Add sample loss and improve docstring
This commit is contained in:
parent
c5b244419d
commit
0e500de1a0
@ -186,6 +186,7 @@ class SuperDuperHyperOptLoss(IHyperOptLoss):
|
|||||||
Weights are distributed as follows:
|
Weights are distributed as follows:
|
||||||
* 0.4 to trade duration
|
* 0.4 to trade duration
|
||||||
* 0.25: Avoiding trade loss
|
* 0.25: Avoiding trade loss
|
||||||
|
* 1.0 to total profit, compared to the expected value (`EXPECTED_MAX_PROFIT`) defined above
|
||||||
"""
|
"""
|
||||||
total_profit = results.profit_percent.sum()
|
total_profit = results.profit_percent.sum()
|
||||||
trade_duration = results.trade_duration.mean()
|
trade_duration = results.trade_duration.mean()
|
||||||
|
@ -37,10 +37,11 @@ class DefaultHyperOptLoss(IHyperOptLoss):
|
|||||||
*args, **kwargs) -> float:
|
*args, **kwargs) -> float:
|
||||||
"""
|
"""
|
||||||
Objective function, returns smaller number for better results
|
Objective function, returns smaller number for better results
|
||||||
This is the legacy algorithm (used until now in freqtrade).
|
This is the Default algorithm
|
||||||
Weights are distributed as follows:
|
Weights are distributed as follows:
|
||||||
* 0.4 to trade duration
|
* 0.4 to trade duration
|
||||||
* 0.25: Avoiding trade loss
|
* 0.25: Avoiding trade loss
|
||||||
|
* 1.0 to total profit, compared to the expected value (`EXPECTED_MAX_PROFIT`) defined above
|
||||||
"""
|
"""
|
||||||
total_profit = results.profit_percent.sum()
|
total_profit = results.profit_percent.sum()
|
||||||
trade_duration = results.trade_duration.mean()
|
trade_duration = results.trade_duration.mean()
|
||||||
|
@ -42,21 +42,6 @@ class SampleHyperOpts(IHyperOpt):
|
|||||||
roi_space, generate_roi_table, stoploss_space
|
roi_space, generate_roi_table, stoploss_space
|
||||||
"""
|
"""
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def hyperopt_loss_custom(results: DataFrame, trade_count: int,
|
|
||||||
min_date: datetime, max_date: datetime, *args, **kwargs) -> float:
|
|
||||||
"""
|
|
||||||
Objective function, returns smaller number for more optimal results
|
|
||||||
"""
|
|
||||||
total_profit = results.profit_percent.sum()
|
|
||||||
trade_duration = results.trade_duration.mean()
|
|
||||||
|
|
||||||
trade_loss = 1 - 0.25 * exp(-(trade_count - TARGET_TRADES) ** 2 / 10 ** 5.8)
|
|
||||||
profit_loss = max(0, 1 - total_profit / EXPECTED_MAX_PROFIT)
|
|
||||||
duration_loss = 0.4 * min(trade_duration / MAX_ACCEPTED_TRADE_DURATION, 1)
|
|
||||||
result = trade_loss + profit_loss + duration_loss
|
|
||||||
return result
|
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def populate_indicators(dataframe: DataFrame, metadata: dict) -> DataFrame:
|
def populate_indicators(dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||||
dataframe['adx'] = ta.ADX(dataframe)
|
dataframe['adx'] = ta.ADX(dataframe)
|
||||||
|
Loading…
Reference in New Issue
Block a user