extract download-data from freqai to prepare for future async changes
This commit is contained in:
parent
83ca168bb8
commit
0c34104e45
@ -816,7 +816,7 @@ class FreqaiDataKitchen:
|
|||||||
return False
|
return False
|
||||||
|
|
||||||
def check_if_new_training_required(
|
def check_if_new_training_required(
|
||||||
self, trained_timestamp: int
|
self, trained_timestamp: int = 0
|
||||||
) -> Tuple[bool, TimeRange, TimeRange]:
|
) -> Tuple[bool, TimeRange, TimeRange]:
|
||||||
|
|
||||||
time = datetime.datetime.now(tz=datetime.timezone.utc).timestamp()
|
time = datetime.datetime.now(tz=datetime.timezone.utc).timestamp()
|
||||||
@ -889,31 +889,6 @@ class FreqaiDataKitchen:
|
|||||||
|
|
||||||
self.model_filename = f"cb_{coin.lower()}_{int(trained_timerange.stopts)}"
|
self.model_filename = f"cb_{coin.lower()}_{int(trained_timerange.stopts)}"
|
||||||
|
|
||||||
def download_all_data_for_training(self, timerange: TimeRange, dp: DataProvider) -> None:
|
|
||||||
"""
|
|
||||||
Called only once upon start of bot to download the necessary data for
|
|
||||||
populating indicators and training the model.
|
|
||||||
:param timerange: TimeRange = The full data timerange for populating the indicators
|
|
||||||
and training the model.
|
|
||||||
:param dp: DataProvider instance attached to the strategy
|
|
||||||
"""
|
|
||||||
new_pairs_days = int((timerange.stopts - timerange.startts) / SECONDS_IN_DAY)
|
|
||||||
if not dp._exchange:
|
|
||||||
# Not realistic - this is only called in live mode.
|
|
||||||
raise OperationalException("Dataprovider did not have an exchange attached.")
|
|
||||||
refresh_backtest_ohlcv_data(
|
|
||||||
dp._exchange,
|
|
||||||
pairs=self.all_pairs,
|
|
||||||
timeframes=self.freqai_config["feature_parameters"].get("include_timeframes"),
|
|
||||||
datadir=self.config["datadir"],
|
|
||||||
timerange=timerange,
|
|
||||||
new_pairs_days=new_pairs_days,
|
|
||||||
erase=False,
|
|
||||||
data_format=self.config.get("dataformat_ohlcv", "json"),
|
|
||||||
trading_mode=self.config.get("trading_mode", "spot"),
|
|
||||||
prepend=self.config.get("prepend_data", False),
|
|
||||||
)
|
|
||||||
|
|
||||||
def set_all_pairs(self) -> None:
|
def set_all_pairs(self) -> None:
|
||||||
|
|
||||||
self.all_pairs = copy.deepcopy(
|
self.all_pairs = copy.deepcopy(
|
||||||
@ -1027,3 +1002,78 @@ class FreqaiDataKitchen:
|
|||||||
if self.unique_classes:
|
if self.unique_classes:
|
||||||
for label in self.unique_classes:
|
for label in self.unique_classes:
|
||||||
self.unique_class_list += list(self.unique_classes[label])
|
self.unique_class_list += list(self.unique_classes[label])
|
||||||
|
|
||||||
|
# Methods called by interface.py (load_freqai_model())
|
||||||
|
|
||||||
|
|
||||||
|
def download_all_data_for_training(timerange: TimeRange,
|
||||||
|
dp: DataProvider, config: dict) -> None:
|
||||||
|
"""
|
||||||
|
Called only once upon start of bot to download the necessary data for
|
||||||
|
populating indicators and training the model.
|
||||||
|
:param timerange: TimeRange = The full data timerange for populating the indicators
|
||||||
|
and training the model.
|
||||||
|
:param dp: DataProvider instance attached to the strategy
|
||||||
|
"""
|
||||||
|
all_pairs = copy.deepcopy(
|
||||||
|
config["freqai"]["feature_parameters"].get("include_corr_pairlist", [])
|
||||||
|
)
|
||||||
|
for pair in config.get("exchange", "").get("pair_whitelist"):
|
||||||
|
if pair not in all_pairs:
|
||||||
|
all_pairs.append(pair)
|
||||||
|
|
||||||
|
new_pairs_days = int((timerange.stopts - timerange.startts) / SECONDS_IN_DAY)
|
||||||
|
if not dp._exchange:
|
||||||
|
# Not realistic - this is only called in live mode.
|
||||||
|
raise OperationalException("Dataprovider did not have an exchange attached.")
|
||||||
|
refresh_backtest_ohlcv_data(
|
||||||
|
dp._exchange,
|
||||||
|
pairs=all_pairs,
|
||||||
|
timeframes=config["freqai"]["feature_parameters"].get("include_timeframes"),
|
||||||
|
datadir=config["datadir"],
|
||||||
|
timerange=timerange,
|
||||||
|
new_pairs_days=new_pairs_days,
|
||||||
|
erase=False,
|
||||||
|
data_format=config.get("dataformat_ohlcv", "json"),
|
||||||
|
trading_mode=config.get("trading_mode", "spot"),
|
||||||
|
prepend=config.get("prepend_data", False),
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def get_required_data_timerange(
|
||||||
|
config: dict
|
||||||
|
) -> TimeRange:
|
||||||
|
"""
|
||||||
|
Used by interface.py to pre-download necessary data for FreqAI
|
||||||
|
user.
|
||||||
|
"""
|
||||||
|
time = datetime.datetime.now(tz=datetime.timezone.utc).timestamp()
|
||||||
|
trained_timerange = TimeRange()
|
||||||
|
data_load_timerange = TimeRange()
|
||||||
|
|
||||||
|
timeframes = config["freqai"]["feature_parameters"].get("include_timeframes")
|
||||||
|
|
||||||
|
max_tf_seconds = 0
|
||||||
|
for tf in timeframes:
|
||||||
|
secs = timeframe_to_seconds(tf)
|
||||||
|
if secs > max_tf_seconds:
|
||||||
|
max_tf_seconds = secs
|
||||||
|
|
||||||
|
max_period = config["freqai"]["feature_parameters"].get(
|
||||||
|
"indicator_max_period_candles", 20
|
||||||
|
) * 2
|
||||||
|
additional_seconds = max_period * max_tf_seconds
|
||||||
|
|
||||||
|
trained_timerange.startts = int(
|
||||||
|
time - config["freqai"].get("train_period_days", 0) * SECONDS_IN_DAY
|
||||||
|
)
|
||||||
|
trained_timerange.stopts = int(time)
|
||||||
|
|
||||||
|
data_load_timerange.startts = int(
|
||||||
|
time
|
||||||
|
- config["freqai"].get("train_period_days", 0) * SECONDS_IN_DAY
|
||||||
|
- additional_seconds
|
||||||
|
)
|
||||||
|
data_load_timerange.stopts = int(time)
|
||||||
|
|
||||||
|
return data_load_timerange
|
||||||
|
@ -278,12 +278,12 @@ class IFreqaiModel(ABC):
|
|||||||
|
|
||||||
# download candle history if it is not already in memory
|
# download candle history if it is not already in memory
|
||||||
if not self.dd.historic_data:
|
if not self.dd.historic_data:
|
||||||
logger.info(
|
# logger.info(
|
||||||
"Downloading all training data for all pairs in whitelist and "
|
# "Downloading all training data for all pairs in whitelist and "
|
||||||
"corr_pairlist, this may take a while if you do not have the "
|
# "corr_pairlist, this may take a while if you do not have the "
|
||||||
"data saved"
|
# "data saved"
|
||||||
)
|
# )
|
||||||
dk.download_all_data_for_training(data_load_timerange, strategy.dp)
|
# dk.download_all_data_for_training(data_load_timerange, strategy.dp)
|
||||||
self.dd.load_all_pair_histories(data_load_timerange, dk)
|
self.dd.load_all_pair_histories(data_load_timerange, dk)
|
||||||
|
|
||||||
if not self.scanning:
|
if not self.scanning:
|
||||||
|
@ -149,9 +149,20 @@ class IStrategy(ABC, HyperStrategyMixin):
|
|||||||
if self.config.get('freqai', {}).get('enabled', False):
|
if self.config.get('freqai', {}).get('enabled', False):
|
||||||
# Import here to avoid importing this if freqAI is disabled
|
# Import here to avoid importing this if freqAI is disabled
|
||||||
from freqtrade.resolvers.freqaimodel_resolver import FreqaiModelResolver
|
from freqtrade.resolvers.freqaimodel_resolver import FreqaiModelResolver
|
||||||
|
from freqtrade.freqai.data_kitchen import (get_required_data_timerange,
|
||||||
|
download_all_data_for_training)
|
||||||
self.freqai = FreqaiModelResolver.load_freqaimodel(self.config)
|
self.freqai = FreqaiModelResolver.load_freqaimodel(self.config)
|
||||||
self.freqai_info = self.config["freqai"]
|
self.freqai_info = self.config["freqai"]
|
||||||
|
|
||||||
|
# download the desired data in dry/live
|
||||||
|
if self.config.get('runmode') in (RunMode.DRY_RUN, RunMode.LIVE):
|
||||||
|
logger.info(
|
||||||
|
"Downloading all training data for all pairs in whitelist and "
|
||||||
|
"corr_pairlist, this may take a while if you do not have the "
|
||||||
|
"data saved"
|
||||||
|
)
|
||||||
|
data_load_timerange = get_required_data_timerange(self.config)
|
||||||
|
download_all_data_for_training(data_load_timerange, self.dp, self.config)
|
||||||
else:
|
else:
|
||||||
# Gracious failures if freqAI is disabled but "start" is called.
|
# Gracious failures if freqAI is disabled but "start" is called.
|
||||||
class DummyClass():
|
class DummyClass():
|
||||||
|
Loading…
Reference in New Issue
Block a user