||
weight=data_dictionary["test_weights"],
|
||||
)
|
||||
|
||||
init_model = self.get_init_model(dk.pair)
|
||||
|
||||
model = CatBoostRegressor(
|
||||
allow_writing_files=False,
|
||||
**self.model_training_parameters,
|
||||
)
|
||||
|
||||
model.fit(X=train_data, eval_set=test_data)
|
||||
|
||||
# some evidence that catboost pools have memory leaks:
|
||||
# https://github.com/catboost/catboost/issues/1835
|
||||
del train_data, test_data
|
||||
gc.collect()
|
||||
model.fit(X=train_data, eval_set=test_data, init_model=init_model)
|
||||
|
||||
return model
|
||||
|
@@ -1,10 +1,11 @@
|
||||
import logging
|
||||
from typing import Any, Dict
|
||||
|
||||
from catboost import CatBoostRegressor # , Pool
|
||||
from sklearn.multioutput import MultiOutputRegressor
|
||||
from catboost import CatBoostRegressor, Pool
|
||||
|
||||
from freqtrade.freqai.prediction_models.BaseRegressionModel import BaseRegressionModel
|
||||
from freqtrade.freqai.base_models.BaseRegressionModel import BaseRegressionModel
|
||||
from freqtrade.freqai.base_models.FreqaiMultiOutputRegressor import FreqaiMultiOutputRegressor
|
||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@@ -17,7 +18,7 @@ class CatboostRegressorMultiTarget(BaseRegressionModel):
|
||||
has its own DataHandler where data is held, saved, loaded, and managed.
|
||||
"""
|
||||
|
||||
def fit(self, data_dictionary: Dict) -> Any:
|
||||
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
|
||||
"""
|
||||
User sets up the training and test data to fit their desired model here
|
||||
:param data_dictionary: the dictionary constructed by DataHandler to hold
|
||||
@@ -31,14 +32,37 @@ class CatboostRegressorMultiTarget(BaseRegressionModel):
|
||||
|
||||
X = data_dictionary["train_features"]
|
||||
y = data_dictionary["train_labels"]
|
||||
eval_set = (data_dictionary["test_features"], data_dictionary["test_labels"])
|
||||
|
||||
sample_weight = data_dictionary["train_weights"]
|
||||
|
||||
model = MultiOutputRegressor(estimator=cbr)
|
||||
model.fit(X=X, y=y, sample_weight=sample_weight) # , eval_set=eval_set)
|
||||
eval_sets = [None] * y.shape[1]
|
||||
|
||||
if self.freqai_info.get('data_split_parameters', {}).get('test_size', 0.1) != 0:
|
||||
train_score = model.score(X, y)
|
||||
test_score = model.score(*eval_set)
|
||||
logger.info(f"Train score {train_score}, Test score {test_score}")
|
||||
eval_sets = [None] * data_dictionary['test_labels'].shape[1]
|
||||
|
||||
for i in range(data_dictionary['test_labels'].shape[1]):
|
||||
eval_sets[i] = Pool(
|
||||
data=data_dictionary["test_features"],
|
||||
label=data_dictionary["test_labels"].iloc[:, i],
|
||||
weight=data_dictionary["test_weights"],
|
||||
)
|
||||
|
||||
init_model = self.get_init_model(dk.pair)
|
||||
|
||||
if init_model:
|
||||
init_models = init_model.estimators_
|
||||
else:
|
||||
init_models = [None] * y.shape[1]
|
||||
|
||||
fit_params = []
|
||||
for i in range(len(eval_sets)):
|
||||
fit_params.append(
|
||||
{'eval_set': eval_sets[i], 'init_model': init_models[i]})
|
||||
|
||||
model = FreqaiMultiOutputRegressor(estimator=cbr)
|
||||
thread_training = self.freqai_info.get('multitarget_parallel_training', False)
|
||||
if thread_training:
|
||||
model.n_jobs = y.shape[1]
|
||||
model.fit(X=X, y=y, sample_weight=sample_weight, fit_params=fit_params)
|
||||
|
||||
return model
|
||||
|
@@ -3,7 +3,8 @@ from typing import Any, Dict
|
||||
|
||||
from lightgbm import LGBMClassifier
|
||||
|
||||
from freqtrade.freqai.prediction_models.BaseClassifierModel import BaseClassifierModel
|
||||
from freqtrade.freqai.base_models.BaseClassifierModel import BaseClassifierModel
|
||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@@ -16,7 +17,7 @@ class LightGBMClassifier(BaseClassifierModel):
|
||||
has its own DataHandler where data is held, saved, loaded, and managed.
|
||||
"""
|
||||
|
||||
def fit(self, data_dictionary: Dict) -> Any:
|
||||
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
|
||||
"""
|
||||
User sets up the training and test data to fit their desired model here
|
||||
:params:
|
||||
@@ -35,9 +36,11 @@ class LightGBMClassifier(BaseClassifierModel):
|
||||
y = data_dictionary["train_labels"].to_numpy()[:, 0]
|
||||
train_weights = data_dictionary["train_weights"]
|
||||
|
||||
init_model = self.get_init_model(dk.pair)
|
||||
|
||||
model = LGBMClassifier(**self.model_training_parameters)
|
||||
|
||||
model.fit(X=X, y=y, eval_set=eval_set, sample_weight=train_weights,
|
||||
eval_sample_weight=[test_weights])
|
||||
eval_sample_weight=[test_weights], init_model=init_model)
|
||||
|
||||
return model
|
||||
|
@@ -3,7 +3,8 @@ from typing import Any, Dict
|
||||
|
||||
from lightgbm import LGBMRegressor
|
||||
|
||||
from freqtrade.freqai.prediction_models.BaseRegressionModel import BaseRegressionModel
|
||||
from freqtrade.freqai.base_models.BaseRegressionModel import BaseRegressionModel
|
||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@@ -16,7 +17,7 @@ class LightGBMRegressor(BaseRegressionModel):
|
||||
has its own DataHandler where data is held, saved, loaded, and managed.
|
||||
"""
|
||||
|
||||
def fit(self, data_dictionary: Dict) -> Any:
|
||||
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
|
||||
"""
|
||||
Most regressors use the same function names and arguments e.g. user
|
||||
can drop in LGBMRegressor in place of CatBoostRegressor and all data
|
||||
@@ -35,9 +36,11 @@ class LightGBMRegressor(BaseRegressionModel):
|
||||
y = data_dictionary["train_labels"]
|
||||
train_weights = data_dictionary["train_weights"]
|
||||
|
||||
init_model = self.get_init_model(dk.pair)
|
||||
|
||||
model = LGBMRegressor(**self.model_training_parameters)
|
||||
|
||||
model.fit(X=X, y=y, eval_set=eval_set, sample_weight=train_weights,
|
||||
eval_sample_weight=[eval_weights])
|
||||
eval_sample_weight=[eval_weights], init_model=init_model)
|
||||
|
||||
return model
|
||||
|
@@ -2,9 +2,10 @@ import logging
|
||||
from typing import Any, Dict
|
||||
|
||||
from lightgbm import LGBMRegressor
|
||||
from sklearn.multioutput import MultiOutputRegressor
|
||||
|
||||
from freqtrade.freqai.prediction_models.BaseRegressionModel import BaseRegressionModel
|
||||
from freqtrade.freqai.base_models.BaseRegressionModel import BaseRegressionModel
|
||||
from freqtrade.freqai.base_models.FreqaiMultiOutputRegressor import FreqaiMultiOutputRegressor
|
||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@@ -17,7 +18,7 @@ class LightGBMRegressorMultiTarget(BaseRegressionModel):
|
||||
has its own DataHandler where data is held, saved, loaded, and managed.
|
||||
"""
|
||||
|
||||
def fit(self, data_dictionary: Dict) -> Any:
|
||||
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
|
||||
"""
|
||||
User sets up the training and test data to fit their desired model here
|
||||
:param data_dictionary: the dictionary constructed by DataHandler to hold
|
||||
@@ -28,12 +29,36 @@ class LightGBMRegressorMultiTarget(BaseRegressionModel):
|
||||
|
||||
X = data_dictionary["train_features"]
|
||||
y = data_dictionary["train_labels"]
|
||||
eval_set = (data_dictionary["test_features"], data_dictionary["test_labels"])
|
||||
sample_weight = data_dictionary["train_weights"]
|
||||
|
||||
model = MultiOutputRegressor(estimator=lgb)
|
||||
model.fit(X=X, y=y, sample_weight=sample_weight) # , eval_set=eval_set)
|
||||
train_score = model.score(X, y)
|
||||
test_score = model.score(*eval_set)
|
||||
logger.info(f"Train score {train_score}, Test score {test_score}")
|
||||
eval_weights = None
|
||||
eval_sets = [None] * y.shape[1]
|
||||
|
||||
if self.freqai_info.get('data_split_parameters', {}).get('test_size', 0.1) != 0:
|
||||
eval_weights = [data_dictionary["test_weights"]]
|
||||
eval_sets = [(None, None)] * data_dictionary['test_labels'].shape[1] # type: ignore
|
||||
for i in range(data_dictionary['test_labels'].shape[1]):
|
||||
eval_sets[i] = ( # type: ignore
|
||||
data_dictionary["test_features"],
|
||||
data_dictionary["test_labels"].iloc[:, i]
|
||||
)
|
||||
|
||||
init_model = self.get_init_model(dk.pair)
|
||||
if init_model:
|
||||
init_models = init_model.estimators_
|
||||
else:
|
||||
init_models = [None] * y.shape[1]
|
||||
|
||||
fit_params = []
|
||||
for i in range(len(eval_sets)):
|
||||
fit_params.append(
|
||||
{'eval_set': eval_sets[i], 'eval_sample_weight': eval_weights,
|
||||
'init_model': init_models[i]})
|
||||
|
||||
model = FreqaiMultiOutputRegressor(estimator=lgb)
|
||||
thread_training = self.freqai_info.get('multitarget_parallel_training', False)
|
||||
if thread_training:
|
||||
model.n_jobs = y.shape[1]
|
||||
model.fit(X=X, y=y, sample_weight=sample_weight, fit_params=fit_params)
|
||||
|
||||
return model
|
||||
|
45
freqtrade/freqai/prediction_models/XGBoostRegressor.py
Normal file
45
freqtrade/freqai/prediction_models/XGBoostRegressor.py
Normal file
@@ -0,0 +1,45 @@
|
||||
import logging
|
||||
from typing import Any, Dict
|
||||
|
||||
from xgboost import XGBRegressor
|
||||
|
||||
from freqtrade.freqai.base_models.BaseRegressionModel import BaseRegressionModel
|
||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class XGBoostRegressor(BaseRegressionModel):
|
||||
"""
|
||||
User created prediction model. The class needs to override three necessary
|
||||
functions, predict(), train(), fit(). The class inherits ModelHandler which
|
||||
has its own DataHandler where data is held, saved, loaded, and managed.
|
||||
"""
|
||||
|
||||
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
|
||||
"""
|
||||
User sets up the training and test data to fit their desired model here
|
||||
:param data_dictionary: the dictionary constructed by DataHandler to hold
|
||||
all the training and test data/labels.
|
||||
"""
|
||||
|
||||
X = data_dictionary["train_features"]
|
||||
y = data_dictionary["train_labels"]
|
||||
|
||||
if self.freqai_info.get("data_split_parameters", {}).get("test_size", 0.1) == 0:
|
||||
eval_set = None
|
||||
else:
|
||||
eval_set = [(data_dictionary["test_features"], data_dictionary["test_labels"])]
|
||||
eval_weights = [data_dictionary['test_weights']]
|
||||
|
||||
sample_weight = data_dictionary["train_weights"]
|
||||
|
||||
xgb_model = self.get_init_model(dk.pair)
|
||||
|
||||
model = XGBRegressor(**self.model_training_parameters)
|
||||
|
||||
model.fit(X=X, y=y, sample_weight=sample_weight, eval_set=eval_set,
|
||||
sample_weight_eval_set=eval_weights, xgb_model=xgb_model)
|
||||
|
||||
return model
|
@@ -0,0 +1,63 @@
|
||||
import logging
|
||||
from typing import Any, Dict
|
||||
|
||||
from xgboost import XGBRegressor
|
||||
|
||||
from freqtrade.freqai.base_models.BaseRegressionModel import BaseRegressionModel
|
||||
from freqtrade.freqai.base_models.FreqaiMultiOutputRegressor import FreqaiMultiOutputRegressor
|
||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class XGBoostRegressorMultiTarget(BaseRegressionModel):
|
||||
"""
|
||||
User created prediction model. The class needs to override three necessary
|
||||
functions, predict(), train(), fit(). The class inherits ModelHandler which
|
||||
has its own DataHandler where data is held, saved, loaded, and managed.
|
||||
"""
|
||||
|
||||
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
|
||||
"""
|
||||
User sets up the training and test data to fit their desired model here
|
||||
:param data_dictionary: the dictionary constructed by DataHandler to hold
|
||||
all the training and test data/labels.
|
||||
"""
|
||||
|
||||
xgb = XGBRegressor(**self.model_training_parameters)
|
||||
|
||||
X = data_dictionary["train_features"]
|
||||
y = data_dictionary["train_labels"]
|
||||
sample_weight = data_dictionary["train_weights"]
|
||||
|
||||
eval_weights = None
|
||||
eval_sets = [None] * y.shape[1]
|
||||
|
||||
if self.freqai_info.get('data_split_parameters', {}).get('test_size', 0.1) != 0:
|
||||
eval_weights = [data_dictionary["test_weights"]]
|
||||
for i in range(data_dictionary['test_labels'].shape[1]):
|
||||
eval_sets[i] = [( # type: ignore
|
||||
data_dictionary["test_features"],
|
||||
data_dictionary["test_labels"].iloc[:, i]
|
||||
)]
|
||||
|
||||
init_model = self.get_init_model(dk.pair)
|
||||
if init_model:
|
||||
init_models = init_model.estimators_
|
||||
else:
|
||||
init_models = [None] * y.shape[1]
|
||||
|
||||
fit_params = []
|
||||
for i in range(len(eval_sets)):
|
||||
fit_params.append(
|
||||
{'eval_set': eval_sets[i], 'sample_weight_eval_set': eval_weights,
|
||||
'xgb_model': init_models[i]})
|
||||
|
||||
model = FreqaiMultiOutputRegressor(estimator=xgb)
|
||||
thread_training = self.freqai_info.get('multitarget_parallel_training', False)
|
||||
if thread_training:
|
||||
model.n_jobs = y.shape[1]
|
||||
model.fit(X=X, y=y, sample_weight=sample_weight, fit_params=fit_params)
|
||||
|
||||
return model
|
@@ -75,7 +75,8 @@ def _get_line_floatfmt(stake_currency: str) -> List[str]:
|
||||
'.2f', 'd', 's', 's']
|
||||
|
||||
|
||||
def _get_line_header(first_column: str, stake_currency: str, direction: str = 'Buys') -> List[str]:
|
||||
def _get_line_header(first_column: str, stake_currency: str,
|
||||
direction: str = 'Entries') -> List[str]:
|
||||
"""
|
||||
Generate header lines (goes in line with _generate_result_line())
|
||||
"""
|
||||
@@ -642,7 +643,7 @@ def text_table_tags(tag_type: str, tag_results: List[Dict[str, Any]], stake_curr
|
||||
if (tag_type == "enter_tag"):
|
||||
headers = _get_line_header("TAG", stake_currency)
|
||||
else:
|
||||
headers = _get_line_header("TAG", stake_currency, 'Sells')
|
||||
headers = _get_line_header("TAG", stake_currency, 'Exits')
|
||||
floatfmt = _get_line_floatfmt(stake_currency)
|
||||
output = [
|
||||
[
|
||||
|
@@ -1,7 +1,7 @@
|
||||
import logging
|
||||
from typing import Any, Dict
|
||||
|
||||
from freqtrade.enums.rpcmessagetype import RPCMessageType
|
||||
from freqtrade.enums import RPCMessageType
|
||||
from freqtrade.rpc import RPC
|
||||
from freqtrade.rpc.webhook import Webhook
|
||||
|
||||
|
@@ -12,9 +12,8 @@ from pandas import DataFrame
|
||||
|
||||
from freqtrade.constants import ListPairsWithTimeframes
|
||||
from freqtrade.data.dataprovider import DataProvider
|
||||
from freqtrade.enums import (CandleType, ExitCheckTuple, ExitType, SignalDirection, SignalTagType,
|
||||
SignalType, TradingMode)
|
||||
from freqtrade.enums.runmode import RunMode
|
||||
from freqtrade.enums import (CandleType, ExitCheckTuple, ExitType, RunMode, SignalDirection,
|
||||
SignalTagType, SignalType, TradingMode)
|
||||
from freqtrade.exceptions import OperationalException, StrategyError
|
||||
from freqtrade.exchange import timeframe_to_minutes, timeframe_to_next_date, timeframe_to_seconds
|
||||
from freqtrade.misc import remove_entry_exit_signals
|
||||
|
@@ -7,7 +7,7 @@ from abc import ABC, abstractmethod
|
||||
from contextlib import suppress
|
||||
from typing import Any, Optional, Sequence, Union
|
||||
|
||||
from freqtrade.enums.hyperoptstate import HyperoptState
|
||||
from freqtrade.enums import HyperoptState
|
||||
from freqtrade.optimize.hyperopt_tools import HyperoptStateContainer
|
||||
|
||||
|
||||
|
@@ -6,9 +6,7 @@ import talib.abstract as ta
|
||||
from pandas import DataFrame
|
||||
from technical import qtpylib
|
||||
|
||||
from freqtrade.exchange import timeframe_to_prev_date
|
||||
from freqtrade.persistence import Trade
|
||||
from freqtrade.strategy import DecimalParameter, IntParameter, IStrategy, merge_informative_pair
|
||||
from freqtrade.strategy import CategoricalParameter, IStrategy, merge_informative_pair
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@@ -31,9 +29,6 @@ class FreqaiExampleStrategy(IStrategy):
|
||||
"main_plot": {},
|
||||
"subplots": {
|
||||
"prediction": {"prediction": {"color": "blue"}},
|
||||
"target_roi": {
|
||||
"target_roi": {"color": "brown"},
|
||||
},
|
||||
"do_predict": {
|
||||
"do_predict": {"color": "brown"},
|
||||
},
|
||||
@@ -47,10 +42,10 @@ class FreqaiExampleStrategy(IStrategy):
|
||||
startup_candle_count: int = 40
|
||||
can_short = False
|
||||
|
||||
linear_roi_offset = DecimalParameter(
|
||||
0.00, 0.02, default=0.005, space="sell", optimize=False, load=True
|
||||
)
|
||||
max_roi_time_long = IntParameter(0, 800, default=400, space="sell", optimize=False, load=True)
|
||||
std_dev_multiplier_buy = CategoricalParameter(
|
||||
[0.75, 1, 1.25, 1.5, 1.75], default=1.25, space="buy", optimize=True)
|
||||
std_dev_multiplier_sell = CategoricalParameter(
|
||||
[0.1, 0.25, 0.4], space="sell", default=0.2, optimize=True)
|
||||
|
||||
def informative_pairs(self):
|
||||
whitelist_pairs = self.dp.current_whitelist()
|
||||
@@ -187,21 +182,26 @@ class FreqaiExampleStrategy(IStrategy):
|
||||
# `populate_any_indicators()` for each training period.
|
||||
|
||||
dataframe = self.freqai.start(dataframe, metadata, self)
|
||||
|
||||
dataframe["target_roi"] = dataframe["&-s_close_mean"] + dataframe["&-s_close_std"] * 1.25
|
||||
dataframe["sell_roi"] = dataframe["&-s_close_mean"] - dataframe["&-s_close_std"] * 1.25
|
||||
for val in self.std_dev_multiplier_buy.range:
|
||||
dataframe[f'target_roi_{val}'] = dataframe["&-s_close_mean"] + \
|
||||
dataframe["&-s_close_std"] * val
|
||||
for val in self.std_dev_multiplier_sell.range:
|
||||
dataframe[f'sell_roi_{val}'] = dataframe["&-s_close_mean"] - \
|
||||
dataframe["&-s_close_std"] * val
|
||||
return dataframe
|
||||
|
||||
def populate_entry_trend(self, df: DataFrame, metadata: dict) -> DataFrame:
|
||||
|
||||
enter_long_conditions = [df["do_predict"] == 1, df["&-s_close"] > df["target_roi"]]
|
||||
enter_long_conditions = [df["do_predict"] == 1, df["&-s_close"]
|
||||
> df[f"target_roi_{self.std_dev_multiplier_buy.value}"]]
|
||||
|
||||
if enter_long_conditions:
|
||||
df.loc[
|
||||
reduce(lambda x, y: x & y, enter_long_conditions), ["enter_long", "enter_tag"]
|
||||
] = (1, "long")
|
||||
|
||||
enter_short_conditions = [df["do_predict"] == 1, df["&-s_close"] < df["sell_roi"]]
|
||||
enter_short_conditions = [df["do_predict"] == 1, df["&-s_close"]
|
||||
< df[f"sell_roi_{self.std_dev_multiplier_sell.value}"]]
|
||||
|
||||
if enter_short_conditions:
|
||||
df.loc[
|
||||
@@ -211,11 +211,13 @@ class FreqaiExampleStrategy(IStrategy):
|
||||
return df
|
||||
|
||||
def populate_exit_trend(self, df: DataFrame, metadata: dict) -> DataFrame:
|
||||
exit_long_conditions = [df["do_predict"] == 1, df["&-s_close"] < df["sell_roi"] * 0.25]
|
||||
exit_long_conditions = [df["do_predict"] == 1, df["&-s_close"] <
|
||||
df[f"sell_roi_{self.std_dev_multiplier_sell.value}"] * 0.25]
|
||||
if exit_long_conditions:
|
||||
df.loc[reduce(lambda x, y: x & y, exit_long_conditions), "exit_long"] = 1
|
||||
|
||||
exit_short_conditions = [df["do_predict"] == 1, df["&-s_close"] > df["target_roi"] * 0.25]
|
||||
exit_short_conditions = [df["do_predict"] == 1, df["&-s_close"] >
|
||||
df[f"target_roi_{self.std_dev_multiplier_buy.value}"] * 0.25]
|
||||
if exit_short_conditions:
|
||||
df.loc[reduce(lambda x, y: x & y, exit_short_conditions), "exit_short"] = 1
|
||||
|
||||
@@ -224,83 +226,6 @@ class FreqaiExampleStrategy(IStrategy):
|
||||
def get_ticker_indicator(self):
|
||||
return int(self.config["timeframe"][:-1])
|
||||
|
||||
def custom_exit(
|
||||
self, pair: str, trade: Trade, current_time, current_rate, current_profit, **kwargs
|
||||
):
|
||||
|
||||
dataframe, _ = self.dp.get_analyzed_dataframe(pair=pair, timeframe=self.timeframe)
|
||||
|
||||
trade_date = timeframe_to_prev_date(self.config["timeframe"], trade.open_date_utc)
|
||||
trade_candle = dataframe.loc[(dataframe["date"] == trade_date)]
|
||||
|
||||
if trade_candle.empty:
|
||||
return None
|
||||
trade_candle = trade_candle.squeeze()
|
||||
|
||||
follow_mode = self.config.get("freqai", {}).get("follow_mode", False)
|
||||
|
||||
if not follow_mode:
|
||||
pair_dict = self.freqai.dd.pair_dict
|
||||
else:
|
||||
pair_dict = self.freqai.dd.follower_dict
|
||||
|
||||
entry_tag = trade.enter_tag
|
||||
|
||||
if (
|
||||
"prediction" + entry_tag not in pair_dict[pair]
|
||||
or pair_dict[pair]['extras']["prediction" + entry_tag] == 0
|
||||
):
|
||||
pair_dict[pair]['extras']["prediction" + entry_tag] = abs(trade_candle["&-s_close"])
|
||||
if not follow_mode:
|
||||
self.freqai.dd.save_drawer_to_disk()
|
||||
else:
|
||||
self.freqai.dd.save_follower_dict_to_disk()
|
||||
|
||||
roi_price = pair_dict[pair]['extras']["prediction" + entry_tag]
|
||||
roi_time = self.max_roi_time_long.value
|
||||
|
||||
roi_decay = roi_price * (
|
||||
1 - ((current_time - trade.open_date_utc).seconds) / (roi_time * 60)
|
||||
)
|
||||
if roi_decay < 0:
|
||||
roi_decay = self.linear_roi_offset.value
|
||||
else:
|
||||
roi_decay += self.linear_roi_offset.value
|
||||
|
||||
if current_profit > roi_decay:
|
||||
return "roi_custom_win"
|
||||
|
||||
if current_profit < -roi_decay:
|
||||
return "roi_custom_loss"
|
||||
|
||||
def confirm_trade_exit(
|
||||
self,
|
||||
pair: str,
|
||||
trade: Trade,
|
||||
order_type: str,
|
||||
amount: float,
|
||||
rate: float,
|
||||
time_in_force: str,
|
||||
exit_reason: str,
|
||||
current_time,
|
||||
**kwargs,
|
||||
) -> bool:
|
||||
|
||||
entry_tag = trade.enter_tag
|
||||
follow_mode = self.config.get("freqai", {}).get("follow_mode", False)
|
||||
if not follow_mode:
|
||||
pair_dict = self.freqai.dd.pair_dict
|
||||
else:
|
||||
pair_dict = self.freqai.dd.follower_dict
|
||||
|
||||
pair_dict[pair]['extras']["prediction" + entry_tag] = 0
|
||||
if not follow_mode:
|
||||
self.freqai.dd.save_drawer_to_disk()
|
||||
else:
|
||||
self.freqai.dd.save_follower_dict_to_disk()
|
||||
|
||||
return True
|
||||
|
||||
def confirm_trade_entry(
|
||||
self,
|
||||
pair: str,
|
||||
|
Reference in New Issue
Block a user