- refactoring

- fixes to prevent stalling
This commit is contained in:
orehunt 2020-03-20 15:42:25 +01:00
parent 9e0b07b2fd
commit 0ccbaa8c96

View File

@ -247,7 +247,7 @@ class Hyperopt:
self.num_trials_saved = num_trials
self.save_opts()
if final:
logger.info(f"\n{num_trials} {plural(num_trials, 'epoch')} "
logger.info(f"{num_trials} {plural(num_trials, 'epoch')} "
f"saved to '{self.trials_file}'.")
def save_opts(self) -> None:
@ -659,6 +659,7 @@ class Hyperopt:
to_ask: deque = deque()
evald: Set[Tuple] = set()
opt = self.opt
def point():
if self.ask_points:
if to_ask:
@ -683,23 +684,67 @@ class Hyperopt:
del vals[:], void_filtered[:]
a = point()
while a in evald:
if a in evald:
logger.debug("this point was evaluated before...")
if not fit:
opt.update_next()
a = point()
if a in evald:
break
evald.add(a)
yield a
@staticmethod
def opt_get_past_points(asked: dict, results_board: Queue) -> dict:
def opt_get_past_points(asked: dict, results_board: Queue) -> Tuple[dict, int]:
""" fetch shared results between optimizers """
results = results_board.get()
results_board.put(results)
for a in asked:
if a in results:
asked[a] = results[a]
return asked
return asked, len(results)
@staticmethod
def opt_state(shared: bool, optimizers: Queue) -> Tuple[Optimizer, int]:
""" fetch an optimizer in multi opt mode """
# get an optimizer instance
opt = optimizers.get()
# this is the counter used by the optimizer internally to track the initial
# points evaluated so far..
initial_points = opt._n_initial_points
if shared:
# get a random number before putting it back to avoid
# replication with other workers and keep reproducibility
rand = opt.rng.randint(0, VOID_LOSS)
optimizers.put(opt)
# switch the seed to get a different point
opt.rng.seed(rand)
opt, opt.void_loss = opt.copy(random_state=opt.rng), opt.void_loss
# a model is only fit after initial points
elif initial_points < 1:
opt.tell(opt.Xi, opt.yi)
# we have to get a new point anyway
else:
opt.update_next()
return opt, initial_points
@staticmethod
def opt_results(void: bool, void_filtered: list,
initial_points: int, results_board: Queue) -> list:
# update the board used to skip already computed points
# NOTE: some results at the beginning won't be published
# because they are removed by the filter_void_losses
if not void:
results = results_board.get()
for v in void_filtered:
a = tuple(v['params_dict'].values())
if a not in results:
results[a] = v['loss']
results_board.put(results)
# set initial point flag
for n, v in enumerate(void_filtered):
v['is_initial_point'] = initial_points - n > 0
return void_filtered
def parallel_opt_objective(self, n: int, optimizers: Queue, jobs: int, results_board: Queue):
"""
@ -707,47 +752,39 @@ class Hyperopt:
"""
self.log_results_immediate(n)
is_shared = self.shared
# get an optimizer instance
opt = optimizers.get()
# this is the counter used by the optimizer internally to track the initial
# points evaluated so far..
initial_points = opt._n_initial_points
if is_shared:
# get a random number before putting it back to avoid
# replication with other workers and keep reproducibility
rand = opt.rng.randint(0, VOID_LOSS)
optimizers.put(opt)
# switch the seed to get a different point
opt.rng.seed(rand)
opt, opt.void_loss = opt.copy(random_state=opt.rng), opt.void_loss
# we have to get a new point if the last batch was all void
elif opt.void:
opt.update_next()
# a model is only fit after initial points
elif initial_points < 1:
opt.tell(opt.Xi, opt.yi)
id = optimizers.qsize()
opt, initial_points = self.opt_state(is_shared, optimizers)
sss = self.search_space_size
asked = {None: None}
asked_d = {}
told = 0 # told
Xi_d = [] # done
yi_d = []
Xi_t = [] # to do
# ask for points according to config
while True:
while asked != asked_d and len(opt.Xi) < sss:
asked_d = asked
asked = opt.ask(n_points=self.ask_points, strategy=self.lie_strat())
if not self.ask_points:
asked = {tuple(asked): None}
else:
asked = {tuple(a): None for a in asked}
# check if some points have been evaluated by other optimizers
p_asked = self.opt_get_past_points(asked, results_board)
p_asked, _ = self.opt_get_past_points(asked, results_board)
for a in p_asked:
if p_asked[a] is not None:
Xi_d.append(a)
yi_d.append(p_asked[a])
if a not in Xi_d:
Xi_d.append(a)
yi_d.append(p_asked[a])
else:
Xi_t.append(a)
if len(Xi_t) < self.n_points:
opt.update_next()
len_Xi_d = len(Xi_d)
if len_Xi_d > told: # tell new points
opt.tell(Xi_d[told:], yi_d[told:])
told = len_Xi_d
else:
opt.update_next()
else:
break
# run the backtest for each point to do (Xi_t)
@ -773,20 +810,8 @@ class Hyperopt:
# don't pickle models
del opt.models[:]
optimizers.put(opt)
# update the board used to skip already computed points
# NOTE: some results at the beginning won't be published
# because they are removed by the filter_void_losses
if not void:
results = results_board.get()
for v in void_filtered:
a = tuple(v['params_dict'].values())
if a not in results:
results[a] = v['loss']
results_board.put(results)
# set initial point flag
for n, v in enumerate(void_filtered):
v['is_initial_point'] = initial_points - n > 0
return void_filtered
return self.opt_results(void, void_filtered, initial_points, results_board)
def parallel_objective(self, asked, results: Queue = None, n=0):
""" objective run in single opt mode, run the backtest, store the results into a queue """
@ -892,9 +917,12 @@ class Hyperopt:
n_parameters += len(d.bounds)
# guess the size of the search space as the count of the
# unordered combination of the dimensions entries
search_space_size = int(
(factorial(n_parameters) /
(factorial(n_parameters - n_dimensions) * factorial(n_dimensions))))
try:
search_space_size = int(
(factorial(n_parameters) /
(factorial(n_parameters - n_dimensions) * factorial(n_dimensions))))
except OverflowError:
search_space_size = VOID_LOSS
# logger.info(f'Search space size: {search_space_size}')
log_opt = int(log(opt_points, 2)) if opt_points > 4 else 2
if search_space_size < opt_points:
@ -913,7 +941,7 @@ class Hyperopt:
n_initial_points = min(log_sss, search_space_size // 3)
# it shall run for this much, I say
min_epochs = int(max(n_initial_points, opt_points) * (1 + effort) + n_initial_points)
return n_initial_points, min_epochs, search_space_size
return n_initial_points or 1, min_epochs, search_space_size
def update_max_epoch(self, val: Dict, current: int):
""" calculate max epochs: store the number of non best epochs
@ -987,11 +1015,65 @@ class Hyperopt:
# initialize average best occurrence
self.avg_best_occurrence = self.min_epochs // self.n_jobs
def main_loop(self, jobs_scheduler):
""" main parallel loop """
try:
if self.multi:
jobs_scheduler = self.run_multi_backtest_parallel
else:
jobs_scheduler = self.run_backtest_parallel
with parallel_backend('loky', inner_max_num_threads=2):
with Parallel(n_jobs=self.n_jobs, verbose=0, backend='loky') as parallel:
jobs = parallel._effective_n_jobs()
logger.info(f'Effective number of parallel workers used: {jobs}')
# update epochs count
n_points = self.n_points
prev_batch = -1
epochs_so_far = len(self.trials)
epochs_limit = self.epochs_limit
columns, _ = os.get_terminal_size()
columns -= 1
while epochs_so_far > prev_batch or epochs_so_far < self.min_epochs:
prev_batch = epochs_so_far
occurrence = int(self.avg_best_occurrence * (1 + self.effort))
# pad the batch length to the number of jobs to avoid desaturation
batch_len = (occurrence + jobs -
occurrence % jobs)
# when using multiple optimizers each worker performs
# n_points (epochs) in 1 dispatch but this reduces the batch len too much
# if self.multi: batch_len = batch_len // self.n_points
# don't go over the limit
if epochs_so_far + batch_len * n_points >= epochs_limit():
q, r = divmod(epochs_limit() - epochs_so_far, n_points)
batch_len = q + r
print(
f"{epochs_so_far+1}-{epochs_so_far+batch_len*n_points}"
f"/{epochs_limit()}: ",
end='')
f_val = jobs_scheduler(parallel, batch_len, epochs_so_far, jobs)
print(end='\r')
saved = self.log_results(f_val, epochs_so_far, epochs_limit())
print('\r', ' ' * columns, end='\r')
# stop if no epochs have been evaluated
if len(f_val) < batch_len:
logger.warning("Some evaluated epochs were void, "
"check the loss function and the search space.")
if (not saved and len(f_val) > 1) or batch_len < 1 or \
(not saved and self.search_space_size < batch_len + epochs_limit()):
break
# log_results add
epochs_so_far += saved
if self.max_epoch_reached:
logger.info("Max epoch reached, terminating.")
break
except KeyboardInterrupt:
print('User interrupted..')
def start(self) -> None:
""" Broom Broom """
self.random_state = self._set_random_state(self.config.get('hyperopt_random_state', None))
logger.info(f"Using optimizer random state: {self.random_state}")
self.hyperopt_table_header = -1
data, timerange = self.backtesting.load_bt_data()
preprocessed = self.backtesting.strategy.tickerdata_to_dataframe(data)
@ -1024,57 +1106,13 @@ class Hyperopt:
colorama_init(autoreset=True)
self.setup_optimizers()
try:
if self.multi:
jobs_scheduler = self.run_multi_backtest_parallel
else:
jobs_scheduler = self.run_backtest_parallel
with parallel_backend('loky', inner_max_num_threads=2):
with Parallel(n_jobs=self.n_jobs, verbose=0, backend='loky') as parallel:
jobs = parallel._effective_n_jobs()
logger.info(f'Effective number of parallel workers used: {jobs}')
# update epochs count
n_points = self.n_points
prev_batch = -1
epochs_so_far = len(self.trials)
epochs_limit = self.epochs_limit
columns, _ = os.get_terminal_size()
columns -= 1
while epochs_so_far > prev_batch or epochs_so_far < self.min_epochs:
prev_batch = epochs_so_far
occurrence = int(self.avg_best_occurrence * (1 + self.effort))
# pad the batch length to the number of jobs to avoid desaturation
batch_len = (occurrence + jobs -
occurrence % jobs)
# when using multiple optimizers each worker performs
# n_points (epochs) in 1 dispatch but this reduces the batch len too much
# if self.multi: batch_len = batch_len // self.n_points
# don't go over the limit
if epochs_so_far + batch_len * n_points >= epochs_limit():
q, r = divmod(epochs_limit() - epochs_so_far, n_points)
batch_len = q + r
print(
f"{epochs_so_far+1}-{epochs_so_far+batch_len*n_points}"
f"/{epochs_limit()}: ",
end='')
f_val = jobs_scheduler(parallel, batch_len, epochs_so_far, jobs)
print(end='\r')
saved = self.log_results(f_val, epochs_so_far, epochs_limit())
print('\r', ' ' * columns, end='\r')
# stop if no epochs have been evaluated
if len(f_val) < batch_len:
logger.warning("Some evaluated epochs were void, "
"check the loss function and the search space.")
if (not saved and len(f_val) > 1) or batch_len < 1:
break
# log_results add
epochs_so_far += saved
if self.max_epoch_reached:
logger.info("Max epoch reached, terminating.")
break
except KeyboardInterrupt:
print('User interrupted..')
if self.multi:
jobs_scheduler = self.run_multi_backtest_parallel
else:
jobs_scheduler = self.run_backtest_parallel
self.main_loop(jobs_scheduler)
self.save_trials(final=True)