Merge branch 'develop' into feat/externalsignals

This commit is contained in:
Timothy Pogue
2022-09-10 15:14:10 -06:00
34 changed files with 546 additions and 344 deletions

View File

@@ -4,7 +4,7 @@ from typing import Any, Dict
from sqlalchemy import func
from freqtrade.configuration.config_setup import setup_utils_configuration
from freqtrade.enums.runmode import RunMode
from freqtrade.enums import RunMode
logger = logging.getLogger(__name__)

View File

@@ -84,6 +84,7 @@ def validate_config_consistency(conf: Dict[str, Any], preliminary: bool = False)
_validate_protections(conf)
_validate_unlimited_amount(conf)
_validate_ask_orderbook(conf)
_validate_freqai_hyperopt(conf)
validate_migrated_strategy_settings(conf)
# validate configuration before returning
@@ -323,6 +324,14 @@ def _validate_pricing_rules(conf: Dict[str, Any]) -> None:
del conf['ask_strategy']
def _validate_freqai_hyperopt(conf: Dict[str, Any]) -> None:
freqai_enabled = conf.get('freqai', {}).get('enabled', False)
analyze_per_epoch = conf.get('analyze_per_epoch', False)
if analyze_per_epoch and freqai_enabled:
raise OperationalException(
'Using analyze-per-epoch parameter is not supported with a FreqAI strategy.')
def _strategy_settings(conf: Dict[str, Any]) -> None:
process_deprecated_setting(conf, None, 'use_sell_signal', None, 'use_exit_signal')

View File

@@ -228,9 +228,9 @@ def _download_pair_history(pair: str, *,
)
logger.debug("Current Start: %s",
f"{data.iloc[0]['date']:%Y-%m-%d %H:%M:%S}" if not data.empty else 'None')
f"{data.iloc[0]['date']:DATETIME_PRINT_FORMAT}" if not data.empty else 'None')
logger.debug("Current End: %s",
f"{data.iloc[-1]['date']:%Y-%m-%d %H:%M:%S}" if not data.empty else 'None')
f"{data.iloc[-1]['date']:DATETIME_PRINT_FORMAT}" if not data.empty else 'None')
# Default since_ms to 30 days if nothing is given
new_data = exchange.get_historic_ohlcv(pair=pair,
@@ -254,9 +254,9 @@ def _download_pair_history(pair: str, *,
fill_missing=False, drop_incomplete=False)
logger.debug("New Start: %s",
f"{data.iloc[0]['date']:%Y-%m-%d %H:%M:%S}" if not data.empty else 'None')
f"{data.iloc[0]['date']:DATETIME_PRINT_FORMAT}" if not data.empty else 'None')
logger.debug("New End: %s",
f"{data.iloc[-1]['date']:%Y-%m-%d %H:%M:%S}" if not data.empty else 'None')
f"{data.iloc[-1]['date']:DATETIME_PRINT_FORMAT}" if not data.empty else 'None')
data_handler.ohlcv_store(pair, timeframe, data=data, candle_type=candle_type)
return True

View File

@@ -4,8 +4,7 @@ from typing import Dict, List, Optional, Tuple
import ccxt
from freqtrade.constants import BuySell
from freqtrade.enums import MarginMode, TradingMode
from freqtrade.enums.candletype import CandleType
from freqtrade.enums import CandleType, MarginMode, TradingMode
from freqtrade.exceptions import DDosProtection, OperationalException, TemporaryError
from freqtrade.exchange import Exchange, date_minus_candles
from freqtrade.exchange.common import retrier

View File

@@ -21,12 +21,12 @@ class BaseClassifierModel(IFreqaiModel):
"""
def train(
self, unfiltered_dataframe: DataFrame, pair: str, dk: FreqaiDataKitchen
self, unfiltered_df: DataFrame, pair: str, dk: FreqaiDataKitchen, **kwargs
) -> Any:
"""
Filter the training data and train a model to it. Train makes heavy use of the datakitchen
for storing, saving, loading, and analyzing the data.
:param unfiltered_dataframe: Full dataframe for the current training period
:param unfiltered_df: Full dataframe for the current training period
:param metadata: pair metadata from strategy.
:return:
:model: Trained model which can be used to inference (self.predict)
@@ -36,14 +36,14 @@ class BaseClassifierModel(IFreqaiModel):
# filter the features requested by user in the configuration file and elegantly handle NaNs
features_filtered, labels_filtered = dk.filter_features(
unfiltered_dataframe,
unfiltered_df,
dk.training_features_list,
dk.label_list,
training_filter=True,
)
start_date = unfiltered_dataframe["date"].iloc[0].strftime("%Y-%m-%d")
end_date = unfiltered_dataframe["date"].iloc[-1].strftime("%Y-%m-%d")
start_date = unfiltered_df["date"].iloc[0].strftime("%Y-%m-%d")
end_date = unfiltered_df["date"].iloc[-1].strftime("%Y-%m-%d")
logger.info(f"-------------------- Training on data from {start_date} to "
f"{end_date}--------------------")
# split data into train/test data.
@@ -61,32 +61,32 @@ class BaseClassifierModel(IFreqaiModel):
)
logger.info(f'Training model on {len(data_dictionary["train_features"])} data points')
model = self.fit(data_dictionary)
model = self.fit(data_dictionary, dk)
logger.info(f"--------------------done training {pair}--------------------")
return model
def predict(
self, unfiltered_dataframe: DataFrame, dk: FreqaiDataKitchen, first: bool = False
self, unfiltered_df: DataFrame, dk: FreqaiDataKitchen, **kwargs
) -> Tuple[DataFrame, npt.NDArray[np.int_]]:
"""
Filter the prediction features data and predict with it.
:param: unfiltered_dataframe: Full dataframe for the current backtest period.
:param: unfiltered_df: Full dataframe for the current backtest period.
:return:
:pred_df: dataframe containing the predictions
:do_predict: np.array of 1s and 0s to indicate places where freqai needed to remove
data (NaNs) or felt uncertain about data (PCA and DI index)
"""
dk.find_features(unfiltered_dataframe)
filtered_dataframe, _ = dk.filter_features(
unfiltered_dataframe, dk.training_features_list, training_filter=False
dk.find_features(unfiltered_df)
filtered_df, _ = dk.filter_features(
unfiltered_df, dk.training_features_list, training_filter=False
)
filtered_dataframe = dk.normalize_data_from_metadata(filtered_dataframe)
dk.data_dictionary["prediction_features"] = filtered_dataframe
filtered_df = dk.normalize_data_from_metadata(filtered_df)
dk.data_dictionary["prediction_features"] = filtered_df
self.data_cleaning_predict(dk, filtered_dataframe)
self.data_cleaning_predict(dk, filtered_df)
predictions = self.model.predict(dk.data_dictionary["prediction_features"])
pred_df = DataFrame(predictions, columns=dk.label_list)

View File

@@ -20,12 +20,12 @@ class BaseRegressionModel(IFreqaiModel):
"""
def train(
self, unfiltered_dataframe: DataFrame, pair: str, dk: FreqaiDataKitchen
self, unfiltered_df: DataFrame, pair: str, dk: FreqaiDataKitchen, **kwargs
) -> Any:
"""
Filter the training data and train a model to it. Train makes heavy use of the datakitchen
for storing, saving, loading, and analyzing the data.
:param unfiltered_dataframe: Full dataframe for the current training period
:param unfiltered_df: Full dataframe for the current training period
:param metadata: pair metadata from strategy.
:return:
:model: Trained model which can be used to inference (self.predict)
@@ -35,14 +35,14 @@ class BaseRegressionModel(IFreqaiModel):
# filter the features requested by user in the configuration file and elegantly handle NaNs
features_filtered, labels_filtered = dk.filter_features(
unfiltered_dataframe,
unfiltered_df,
dk.training_features_list,
dk.label_list,
training_filter=True,
)
start_date = unfiltered_dataframe["date"].iloc[0].strftime("%Y-%m-%d")
end_date = unfiltered_dataframe["date"].iloc[-1].strftime("%Y-%m-%d")
start_date = unfiltered_df["date"].iloc[0].strftime("%Y-%m-%d")
end_date = unfiltered_df["date"].iloc[-1].strftime("%Y-%m-%d")
logger.info(f"-------------------- Training on data from {start_date} to "
f"{end_date}--------------------")
# split data into train/test data.
@@ -60,33 +60,33 @@ class BaseRegressionModel(IFreqaiModel):
)
logger.info(f'Training model on {len(data_dictionary["train_features"])} data points')
model = self.fit(data_dictionary)
model = self.fit(data_dictionary, dk)
logger.info(f"--------------------done training {pair}--------------------")
return model
def predict(
self, unfiltered_dataframe: DataFrame, dk: FreqaiDataKitchen, first: bool = False
self, unfiltered_df: DataFrame, dk: FreqaiDataKitchen, **kwargs
) -> Tuple[DataFrame, npt.NDArray[np.int_]]:
"""
Filter the prediction features data and predict with it.
:param: unfiltered_dataframe: Full dataframe for the current backtest period.
:param: unfiltered_df: Full dataframe for the current backtest period.
:return:
:pred_df: dataframe containing the predictions
:do_predict: np.array of 1s and 0s to indicate places where freqai needed to remove
data (NaNs) or felt uncertain about data (PCA and DI index)
"""
dk.find_features(unfiltered_dataframe)
filtered_dataframe, _ = dk.filter_features(
unfiltered_dataframe, dk.training_features_list, training_filter=False
dk.find_features(unfiltered_df)
filtered_df, _ = dk.filter_features(
unfiltered_df, dk.training_features_list, training_filter=False
)
filtered_dataframe = dk.normalize_data_from_metadata(filtered_dataframe)
dk.data_dictionary["prediction_features"] = filtered_dataframe
filtered_df = dk.normalize_data_from_metadata(filtered_df)
dk.data_dictionary["prediction_features"] = filtered_df
# optional additional data cleaning/analysis
self.data_cleaning_predict(dk, filtered_dataframe)
self.data_cleaning_predict(dk, filtered_df)
predictions = self.model.predict(dk.data_dictionary["prediction_features"])
pred_df = DataFrame(predictions, columns=dk.label_list)

View File

@@ -17,12 +17,12 @@ class BaseTensorFlowModel(IFreqaiModel):
"""
def train(
self, unfiltered_dataframe: DataFrame, pair: str, dk: FreqaiDataKitchen
self, unfiltered_df: DataFrame, pair: str, dk: FreqaiDataKitchen, **kwargs
) -> Any:
"""
Filter the training data and train a model to it. Train makes heavy use of the datakitchen
for storing, saving, loading, and analyzing the data.
:param unfiltered_dataframe: Full dataframe for the current training period
:param unfiltered_df: Full dataframe for the current training period
:param metadata: pair metadata from strategy.
:return:
:model: Trained model which can be used to inference (self.predict)
@@ -32,14 +32,14 @@ class BaseTensorFlowModel(IFreqaiModel):
# filter the features requested by user in the configuration file and elegantly handle NaNs
features_filtered, labels_filtered = dk.filter_features(
unfiltered_dataframe,
unfiltered_df,
dk.training_features_list,
dk.label_list,
training_filter=True,
)
start_date = unfiltered_dataframe["date"].iloc[0].strftime("%Y-%m-%d")
end_date = unfiltered_dataframe["date"].iloc[-1].strftime("%Y-%m-%d")
start_date = unfiltered_df["date"].iloc[0].strftime("%Y-%m-%d")
end_date = unfiltered_df["date"].iloc[-1].strftime("%Y-%m-%d")
logger.info(f"-------------------- Training on data from {start_date} to "
f"{end_date}--------------------")
# split data into train/test data.
@@ -57,7 +57,7 @@ class BaseTensorFlowModel(IFreqaiModel):
)
logger.info(f'Training model on {len(data_dictionary["train_features"])} data points')
model = self.fit(data_dictionary)
model = self.fit(data_dictionary, dk)
logger.info(f"--------------------done training {pair}--------------------")

View File

@@ -0,0 +1,65 @@
from joblib import Parallel
from sklearn.multioutput import MultiOutputRegressor, _fit_estimator
from sklearn.utils.fixes import delayed
from sklearn.utils.validation import has_fit_parameter
class FreqaiMultiOutputRegressor(MultiOutputRegressor):
def fit(self, X, y, sample_weight=None, fit_params=None):
"""Fit the model to data, separately for each output variable.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The input data.
y : {array-like, sparse matrix} of shape (n_samples, n_outputs)
Multi-output targets. An indicator matrix turns on multilabel
estimation.
sample_weight : array-like of shape (n_samples,), default=None
Sample weights. If `None`, then samples are equally weighted.
Only supported if the underlying regressor supports sample
weights.
fit_params : A list of dicts for the fit_params
Parameters passed to the ``estimator.fit`` method of each step.
Each dict may contain same or different values (e.g. different
eval_sets or init_models)
.. versionadded:: 0.23
Returns
-------
self : object
Returns a fitted instance.
"""
if not hasattr(self.estimator, "fit"):
raise ValueError("The base estimator should implement a fit method")
y = self._validate_data(X="no_validation", y=y, multi_output=True)
if y.ndim == 1:
raise ValueError(
"y must have at least two dimensions for "
"multi-output regression but has only one."
)
if sample_weight is not None and not has_fit_parameter(
self.estimator, "sample_weight"
):
raise ValueError("Underlying estimator does not support sample weights.")
if not fit_params:
fit_params = [None] * y.shape[1]
self.estimators_ = Parallel(n_jobs=self.n_jobs)(
delayed(_fit_estimator)(
self.estimator, X, y[:, i], sample_weight, **fit_params[i]
)
for i in range(y.shape[1])
)
if hasattr(self.estimators_[0], "n_features_in_"):
self.n_features_in_ = self.estimators_[0].n_features_in_
if hasattr(self.estimators_[0], "feature_names_in_"):
self.feature_names_in_ = self.estimators_[0].feature_names_in_
return

View File

@@ -184,7 +184,7 @@ class FreqaiDataKitchen:
def filter_features(
self,
unfiltered_dataframe: DataFrame,
unfiltered_df: DataFrame,
training_feature_list: List,
label_list: List = list(),
training_filter: bool = True,
@@ -195,31 +195,35 @@ class FreqaiDataKitchen:
0s in the prediction dataset. However, prediction dataset do_predict will reflect any
row that had a NaN and will shield user from that prediction.
:params:
:unfiltered_dataframe: the full dataframe for the present training period
:unfiltered_df: the full dataframe for the present training period
:training_feature_list: list, the training feature list constructed by
self.build_feature_list() according to user specified parameters in the configuration file.
:labels: the labels for the dataset
:training_filter: boolean which lets the function know if it is training data or
prediction data to be filtered.
:returns:
:filtered_dataframe: dataframe cleaned of NaNs and only containing the user
:filtered_df: dataframe cleaned of NaNs and only containing the user
requested feature set.
:labels: labels cleaned of NaNs.
"""
filtered_dataframe = unfiltered_dataframe.filter(training_feature_list, axis=1)
filtered_dataframe = filtered_dataframe.replace([np.inf, -np.inf], np.nan)
filtered_df = unfiltered_df.filter(training_feature_list, axis=1)
filtered_df = filtered_df.replace([np.inf, -np.inf], np.nan)
drop_index = pd.isnull(filtered_dataframe).any(1) # get the rows that have NaNs,
drop_index = pd.isnull(filtered_df).any(1) # get the rows that have NaNs,
drop_index = drop_index.replace(True, 1).replace(False, 0) # pep8 requirement.
if (training_filter):
const_cols = list((filtered_df.nunique() == 1).loc[lambda x: x].index)
if const_cols:
filtered_df = filtered_df.filter(filtered_df.columns.difference(const_cols))
logger.warning(f"Removed features {const_cols} with constant values.")
# we don't care about total row number (total no. datapoints) in training, we only care
# about removing any row with NaNs
# if labels has multiple columns (user wants to train multiple modelEs), we detect here
labels = unfiltered_dataframe.filter(label_list, axis=1)
labels = unfiltered_df.filter(label_list, axis=1)
drop_index_labels = pd.isnull(labels).any(1)
drop_index_labels = drop_index_labels.replace(True, 1).replace(False, 0)
dates = unfiltered_dataframe['date']
filtered_dataframe = filtered_dataframe[
dates = unfiltered_df['date']
filtered_df = filtered_df[
(drop_index == 0) & (drop_index_labels == 0)
] # dropping values
labels = labels[
@@ -229,13 +233,13 @@ class FreqaiDataKitchen:
(drop_index == 0) & (drop_index_labels == 0)
]
logger.info(
f"dropped {len(unfiltered_dataframe) - len(filtered_dataframe)} training points"
f" due to NaNs in populated dataset {len(unfiltered_dataframe)}."
f"dropped {len(unfiltered_df) - len(filtered_df)} training points"
f" due to NaNs in populated dataset {len(unfiltered_df)}."
)
if (1 - len(filtered_dataframe) / len(unfiltered_dataframe)) > 0.1 and self.live:
worst_indicator = str(unfiltered_dataframe.count().idxmin())
if (1 - len(filtered_df) / len(unfiltered_df)) > 0.1 and self.live:
worst_indicator = str(unfiltered_df.count().idxmin())
logger.warning(
f" {(1 - len(filtered_dataframe)/len(unfiltered_dataframe)) * 100:.0f} percent "
f" {(1 - len(filtered_df)/len(unfiltered_df)) * 100:.0f} percent "
" of training data dropped due to NaNs, model may perform inconsistent "
f"with expectations. Verify {worst_indicator}"
)
@@ -244,9 +248,9 @@ class FreqaiDataKitchen:
else:
# we are backtesting so we need to preserve row number to send back to strategy,
# so now we use do_predict to avoid any prediction based on a NaN
drop_index = pd.isnull(filtered_dataframe).any(1)
drop_index = pd.isnull(filtered_df).any(1)
self.data["filter_drop_index_prediction"] = drop_index
filtered_dataframe.fillna(0, inplace=True)
filtered_df.fillna(0, inplace=True)
# replacing all NaNs with zeros to avoid issues in 'prediction', but any prediction
# that was based on a single NaN is ultimately protected from buys with do_predict
drop_index = ~drop_index
@@ -255,11 +259,11 @@ class FreqaiDataKitchen:
logger.info(
"dropped %s of %s prediction data points due to NaNs.",
len(self.do_predict) - self.do_predict.sum(),
len(filtered_dataframe),
len(filtered_df),
)
labels = []
return filtered_dataframe, labels
return filtered_df, labels
def build_data_dictionary(
self,
@@ -461,6 +465,27 @@ class FreqaiDataKitchen:
return df
def remove_training_from_backtesting(
self
) -> DataFrame:
"""
Function which takes the backtesting time range and
remove training data from dataframe, keeping only the
startup_candle_count candles
"""
startup_candle_count = self.config.get('startup_candle_count', 0)
tf = self.config['timeframe']
tr = self.config["timerange"]
backtesting_timerange = TimeRange.parse_timerange(tr)
if startup_candle_count > 0 and backtesting_timerange:
backtesting_timerange.subtract_start(timeframe_to_seconds(tf) * startup_candle_count)
start = datetime.fromtimestamp(backtesting_timerange.startts, tz=timezone.utc)
df = self.return_dataframe
df = df.loc[df["date"] >= start, :]
return df
def principal_component_analysis(self) -> None:
"""
Performs Principal Component Analysis on the data for dimensionality reduction
@@ -954,6 +979,7 @@ class FreqaiDataKitchen:
to_keep = [col for col in dataframe.columns if not col.startswith("&")]
self.return_dataframe = pd.concat([dataframe[to_keep], self.full_df], axis=1)
self.return_dataframe = self.remove_training_from_backtesting()
self.full_df = DataFrame()
return
@@ -1200,7 +1226,6 @@ class FreqaiDataKitchen:
def save_backtesting_prediction(
self, append_df: DataFrame
) -> None:
"""
Save prediction dataframe from backtesting to h5 file format
:param append_df: dataframe for backtesting period
@@ -1214,7 +1239,6 @@ class FreqaiDataKitchen:
def get_backtesting_prediction(
self
) -> DataFrame:
"""
Get prediction dataframe from h5 file format
"""

View File

@@ -14,6 +14,7 @@ from numpy.typing import NDArray
from pandas import DataFrame
from freqtrade.configuration import TimeRange
from freqtrade.constants import DATETIME_PRINT_FORMAT
from freqtrade.enums import RunMode
from freqtrade.exceptions import OperationalException
from freqtrade.exchange import timeframe_to_seconds
@@ -87,10 +88,17 @@ class IFreqaiModel(ABC):
self.begin_time: float = 0
self.begin_time_train: float = 0
self.base_tf_seconds = timeframe_to_seconds(self.config['timeframe'])
self.continual_learning = self.freqai_info.get('continual_learning', False)
self._threads: List[threading.Thread] = []
self._stop_event = threading.Event()
def __getstate__(self):
"""
Return an empty state to be pickled in hyperopt
"""
return ({})
def assert_config(self, config: Dict[str, Any]) -> None:
if not config.get("freqai", {}):
@@ -232,10 +240,10 @@ class IFreqaiModel(ABC):
trained_timestamp = tr_train
tr_train_startts_str = datetime.fromtimestamp(
tr_train.startts,
tz=timezone.utc).strftime("%Y-%m-%d %H:%M:%S")
tz=timezone.utc).strftime(DATETIME_PRINT_FORMAT)
tr_train_stopts_str = datetime.fromtimestamp(
tr_train.stopts,
tz=timezone.utc).strftime("%Y-%m-%d %H:%M:%S")
tz=timezone.utc).strftime(DATETIME_PRINT_FORMAT)
logger.info(
f"Training {metadata['pair']}, {self.pair_it}/{self.total_pairs} pairs"
f" from {tr_train_startts_str} to {tr_train_stopts_str}, {train_it}/{total_trains} "
@@ -669,21 +677,30 @@ class IFreqaiModel(ABC):
self.train_time = 0
return
def get_init_model(self, pair: str) -> Any:
if pair not in self.dd.model_dictionary or not self.continual_learning:
init_model = None
else:
init_model = self.dd.model_dictionary[pair]
return init_model
# Following methods which are overridden by user made prediction models.
# See freqai/prediction_models/CatboostPredictionModel.py for an example.
@abstractmethod
def train(self, unfiltered_dataframe: DataFrame, pair: str, dk: FreqaiDataKitchen) -> Any:
def train(self, unfiltered_df: DataFrame, pair: str,
dk: FreqaiDataKitchen, **kwargs) -> Any:
"""
Filter the training data and train a model to it. Train makes heavy use of the datahandler
for storing, saving, loading, and analyzing the data.
:param unfiltered_dataframe: Full dataframe for the current training period
:param unfiltered_df: Full dataframe for the current training period
:param metadata: pair metadata from strategy.
:return: Trained model which can be used to inference (self.predict)
"""
@abstractmethod
def fit(self, data_dictionary: Dict[str, Any]) -> Any:
def fit(self, data_dictionary: Dict[str, Any], dk: FreqaiDataKitchen, **kwargs) -> Any:
"""
Most regressors use the same function names and arguments e.g. user
can drop in LGBMRegressor in place of CatBoostRegressor and all data
@@ -696,11 +713,11 @@ class IFreqaiModel(ABC):
@abstractmethod
def predict(
self, dataframe: DataFrame, dk: FreqaiDataKitchen, first: bool = True
self, unfiltered_df: DataFrame, dk: FreqaiDataKitchen, **kwargs
) -> Tuple[DataFrame, NDArray[np.int_]]:
"""
Filter the prediction features data and predict with it.
:param unfiltered_dataframe: Full dataframe for the current backtest period.
:param unfiltered_df: Full dataframe for the current backtest period.
:param dk: FreqaiDataKitchen = Data management/analysis tool associated to present pair only
:param first: boolean = whether this is the first prediction or not.
:return:

View File

@@ -3,7 +3,8 @@ from typing import Any, Dict
from catboost import CatBoostClassifier, Pool
from freqtrade.freqai.prediction_models.BaseClassifierModel import BaseClassifierModel
from freqtrade.freqai.base_models.BaseClassifierModel import BaseClassifierModel
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
logger = logging.getLogger(__name__)
@@ -16,7 +17,7 @@ class CatboostClassifier(BaseClassifierModel):
has its own DataHandler where data is held, saved, loaded, and managed.
"""
def fit(self, data_dictionary: Dict) -> Any:
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
"""
User sets up the training and test data to fit their desired model here
:params:
@@ -36,6 +37,8 @@ class CatboostClassifier(BaseClassifierModel):
**self.model_training_parameters,
)
cbr.fit(train_data)
init_model = self.get_init_model(dk.pair)
cbr.fit(train_data, init_model=init_model)
return cbr

View File

@@ -1,10 +1,10 @@
import gc
import logging
from typing import Any, Dict
from catboost import CatBoostRegressor, Pool
from freqtrade.freqai.prediction_models.BaseRegressionModel import BaseRegressionModel
from freqtrade.freqai.base_models.BaseRegressionModel import BaseRegressionModel
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
logger = logging.getLogger(__name__)
@@ -17,7 +17,7 @@ class CatboostRegressor(BaseRegressionModel):
has its own DataHandler where data is held, saved, loaded, and managed.
"""
def fit(self, data_dictionary: Dict) -> Any:
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
"""
User sets up the training and test data to fit their desired model here
:param data_dictionary: the dictionary constructed by DataHandler to hold
@@ -38,16 +38,13 @@ class CatboostRegressor(BaseRegressionModel):
weight=data_dictionary["test_weights"],
)
init_model = self.get_init_model(dk.pair)
model = CatBoostRegressor(
allow_writing_files=False,
**self.model_training_parameters,
)
model.fit(X=train_data, eval_set=test_data)
# some evidence that catboost pools have memory leaks:
# https://github.com/catboost/catboost/issues/1835
del train_data, test_data
gc.collect()
model.fit(X=train_data, eval_set=test_data, init_model=init_model)
return model

View File

@@ -1,10 +1,11 @@
import logging
from typing import Any, Dict
from catboost import CatBoostRegressor # , Pool
from sklearn.multioutput import MultiOutputRegressor
from catboost import CatBoostRegressor, Pool
from freqtrade.freqai.prediction_models.BaseRegressionModel import BaseRegressionModel
from freqtrade.freqai.base_models.BaseRegressionModel import BaseRegressionModel
from freqtrade.freqai.base_models.FreqaiMultiOutputRegressor import FreqaiMultiOutputRegressor
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
logger = logging.getLogger(__name__)
@@ -17,7 +18,7 @@ class CatboostRegressorMultiTarget(BaseRegressionModel):
has its own DataHandler where data is held, saved, loaded, and managed.
"""
def fit(self, data_dictionary: Dict) -> Any:
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
"""
User sets up the training and test data to fit their desired model here
:param data_dictionary: the dictionary constructed by DataHandler to hold
@@ -31,14 +32,37 @@ class CatboostRegressorMultiTarget(BaseRegressionModel):
X = data_dictionary["train_features"]
y = data_dictionary["train_labels"]
eval_set = (data_dictionary["test_features"], data_dictionary["test_labels"])
sample_weight = data_dictionary["train_weights"]
model = MultiOutputRegressor(estimator=cbr)
model.fit(X=X, y=y, sample_weight=sample_weight) # , eval_set=eval_set)
eval_sets = [None] * y.shape[1]
if self.freqai_info.get('data_split_parameters', {}).get('test_size', 0.1) != 0:
train_score = model.score(X, y)
test_score = model.score(*eval_set)
logger.info(f"Train score {train_score}, Test score {test_score}")
eval_sets = [None] * data_dictionary['test_labels'].shape[1]
for i in range(data_dictionary['test_labels'].shape[1]):
eval_sets[i] = Pool(
data=data_dictionary["test_features"],
label=data_dictionary["test_labels"].iloc[:, i],
weight=data_dictionary["test_weights"],
)
init_model = self.get_init_model(dk.pair)
if init_model:
init_models = init_model.estimators_
else:
init_models = [None] * y.shape[1]
fit_params = []
for i in range(len(eval_sets)):
fit_params.append(
{'eval_set': eval_sets[i], 'init_model': init_models[i]})
model = FreqaiMultiOutputRegressor(estimator=cbr)
thread_training = self.freqai_info.get('multitarget_parallel_training', False)
if thread_training:
model.n_jobs = y.shape[1]
model.fit(X=X, y=y, sample_weight=sample_weight, fit_params=fit_params)
return model

View File

@@ -3,7 +3,8 @@ from typing import Any, Dict
from lightgbm import LGBMClassifier
from freqtrade.freqai.prediction_models.BaseClassifierModel import BaseClassifierModel
from freqtrade.freqai.base_models.BaseClassifierModel import BaseClassifierModel
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
logger = logging.getLogger(__name__)
@@ -16,7 +17,7 @@ class LightGBMClassifier(BaseClassifierModel):
has its own DataHandler where data is held, saved, loaded, and managed.
"""
def fit(self, data_dictionary: Dict) -> Any:
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
"""
User sets up the training and test data to fit their desired model here
:params:
@@ -35,9 +36,11 @@ class LightGBMClassifier(BaseClassifierModel):
y = data_dictionary["train_labels"].to_numpy()[:, 0]
train_weights = data_dictionary["train_weights"]
init_model = self.get_init_model(dk.pair)
model = LGBMClassifier(**self.model_training_parameters)
model.fit(X=X, y=y, eval_set=eval_set, sample_weight=train_weights,
eval_sample_weight=[test_weights])
eval_sample_weight=[test_weights], init_model=init_model)
return model

View File

@@ -3,7 +3,8 @@ from typing import Any, Dict
from lightgbm import LGBMRegressor
from freqtrade.freqai.prediction_models.BaseRegressionModel import BaseRegressionModel
from freqtrade.freqai.base_models.BaseRegressionModel import BaseRegressionModel
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
logger = logging.getLogger(__name__)
@@ -16,7 +17,7 @@ class LightGBMRegressor(BaseRegressionModel):
has its own DataHandler where data is held, saved, loaded, and managed.
"""
def fit(self, data_dictionary: Dict) -> Any:
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
"""
Most regressors use the same function names and arguments e.g. user
can drop in LGBMRegressor in place of CatBoostRegressor and all data
@@ -35,9 +36,11 @@ class LightGBMRegressor(BaseRegressionModel):
y = data_dictionary["train_labels"]
train_weights = data_dictionary["train_weights"]
init_model = self.get_init_model(dk.pair)
model = LGBMRegressor(**self.model_training_parameters)
model.fit(X=X, y=y, eval_set=eval_set, sample_weight=train_weights,
eval_sample_weight=[eval_weights])
eval_sample_weight=[eval_weights], init_model=init_model)
return model

View File

@@ -2,9 +2,10 @@ import logging
from typing import Any, Dict
from lightgbm import LGBMRegressor
from sklearn.multioutput import MultiOutputRegressor
from freqtrade.freqai.prediction_models.BaseRegressionModel import BaseRegressionModel
from freqtrade.freqai.base_models.BaseRegressionModel import BaseRegressionModel
from freqtrade.freqai.base_models.FreqaiMultiOutputRegressor import FreqaiMultiOutputRegressor
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
logger = logging.getLogger(__name__)
@@ -17,7 +18,7 @@ class LightGBMRegressorMultiTarget(BaseRegressionModel):
has its own DataHandler where data is held, saved, loaded, and managed.
"""
def fit(self, data_dictionary: Dict) -> Any:
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
"""
User sets up the training and test data to fit their desired model here
:param data_dictionary: the dictionary constructed by DataHandler to hold
@@ -28,12 +29,36 @@ class LightGBMRegressorMultiTarget(BaseRegressionModel):
X = data_dictionary["train_features"]
y = data_dictionary["train_labels"]
eval_set = (data_dictionary["test_features"], data_dictionary["test_labels"])
sample_weight = data_dictionary["train_weights"]
model = MultiOutputRegressor(estimator=lgb)
model.fit(X=X, y=y, sample_weight=sample_weight) # , eval_set=eval_set)
train_score = model.score(X, y)
test_score = model.score(*eval_set)
logger.info(f"Train score {train_score}, Test score {test_score}")
eval_weights = None
eval_sets = [None] * y.shape[1]
if self.freqai_info.get('data_split_parameters', {}).get('test_size', 0.1) != 0:
eval_weights = [data_dictionary["test_weights"]]
eval_sets = [(None, None)] * data_dictionary['test_labels'].shape[1] # type: ignore
for i in range(data_dictionary['test_labels'].shape[1]):
eval_sets[i] = ( # type: ignore
data_dictionary["test_features"],
data_dictionary["test_labels"].iloc[:, i]
)
init_model = self.get_init_model(dk.pair)
if init_model:
init_models = init_model.estimators_
else:
init_models = [None] * y.shape[1]
fit_params = []
for i in range(len(eval_sets)):
fit_params.append(
{'eval_set': eval_sets[i], 'eval_sample_weight': eval_weights,
'init_model': init_models[i]})
model = FreqaiMultiOutputRegressor(estimator=lgb)
thread_training = self.freqai_info.get('multitarget_parallel_training', False)
if thread_training:
model.n_jobs = y.shape[1]
model.fit(X=X, y=y, sample_weight=sample_weight, fit_params=fit_params)
return model

View File

@@ -0,0 +1,45 @@
import logging
from typing import Any, Dict
from xgboost import XGBRegressor
from freqtrade.freqai.base_models.BaseRegressionModel import BaseRegressionModel
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
logger = logging.getLogger(__name__)
class XGBoostRegressor(BaseRegressionModel):
"""
User created prediction model. The class needs to override three necessary
functions, predict(), train(), fit(). The class inherits ModelHandler which
has its own DataHandler where data is held, saved, loaded, and managed.
"""
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
"""
User sets up the training and test data to fit their desired model here
:param data_dictionary: the dictionary constructed by DataHandler to hold
all the training and test data/labels.
"""
X = data_dictionary["train_features"]
y = data_dictionary["train_labels"]
if self.freqai_info.get("data_split_parameters", {}).get("test_size", 0.1) == 0:
eval_set = None
else:
eval_set = [(data_dictionary["test_features"], data_dictionary["test_labels"])]
eval_weights = [data_dictionary['test_weights']]
sample_weight = data_dictionary["train_weights"]
xgb_model = self.get_init_model(dk.pair)
model = XGBRegressor(**self.model_training_parameters)
model.fit(X=X, y=y, sample_weight=sample_weight, eval_set=eval_set,
sample_weight_eval_set=eval_weights, xgb_model=xgb_model)
return model

View File

@@ -0,0 +1,63 @@
import logging
from typing import Any, Dict
from xgboost import XGBRegressor
from freqtrade.freqai.base_models.BaseRegressionModel import BaseRegressionModel
from freqtrade.freqai.base_models.FreqaiMultiOutputRegressor import FreqaiMultiOutputRegressor
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
logger = logging.getLogger(__name__)
class XGBoostRegressorMultiTarget(BaseRegressionModel):
"""
User created prediction model. The class needs to override three necessary
functions, predict(), train(), fit(). The class inherits ModelHandler which
has its own DataHandler where data is held, saved, loaded, and managed.
"""
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
"""
User sets up the training and test data to fit their desired model here
:param data_dictionary: the dictionary constructed by DataHandler to hold
all the training and test data/labels.
"""
xgb = XGBRegressor(**self.model_training_parameters)
X = data_dictionary["train_features"]
y = data_dictionary["train_labels"]
sample_weight = data_dictionary["train_weights"]
eval_weights = None
eval_sets = [None] * y.shape[1]
if self.freqai_info.get('data_split_parameters', {}).get('test_size', 0.1) != 0:
eval_weights = [data_dictionary["test_weights"]]
for i in range(data_dictionary['test_labels'].shape[1]):
eval_sets[i] = [( # type: ignore
data_dictionary["test_features"],
data_dictionary["test_labels"].iloc[:, i]
)]
init_model = self.get_init_model(dk.pair)
if init_model:
init_models = init_model.estimators_
else:
init_models = [None] * y.shape[1]
fit_params = []
for i in range(len(eval_sets)):
fit_params.append(
{'eval_set': eval_sets[i], 'sample_weight_eval_set': eval_weights,
'xgb_model': init_models[i]})
model = FreqaiMultiOutputRegressor(estimator=xgb)
thread_training = self.freqai_info.get('multitarget_parallel_training', False)
if thread_training:
model.n_jobs = y.shape[1]
model.fit(X=X, y=y, sample_weight=sample_weight, fit_params=fit_params)
return model

View File

@@ -75,7 +75,8 @@ def _get_line_floatfmt(stake_currency: str) -> List[str]:
'.2f', 'd', 's', 's']
def _get_line_header(first_column: str, stake_currency: str, direction: str = 'Buys') -> List[str]:
def _get_line_header(first_column: str, stake_currency: str,
direction: str = 'Entries') -> List[str]:
"""
Generate header lines (goes in line with _generate_result_line())
"""
@@ -642,7 +643,7 @@ def text_table_tags(tag_type: str, tag_results: List[Dict[str, Any]], stake_curr
if (tag_type == "enter_tag"):
headers = _get_line_header("TAG", stake_currency)
else:
headers = _get_line_header("TAG", stake_currency, 'Sells')
headers = _get_line_header("TAG", stake_currency, 'Exits')
floatfmt = _get_line_floatfmt(stake_currency)
output = [
[

View File

@@ -1,7 +1,7 @@
import logging
from typing import Any, Dict
from freqtrade.enums.rpcmessagetype import RPCMessageType
from freqtrade.enums import RPCMessageType
from freqtrade.rpc import RPC
from freqtrade.rpc.webhook import Webhook

View File

@@ -12,9 +12,8 @@ from pandas import DataFrame
from freqtrade.constants import ListPairsWithTimeframes
from freqtrade.data.dataprovider import DataProvider
from freqtrade.enums import (CandleType, ExitCheckTuple, ExitType, SignalDirection, SignalTagType,
SignalType, TradingMode)
from freqtrade.enums.runmode import RunMode
from freqtrade.enums import (CandleType, ExitCheckTuple, ExitType, RunMode, SignalDirection,
SignalTagType, SignalType, TradingMode)
from freqtrade.exceptions import OperationalException, StrategyError
from freqtrade.exchange import timeframe_to_minutes, timeframe_to_next_date, timeframe_to_seconds
from freqtrade.misc import remove_entry_exit_signals

View File

@@ -7,7 +7,7 @@ from abc import ABC, abstractmethod
from contextlib import suppress
from typing import Any, Optional, Sequence, Union
from freqtrade.enums.hyperoptstate import HyperoptState
from freqtrade.enums import HyperoptState
from freqtrade.optimize.hyperopt_tools import HyperoptStateContainer

View File

@@ -6,9 +6,7 @@ import talib.abstract as ta
from pandas import DataFrame
from technical import qtpylib
from freqtrade.exchange import timeframe_to_prev_date
from freqtrade.persistence import Trade
from freqtrade.strategy import DecimalParameter, IntParameter, IStrategy, merge_informative_pair
from freqtrade.strategy import CategoricalParameter, IStrategy, merge_informative_pair
logger = logging.getLogger(__name__)
@@ -31,9 +29,6 @@ class FreqaiExampleStrategy(IStrategy):
"main_plot": {},
"subplots": {
"prediction": {"prediction": {"color": "blue"}},
"target_roi": {
"target_roi": {"color": "brown"},
},
"do_predict": {
"do_predict": {"color": "brown"},
},
@@ -47,10 +42,10 @@ class FreqaiExampleStrategy(IStrategy):
startup_candle_count: int = 40
can_short = False
linear_roi_offset = DecimalParameter(
0.00, 0.02, default=0.005, space="sell", optimize=False, load=True
)
max_roi_time_long = IntParameter(0, 800, default=400, space="sell", optimize=False, load=True)
std_dev_multiplier_buy = CategoricalParameter(
[0.75, 1, 1.25, 1.5, 1.75], default=1.25, space="buy", optimize=True)
std_dev_multiplier_sell = CategoricalParameter(
[0.1, 0.25, 0.4], space="sell", default=0.2, optimize=True)
def informative_pairs(self):
whitelist_pairs = self.dp.current_whitelist()
@@ -187,21 +182,26 @@ class FreqaiExampleStrategy(IStrategy):
# `populate_any_indicators()` for each training period.
dataframe = self.freqai.start(dataframe, metadata, self)
dataframe["target_roi"] = dataframe["&-s_close_mean"] + dataframe["&-s_close_std"] * 1.25
dataframe["sell_roi"] = dataframe["&-s_close_mean"] - dataframe["&-s_close_std"] * 1.25
for val in self.std_dev_multiplier_buy.range:
dataframe[f'target_roi_{val}'] = dataframe["&-s_close_mean"] + \
dataframe["&-s_close_std"] * val
for val in self.std_dev_multiplier_sell.range:
dataframe[f'sell_roi_{val}'] = dataframe["&-s_close_mean"] - \
dataframe["&-s_close_std"] * val
return dataframe
def populate_entry_trend(self, df: DataFrame, metadata: dict) -> DataFrame:
enter_long_conditions = [df["do_predict"] == 1, df["&-s_close"] > df["target_roi"]]
enter_long_conditions = [df["do_predict"] == 1, df["&-s_close"]
> df[f"target_roi_{self.std_dev_multiplier_buy.value}"]]
if enter_long_conditions:
df.loc[
reduce(lambda x, y: x & y, enter_long_conditions), ["enter_long", "enter_tag"]
] = (1, "long")
enter_short_conditions = [df["do_predict"] == 1, df["&-s_close"] < df["sell_roi"]]
enter_short_conditions = [df["do_predict"] == 1, df["&-s_close"]
< df[f"sell_roi_{self.std_dev_multiplier_sell.value}"]]
if enter_short_conditions:
df.loc[
@@ -211,11 +211,13 @@ class FreqaiExampleStrategy(IStrategy):
return df
def populate_exit_trend(self, df: DataFrame, metadata: dict) -> DataFrame:
exit_long_conditions = [df["do_predict"] == 1, df["&-s_close"] < df["sell_roi"] * 0.25]
exit_long_conditions = [df["do_predict"] == 1, df["&-s_close"] <
df[f"sell_roi_{self.std_dev_multiplier_sell.value}"] * 0.25]
if exit_long_conditions:
df.loc[reduce(lambda x, y: x & y, exit_long_conditions), "exit_long"] = 1
exit_short_conditions = [df["do_predict"] == 1, df["&-s_close"] > df["target_roi"] * 0.25]
exit_short_conditions = [df["do_predict"] == 1, df["&-s_close"] >
df[f"target_roi_{self.std_dev_multiplier_buy.value}"] * 0.25]
if exit_short_conditions:
df.loc[reduce(lambda x, y: x & y, exit_short_conditions), "exit_short"] = 1
@@ -224,83 +226,6 @@ class FreqaiExampleStrategy(IStrategy):
def get_ticker_indicator(self):
return int(self.config["timeframe"][:-1])
def custom_exit(
self, pair: str, trade: Trade, current_time, current_rate, current_profit, **kwargs
):
dataframe, _ = self.dp.get_analyzed_dataframe(pair=pair, timeframe=self.timeframe)
trade_date = timeframe_to_prev_date(self.config["timeframe"], trade.open_date_utc)
trade_candle = dataframe.loc[(dataframe["date"] == trade_date)]
if trade_candle.empty:
return None
trade_candle = trade_candle.squeeze()
follow_mode = self.config.get("freqai", {}).get("follow_mode", False)
if not follow_mode:
pair_dict = self.freqai.dd.pair_dict
else:
pair_dict = self.freqai.dd.follower_dict
entry_tag = trade.enter_tag
if (
"prediction" + entry_tag not in pair_dict[pair]
or pair_dict[pair]['extras']["prediction" + entry_tag] == 0
):
pair_dict[pair]['extras']["prediction" + entry_tag] = abs(trade_candle["&-s_close"])
if not follow_mode:
self.freqai.dd.save_drawer_to_disk()
else:
self.freqai.dd.save_follower_dict_to_disk()
roi_price = pair_dict[pair]['extras']["prediction" + entry_tag]
roi_time = self.max_roi_time_long.value
roi_decay = roi_price * (
1 - ((current_time - trade.open_date_utc).seconds) / (roi_time * 60)
)
if roi_decay < 0:
roi_decay = self.linear_roi_offset.value
else:
roi_decay += self.linear_roi_offset.value
if current_profit > roi_decay:
return "roi_custom_win"
if current_profit < -roi_decay:
return "roi_custom_loss"
def confirm_trade_exit(
self,
pair: str,
trade: Trade,
order_type: str,
amount: float,
rate: float,
time_in_force: str,
exit_reason: str,
current_time,
**kwargs,
) -> bool:
entry_tag = trade.enter_tag
follow_mode = self.config.get("freqai", {}).get("follow_mode", False)
if not follow_mode:
pair_dict = self.freqai.dd.pair_dict
else:
pair_dict = self.freqai.dd.follower_dict
pair_dict[pair]['extras']["prediction" + entry_tag] = 0
if not follow_mode:
self.freqai.dd.save_drawer_to_disk()
else:
self.freqai.dd.save_follower_dict_to_disk()
return True
def confirm_trade_entry(
self,
pair: str,