change start_backtesting to handle backtest_live_models
This commit is contained in:
parent
7f116db95e
commit
0ed7b2bfc3
@ -62,6 +62,7 @@ class FreqaiDataKitchen:
|
||||
live: bool = False,
|
||||
pair: str = "",
|
||||
):
|
||||
self.backtest_live_models = False # temp
|
||||
self.data: Dict[str, Any] = {}
|
||||
self.data_dictionary: Dict[str, DataFrame] = {}
|
||||
self.config = config
|
||||
@ -88,6 +89,11 @@ class FreqaiDataKitchen:
|
||||
self.config["timerange"], self.freqai_config.get("train_period_days", 0)
|
||||
)
|
||||
|
||||
if self.backtest_live_models:
|
||||
self.get_timerange_from_ready_models()
|
||||
(self.training_timeranges,
|
||||
self.backtesting_timeranges) = self.split_timerange_live_models()
|
||||
else:
|
||||
(self.training_timeranges, self.backtesting_timeranges) = self.split_timerange(
|
||||
self.full_timerange,
|
||||
config["freqai"]["train_period_days"],
|
||||
@ -451,6 +457,26 @@ class FreqaiDataKitchen:
|
||||
# print(tr_training_list, tr_backtesting_list)
|
||||
return tr_training_list_timerange, tr_backtesting_list_timerange
|
||||
|
||||
def split_timerange_live_models(
|
||||
self
|
||||
) -> Tuple[list, list]:
|
||||
|
||||
tr_backtesting_list_timerange = []
|
||||
pair = self.pair.split("/")[0].split(":")[0]
|
||||
pair_data = self.backtest_live_models_data["pairs_end_dates"][pair]
|
||||
model_end_dates = []
|
||||
backtesting_timerange = self.backtest_live_models_data["backtesting_timerange"]
|
||||
for data in pair_data:
|
||||
model_end_dates.append(data["model_end_date"])
|
||||
model_end_dates.append(backtesting_timerange.stopts)
|
||||
model_end_dates.sort()
|
||||
for index, item in enumerate(model_end_dates):
|
||||
if len(model_end_dates) > (index + 1):
|
||||
tr_to_add = TimeRange("date", "date", item, model_end_dates[index + 1])
|
||||
tr_backtesting_list_timerange.append(tr_to_add)
|
||||
|
||||
return tr_backtesting_list_timerange, tr_backtesting_list_timerange
|
||||
|
||||
def slice_dataframe(self, timerange: TimeRange, df: DataFrame) -> DataFrame:
|
||||
"""
|
||||
Given a full dataframe, extract the user desired window
|
||||
@ -1093,15 +1119,15 @@ class FreqaiDataKitchen:
|
||||
|
||||
return retrain, trained_timerange, data_load_timerange
|
||||
|
||||
def set_new_model_names(self, pair: str, trained_timerange: TimeRange):
|
||||
def set_new_model_names(self, pair: str, timestamp_id: int):
|
||||
|
||||
coin, _ = pair.split("/")
|
||||
self.data_path = Path(
|
||||
self.full_path
|
||||
/ f"sub-train-{pair.split('/')[0]}_{int(trained_timerange.stopts)}"
|
||||
/ f"sub-train-{pair.split('/')[0]}_{timestamp_id}"
|
||||
)
|
||||
|
||||
self.model_filename = f"cb_{coin.lower()}_{int(trained_timerange.stopts)}"
|
||||
self.model_filename = f"cb_{coin.lower()}_{timestamp_id}"
|
||||
|
||||
def set_all_pairs(self) -> None:
|
||||
|
||||
@ -1278,7 +1304,7 @@ class FreqaiDataKitchen:
|
||||
pairs_end_dates: Dict[str, Any] = {}
|
||||
for model_dir in models_path.iterdir():
|
||||
if str(model_dir.name).startswith("sub-train"):
|
||||
model_end_date = model_dir.name.split("_")[1]
|
||||
model_end_date = int(model_dir.name.split("_")[1])
|
||||
pair = model_dir.name.split("_")[0].replace("sub-train-", "")
|
||||
model_file_name = (f"cb_{str(model_dir.name).replace('sub-train-', '').lower()}")
|
||||
model_file_name = f"{model_file_name}_model.joblib"
|
||||
@ -1289,14 +1315,24 @@ class FreqaiDataKitchen:
|
||||
pairs_end_dates[pair] = []
|
||||
|
||||
pairs_end_dates[pair].append({
|
||||
"model_end_date": int(model_end_date),
|
||||
"model_end_date": model_end_date,
|
||||
"model_path_file": model_path_file,
|
||||
"model_dir": model_dir
|
||||
})
|
||||
|
||||
if model_end_date not in all_models_end_dates:
|
||||
all_models_end_dates.append(int(model_end_date))
|
||||
all_models_end_dates.append(model_end_date)
|
||||
|
||||
finish_timestamp = int(datetime.now(tz=timezone.utc).timestamp())
|
||||
if len(all_models_end_dates) > 1:
|
||||
# After last model end date, use the same period from previous model
|
||||
# to finish the backtest
|
||||
all_models_end_dates.sort(reverse=True)
|
||||
finish_timestamp = all_models_end_dates[0] + \
|
||||
(all_models_end_dates[0] - all_models_end_dates[1])
|
||||
|
||||
all_models_end_dates.append(finish_timestamp)
|
||||
all_models_end_dates.sort()
|
||||
start = datetime.fromtimestamp(min(all_models_end_dates), tz=timezone.utc)
|
||||
stop = datetime.fromtimestamp(max(all_models_end_dates), tz=timezone.utc)
|
||||
backtesting_string_timerange = f"{start.strftime('%Y%m%d')}-{stop.strftime('%Y%m%d')}"
|
||||
|
@ -134,17 +134,17 @@ class IFreqaiModel(ABC):
|
||||
# the concatenated results for the full backtesting period back to the strategy.
|
||||
elif not self.follow_mode:
|
||||
self.dk = FreqaiDataKitchen(self.config, self.live, metadata["pair"])
|
||||
self.dk.get_timerange_from_ready_models()
|
||||
if(self.dk.backtest_live_models):
|
||||
logger.info(
|
||||
f"Backtesting {len(self.dk.backtesting_timeranges)} timeranges (Live Models)")
|
||||
else:
|
||||
logger.info(f"Training {len(self.dk.training_timeranges)} timeranges")
|
||||
dataframe = self.dk.use_strategy_to_populate_indicators(
|
||||
strategy, prediction_dataframe=dataframe, pair=metadata["pair"]
|
||||
)
|
||||
|
||||
backtest_live_models = True # temp
|
||||
if not backtest_live_models:
|
||||
dk = self.start_backtesting(dataframe, metadata, self.dk)
|
||||
else:
|
||||
dk = self.start_backtesting_live_models(dataframe, metadata, self.dk)
|
||||
# else:
|
||||
# dk = self.start_backtesting_live_models(dataframe, metadata, self.dk)
|
||||
|
||||
dataframe = dk.remove_features_from_df(dk.return_dataframe)
|
||||
self.clean_up()
|
||||
@ -265,28 +265,39 @@ class IFreqaiModel(ABC):
|
||||
tr_train_stopts_str = datetime.fromtimestamp(
|
||||
tr_train.stopts,
|
||||
tz=timezone.utc).strftime(DATETIME_PRINT_FORMAT)
|
||||
if not dk.backtest_live_models:
|
||||
logger.info(
|
||||
f"Training {pair}, {self.pair_it}/{self.total_pairs} pairs"
|
||||
f" from {tr_train_startts_str} to {tr_train_stopts_str}, {train_it}/{total_trains} "
|
||||
f" from {tr_train_startts_str}"
|
||||
f" to {tr_train_stopts_str}, {train_it}/{total_trains} "
|
||||
"trains"
|
||||
)
|
||||
|
||||
trained_timestamp_int = int(trained_timestamp.stopts)
|
||||
timestamp_model_id = int(trained_timestamp.stopts)
|
||||
if dk.backtest_live_models:
|
||||
timestamp_model_id = int(tr_backtest.startts)
|
||||
|
||||
dk.data_path = Path(
|
||||
dk.full_path / f"sub-train-{pair.split('/')[0]}_{trained_timestamp_int}"
|
||||
dk.full_path / f"sub-train-{pair.split('/')[0]}_{timestamp_model_id}"
|
||||
)
|
||||
|
||||
dk.set_new_model_names(pair, trained_timestamp)
|
||||
dk.set_new_model_names(pair, timestamp_model_id)
|
||||
|
||||
if dk.check_if_backtest_prediction_exists():
|
||||
self.dd.load_metadata(dk)
|
||||
if not dk.backtest_live_models:
|
||||
self.check_if_feature_list_matches_strategy(dataframe_train, dk)
|
||||
|
||||
append_df = dk.get_backtesting_prediction()
|
||||
dk.append_predictions(append_df)
|
||||
else:
|
||||
if not self.model_exists(
|
||||
pair, dk, trained_timestamp=trained_timestamp_int
|
||||
):
|
||||
if not self.model_exists(dk):
|
||||
if dk.backtest_live_models:
|
||||
raise OperationalException(
|
||||
"Training models is not allowed "
|
||||
"in backtest_live_models backtesting "
|
||||
"mode"
|
||||
)
|
||||
dk.find_features(dataframe_train)
|
||||
self.model = self.train(dataframe_train, pair, dk)
|
||||
self.dd.pair_dict[pair]["trained_timestamp"] = int(
|
||||
@ -306,91 +317,6 @@ class IFreqaiModel(ABC):
|
||||
dk.save_backtesting_prediction(append_df)
|
||||
|
||||
dk.fill_predictions(dataframe)
|
||||
|
||||
return dk
|
||||
|
||||
def start_backtesting_live_models(
|
||||
self, dataframe: DataFrame, metadata: dict, dk: FreqaiDataKitchen
|
||||
) -> FreqaiDataKitchen:
|
||||
"""
|
||||
The main broad execution for backtesting. For backtesting, each pair enters and then gets
|
||||
trained for each window along the sliding window defined by "train_period_days"
|
||||
(training window) and "backtest_period_days" (backtest window, i.e. window immediately
|
||||
following the training window). FreqAI slides the window and sequentially builds
|
||||
the backtesting results before returning the concatenated results for the full
|
||||
backtesting period back to the strategy.
|
||||
:param dataframe: DataFrame = strategy passed dataframe
|
||||
:param metadata: Dict = pair metadata
|
||||
:param dk: FreqaiDataKitchen = Data management/analysis tool associated to present pair only
|
||||
:return:
|
||||
FreqaiDataKitchen = Data management/analysis tool associated to present pair only
|
||||
"""
|
||||
|
||||
self.pair_it += 1
|
||||
train_it = 0
|
||||
# Loop enforcing the sliding window training/backtesting paradigm
|
||||
# tr_train is the training time range e.g. 1 historical month
|
||||
# tr_backtest is the backtesting time range e.g. the week directly
|
||||
# following tr_train. Both of these windows slide through the
|
||||
# entire backtest
|
||||
for tr_train, tr_backtest in zip(dk.training_timeranges, dk.backtesting_timeranges):
|
||||
pair = metadata["pair"]
|
||||
(_, _, _) = self.dd.get_pair_dict_info(pair)
|
||||
train_it += 1
|
||||
total_trains = len(dk.backtesting_timeranges)
|
||||
self.training_timerange = tr_train
|
||||
dataframe_train = dk.slice_dataframe(tr_train, dataframe)
|
||||
dataframe_backtest = dk.slice_dataframe(tr_backtest, dataframe)
|
||||
|
||||
trained_timestamp = tr_train
|
||||
tr_train_startts_str = datetime.fromtimestamp(
|
||||
tr_train.startts,
|
||||
tz=timezone.utc).strftime(DATETIME_PRINT_FORMAT)
|
||||
tr_train_stopts_str = datetime.fromtimestamp(
|
||||
tr_train.stopts,
|
||||
tz=timezone.utc).strftime(DATETIME_PRINT_FORMAT)
|
||||
logger.info(
|
||||
f"Training {pair}, {self.pair_it}/{self.total_pairs} pairs"
|
||||
f" from {tr_train_startts_str} to {tr_train_stopts_str}, {train_it}/{total_trains} "
|
||||
"trains"
|
||||
)
|
||||
|
||||
trained_timestamp_int = int(trained_timestamp.stopts)
|
||||
dk.data_path = Path(
|
||||
dk.full_path / f"sub-train-{pair.split('/')[0]}_{trained_timestamp_int}"
|
||||
)
|
||||
|
||||
dk.set_new_model_names(pair, trained_timestamp)
|
||||
|
||||
if dk.check_if_backtest_prediction_exists():
|
||||
self.dd.load_metadata(dk)
|
||||
self.check_if_feature_list_matches_strategy(dataframe_train, dk)
|
||||
append_df = dk.get_backtesting_prediction()
|
||||
dk.append_predictions(append_df)
|
||||
else:
|
||||
if not self.model_exists(
|
||||
pair, dk, trained_timestamp=trained_timestamp_int
|
||||
):
|
||||
dk.find_features(dataframe_train)
|
||||
self.model = self.train(dataframe_train, pair, dk)
|
||||
self.dd.pair_dict[pair]["trained_timestamp"] = int(
|
||||
trained_timestamp.stopts)
|
||||
|
||||
if self.save_backtest_models:
|
||||
logger.info('Saving backtest model to disk.')
|
||||
self.dd.save_data(self.model, pair, dk)
|
||||
else:
|
||||
self.model = self.dd.load_data(pair, dk)
|
||||
|
||||
self.check_if_feature_list_matches_strategy(dataframe_train, dk)
|
||||
|
||||
pred_df, do_preds = self.predict(dataframe_backtest, dk)
|
||||
append_df = dk.get_predictions_to_append(pred_df, do_preds)
|
||||
dk.append_predictions(append_df)
|
||||
dk.save_backtesting_prediction(append_df)
|
||||
|
||||
dk.fill_predictions(dataframe)
|
||||
|
||||
return dk
|
||||
|
||||
def start_live(
|
||||
@ -595,10 +521,7 @@ class IFreqaiModel(ABC):
|
||||
|
||||
def model_exists(
|
||||
self,
|
||||
pair: str,
|
||||
dk: FreqaiDataKitchen,
|
||||
trained_timestamp: int = None,
|
||||
model_filename: str = "",
|
||||
scanning: bool = False,
|
||||
) -> bool:
|
||||
"""
|
||||
@ -608,7 +531,7 @@ class IFreqaiModel(ABC):
|
||||
:return:
|
||||
:boolean: whether the model file exists or not.
|
||||
"""
|
||||
path_to_modelfile = Path(dk.data_path / f"{model_filename}_model.joblib")
|
||||
path_to_modelfile = Path(dk.data_path / f"{dk.model_filename}_model.joblib")
|
||||
file_exists = path_to_modelfile.is_file()
|
||||
if file_exists and not scanning:
|
||||
logger.info("Found model at %s", dk.data_path / dk.model_filename)
|
||||
@ -663,7 +586,7 @@ class IFreqaiModel(ABC):
|
||||
model = self.train(unfiltered_dataframe, pair, dk)
|
||||
|
||||
self.dd.pair_dict[pair]["trained_timestamp"] = new_trained_timerange.stopts
|
||||
dk.set_new_model_names(pair, new_trained_timerange)
|
||||
dk.set_new_model_names(pair, int(new_trained_timerange.stopts))
|
||||
self.dd.save_data(model, pair, dk)
|
||||
|
||||
if self.freqai_info["feature_parameters"].get("plot_feature_importance", False):
|
||||
|
Loading…
Reference in New Issue
Block a user