merge develop into tensorboard cleanup

This commit is contained in:
robcaulk
2022-12-11 15:38:32 +01:00
20 changed files with 299 additions and 217 deletions

View File

@@ -355,6 +355,13 @@ def _validate_freqai_include_timeframes(conf: Dict[str, Any]) -> None:
f"Main timeframe of {main_tf} must be smaller or equal to FreqAI "
f"`include_timeframes`.Offending include-timeframes: {', '.join(offending_lines)}")
# Ensure that the base timeframe is included in the include_timeframes list
if main_tf not in freqai_include_timeframes:
feature_parameters = conf.get('freqai', {}).get('feature_parameters', {})
include_timeframes = [main_tf] + freqai_include_timeframes
conf.get('freqai', {}).get('feature_parameters', {}) \
.update({**feature_parameters, 'include_timeframes': include_timeframes})
def _validate_freqai_backtest(conf: Dict[str, Any]) -> None:
if conf.get('runmode', RunMode.OTHER) == RunMode.BACKTEST:

View File

@@ -608,9 +608,8 @@ CONF_SCHEMA = {
"backtest_period_days",
"identifier",
"feature_parameters",
"data_split_parameters",
"model_training_parameters"
]
"data_split_parameters"
]
},
},
}

View File

@@ -12,6 +12,7 @@ from gym.utils import seeding
from pandas import DataFrame
from freqtrade.data.dataprovider import DataProvider
from freqtrade.enums import RunMode
logger = logging.getLogger(__name__)
@@ -78,6 +79,12 @@ class BaseEnvironment(gym.Env):
# set here to default 5Ac, but all children envs can override this
self.actions: Type[Enum] = BaseActions
self.tensorboard_metrics: dict = {}
self.live: bool = False
if dp:
self.live = dp.runmode in (RunMode.DRY_RUN, RunMode.LIVE)
if not self.live and self.add_state_info:
self.add_state_info = False
logger.warning("add_state_info is not available in backtesting. Deactivating.")
def reset_env(self, df: DataFrame, prices: DataFrame, window_size: int,
reward_kwargs: dict, starting_point=True):
@@ -205,7 +212,7 @@ class BaseEnvironment(gym.Env):
"""
features_window = self.signal_features[(
self._current_tick - self.window_size):self._current_tick]
if self.add_state_info:
if self.add_state_info and self.live:
features_and_state = DataFrame(np.zeros((len(features_window), 3)),
columns=['current_profit_pct',
'position',

View File

@@ -61,7 +61,7 @@ class ReinforcementLearner(BaseReinforcementLearningModel):
model = self.MODELCLASS(self.policy_type, self.train_env, policy_kwargs=policy_kwargs,
tensorboard_log=Path(
dk.full_path / "tensorboard" / dk.pair.split('/')[0]),
**self.freqai_info['model_training_parameters']
**self.freqai_info.get('model_training_parameters', {})
)
else:
logger.info('Continual training activated - starting training from previously '

View File

@@ -218,7 +218,7 @@ class VolumePairList(IPairList):
else:
filtered_tickers[i]['quoteVolume'] = 0
else:
# Tickers mode - filter based on incomming pairlist.
# Tickers mode - filter based on incoming pairlist.
filtered_tickers = [v for k, v in tickers.items() if k in pairlist]
if self._min_value > 0:

View File

@@ -7,14 +7,17 @@
"# Strategy analysis example\n",
"\n",
"Debugging a strategy can be time-consuming. Freqtrade offers helper functions to visualize raw data.\n",
"The following assumes you work with SampleStrategy, data for 5m timeframe from Binance and have downloaded them into the data directory in the default location."
"The following assumes you work with SampleStrategy, data for 5m timeframe from Binance and have downloaded them into the data directory in the default location.\n",
"Please follow the [documentation](https://www.freqtrade.io/en/stable/data-download/) for more details."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup"
"## Setup\n",
"\n",
"### Change Working directory to repository root"
]
},
{
@@ -23,7 +26,38 @@
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"from pathlib import Path\n",
"\n",
"# Change directory\n",
"# Modify this cell to insure that the output shows the correct path.\n",
"# Define all paths relative to the project root shown in the cell output\n",
"project_root = \"somedir/freqtrade\"\n",
"i=0\n",
"try:\n",
" os.chdirdir(project_root)\n",
" assert Path('LICENSE').is_file()\n",
"except:\n",
" while i<4 and (not Path('LICENSE').is_file()):\n",
" os.chdir(Path(Path.cwd(), '../'))\n",
" i+=1\n",
" project_root = Path.cwd()\n",
"print(Path.cwd())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Configure Freqtrade environment"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from freqtrade.configuration import Configuration\n",
"\n",
"# Customize these according to your needs.\n",
@@ -31,14 +65,14 @@
"# Initialize empty configuration object\n",
"config = Configuration.from_files([])\n",
"# Optionally (recommended), use existing configuration file\n",
"# config = Configuration.from_files([\"config.json\"])\n",
"# config = Configuration.from_files([\"user_data/config.json\"])\n",
"\n",
"# Define some constants\n",
"config[\"timeframe\"] = \"5m\"\n",
"# Name of the strategy class\n",
"config[\"strategy\"] = \"SampleStrategy\"\n",
"# Location of the data\n",
"data_location = config['datadir']\n",
"data_location = config[\"datadir\"]\n",
"# Pair to analyze - Only use one pair here\n",
"pair = \"BTC/USDT\""
]
@@ -56,12 +90,12 @@
"candles = load_pair_history(datadir=data_location,\n",
" timeframe=config[\"timeframe\"],\n",
" pair=pair,\n",
" data_format = \"hdf5\",\n",
" data_format = \"json\", # Make sure to update this to your data\n",
" candle_type=CandleType.SPOT,\n",
" )\n",
"\n",
"# Confirm success\n",
"print(\"Loaded \" + str(len(candles)) + f\" rows of data for {pair} from {data_location}\")\n",
"print(f\"Loaded {len(candles)} rows of data for {pair} from {data_location}\")\n",
"candles.head()"
]
},
@@ -365,7 +399,7 @@
"metadata": {
"file_extension": ".py",
"kernelspec": {
"display_name": "Python 3.9.7 64-bit ('trade_397')",
"display_name": "Python 3.9.7 64-bit",
"language": "python",
"name": "python3"
},