minor: add OnlyProfitHyperOptLoss
This commit is contained in:
parent
41f24898e5
commit
0c2c094db6
@ -3,27 +3,26 @@ DefaultHyperOptLoss
|
|||||||
This module defines the default HyperoptLoss class which is being used for
|
This module defines the default HyperoptLoss class which is being used for
|
||||||
Hyperoptimization.
|
Hyperoptimization.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
from math import exp
|
from math import exp
|
||||||
|
|
||||||
from pandas import DataFrame
|
from pandas import DataFrame
|
||||||
|
|
||||||
from freqtrade.optimize.hyperopt import IHyperOptLoss
|
from freqtrade.optimize.hyperopt import IHyperOptLoss
|
||||||
|
|
||||||
# Define some constants:
|
|
||||||
|
|
||||||
# set TARGET_TRADES to suit your number concurrent trades so its realistic
|
# Set TARGET_TRADES to suit your number concurrent trades so its realistic
|
||||||
# to the number of days
|
# to the number of days
|
||||||
TARGET_TRADES = 600
|
TARGET_TRADES = 600
|
||||||
|
|
||||||
# This is assumed to be expected avg profit * expected trade count.
|
# This is assumed to be expected avg profit * expected trade count.
|
||||||
# For example, for 0.35% avg per trade (or 0.0035 as ratio) and 1100 trades,
|
# For example, for 0.35% avg per trade (or 0.0035 as ratio) and 1100 trades,
|
||||||
# self.expected_max_profit = 3.85
|
# expected max profit = 3.85
|
||||||
# Check that the reported Σ% values do not exceed this!
|
# Check that the reported Σ% values do not exceed this!
|
||||||
# Note, this is ratio. 3.85 stated above means 385Σ%.
|
# Note, this is ratio. 3.85 stated above means 385Σ%.
|
||||||
EXPECTED_MAX_PROFIT = 3.0
|
EXPECTED_MAX_PROFIT = 3.0
|
||||||
|
|
||||||
# max average trade duration in minutes
|
# Max average trade duration in minutes.
|
||||||
# if eval ends with higher value, we consider it a failed eval
|
# If eval ends with higher value, we consider it a failed eval.
|
||||||
MAX_ACCEPTED_TRADE_DURATION = 300
|
MAX_ACCEPTED_TRADE_DURATION = 300
|
||||||
|
|
||||||
|
|
||||||
|
34
freqtrade/optimize/hyperopt_loss_onlyprofit.py
Normal file
34
freqtrade/optimize/hyperopt_loss_onlyprofit.py
Normal file
@ -0,0 +1,34 @@
|
|||||||
|
"""
|
||||||
|
OnlyProfitHyperOptLoss
|
||||||
|
|
||||||
|
This module defines the alternative HyperOptLoss class which can be used for
|
||||||
|
Hyperoptimization.
|
||||||
|
"""
|
||||||
|
from pandas import DataFrame
|
||||||
|
|
||||||
|
from freqtrade.optimize.hyperopt import IHyperOptLoss
|
||||||
|
|
||||||
|
|
||||||
|
# This is assumed to be expected avg profit * expected trade count.
|
||||||
|
# For example, for 0.35% avg per trade (or 0.0035 as ratio) and 1100 trades,
|
||||||
|
# expected max profit = 3.85
|
||||||
|
# Check that the reported Σ% values do not exceed this!
|
||||||
|
# Note, this is ratio. 3.85 stated above means 385Σ%.
|
||||||
|
EXPECTED_MAX_PROFIT = 3.0
|
||||||
|
|
||||||
|
|
||||||
|
class OnlyProfitHyperOptLoss(IHyperOptLoss):
|
||||||
|
"""
|
||||||
|
Defines the loss function for hyperopt.
|
||||||
|
|
||||||
|
This implementation takes only profit into account.
|
||||||
|
"""
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def hyperopt_loss_function(results: DataFrame, trade_count: int,
|
||||||
|
*args, **kwargs) -> float:
|
||||||
|
"""
|
||||||
|
Objective function, returns smaller number for better results.
|
||||||
|
"""
|
||||||
|
total_profit = results.profit_percent.sum()
|
||||||
|
return max(0, 1 - total_profit / EXPECTED_MAX_PROFIT)
|
@ -1,8 +1,9 @@
|
|||||||
"""
|
"""
|
||||||
IHyperOptLoss interface
|
SharpeHyperOptLoss
|
||||||
This module defines the interface for the loss-function for hyperopts
|
|
||||||
"""
|
|
||||||
|
|
||||||
|
This module defines the alternative HyperOptLoss class which can be used for
|
||||||
|
Hyperoptimization.
|
||||||
|
"""
|
||||||
from datetime import datetime
|
from datetime import datetime
|
||||||
|
|
||||||
from pandas import DataFrame
|
from pandas import DataFrame
|
||||||
@ -13,8 +14,9 @@ from freqtrade.optimize.hyperopt import IHyperOptLoss
|
|||||||
|
|
||||||
class SharpeHyperOptLoss(IHyperOptLoss):
|
class SharpeHyperOptLoss(IHyperOptLoss):
|
||||||
"""
|
"""
|
||||||
Defines the a loss function for hyperopt.
|
Defines the loss function for hyperopt.
|
||||||
This implementation uses the sharpe ratio calculation.
|
|
||||||
|
This implementation uses the Sharpe Ratio calculation.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
@ -22,8 +24,9 @@ class SharpeHyperOptLoss(IHyperOptLoss):
|
|||||||
min_date: datetime, max_date: datetime,
|
min_date: datetime, max_date: datetime,
|
||||||
*args, **kwargs) -> float:
|
*args, **kwargs) -> float:
|
||||||
"""
|
"""
|
||||||
Objective function, returns smaller number for more optimal results
|
Objective function, returns smaller number for more optimal results.
|
||||||
Using sharpe ratio calculation
|
|
||||||
|
Uses Sharpe Ratio calculation.
|
||||||
"""
|
"""
|
||||||
total_profit = results.profit_percent
|
total_profit = results.profit_percent
|
||||||
days_period = (max_date - min_date).days
|
days_period = (max_date - min_date).days
|
||||||
|
Loading…
Reference in New Issue
Block a user