Merge pull request #242 from gcarq/backtesting-unittests
Backtesting and hyperopt unit tests
This commit is contained in:
commit
0abf0b0e39
@ -4,11 +4,9 @@ import logging
|
||||
import json
|
||||
import os
|
||||
from typing import Optional, List, Dict
|
||||
from pandas import DataFrame
|
||||
from freqtrade.exchange import get_ticker_history
|
||||
from freqtrade.optimize.hyperopt_conf import hyperopt_optimize_conf
|
||||
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade.analyze import populate_indicators, parse_ticker_dataframe
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@ -50,10 +48,8 @@ def load_data(ticker_interval: int = 5, pairs: Optional[List[str]] = None,
|
||||
|
||||
def preprocess(tickerdata: Dict[str, List]) -> Dict[str, DataFrame]:
|
||||
"""Creates a dataframe and populates indicators for given ticker data"""
|
||||
processed = {}
|
||||
for pair, pair_data in tickerdata.items():
|
||||
processed[pair] = populate_indicators(parse_ticker_dataframe(pair_data))
|
||||
return processed
|
||||
return {pair: populate_indicators(parse_ticker_dataframe(pair_data))
|
||||
for pair, pair_data in tickerdata.items()}
|
||||
|
||||
|
||||
def testdata_path() -> str:
|
||||
|
@ -111,14 +111,14 @@ def backtest(stake_amount: float, processed: Dict[str, DataFrame],
|
||||
|
||||
if min_roi_reached(trade, row2.close, row2.date) or row2.sell == 1:
|
||||
current_profit_percent = trade.calc_profit_percent(rate=row2.close)
|
||||
current_profit_BTC = trade.calc_profit(rate=row2.close)
|
||||
current_profit_btc = trade.calc_profit(rate=row2.close)
|
||||
lock_pair_until = row2.Index
|
||||
|
||||
trades.append(
|
||||
(
|
||||
pair,
|
||||
current_profit_percent,
|
||||
current_profit_BTC,
|
||||
current_profit_btc,
|
||||
row2.Index - row.Index
|
||||
)
|
||||
)
|
||||
|
@ -25,12 +25,10 @@ logging.getLogger('hyperopt.tpe').setLevel(logging.WARNING)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
# set TARGET_TRADES to suit your number concurrent trades so its realistic to 20days of data
|
||||
TARGET_TRADES = 1100
|
||||
TOTAL_TRIES = None
|
||||
_CURRENT_TRIES = 0
|
||||
|
||||
CURRENT_BEST_LOSS = 100
|
||||
|
||||
# this is expexted avg profit * expected trade count
|
||||
@ -111,6 +109,13 @@ def log_results(results):
|
||||
sys.stdout.flush()
|
||||
|
||||
|
||||
def calculate_loss(total_profit: float, trade_count: int):
|
||||
""" objective function, returns smaller number for more optimal results """
|
||||
trade_loss = 1 - 0.35 * exp(-(trade_count - TARGET_TRADES) ** 2 / 10 ** 5.2)
|
||||
profit_loss = max(0, 1 - total_profit / EXPECTED_MAX_PROFIT)
|
||||
return trade_loss + profit_loss
|
||||
|
||||
|
||||
def optimizer(params):
|
||||
global _CURRENT_TRIES
|
||||
|
||||
@ -118,37 +123,33 @@ def optimizer(params):
|
||||
backtesting.populate_buy_trend = buy_strategy_generator(params)
|
||||
|
||||
results = backtest(OPTIMIZE_CONFIG['stake_amount'], PROCESSED)
|
||||
|
||||
result = format_results(results)
|
||||
result_explanation = format_results(results)
|
||||
|
||||
total_profit = results.profit_percent.sum()
|
||||
trade_count = len(results.index)
|
||||
|
||||
if trade_count == 0:
|
||||
print('.', end='')
|
||||
return {
|
||||
'status': STATUS_FAIL,
|
||||
'loss': float('inf')
|
||||
}
|
||||
|
||||
trade_loss = 1 - 0.35 * exp(-(trade_count - TARGET_TRADES) ** 2 / 10 ** 5.2)
|
||||
profit_loss = max(0, 1 - total_profit / EXPECTED_MAX_PROFIT)
|
||||
loss = trade_loss + profit_loss
|
||||
loss = calculate_loss(total_profit, trade_count)
|
||||
|
||||
_CURRENT_TRIES += 1
|
||||
|
||||
result_data = {
|
||||
log_results({
|
||||
'loss': loss,
|
||||
'current_tries': _CURRENT_TRIES,
|
||||
'total_tries': TOTAL_TRIES,
|
||||
'result': result,
|
||||
}
|
||||
log_results(result_data)
|
||||
'result': result_explanation,
|
||||
})
|
||||
|
||||
return {
|
||||
'loss': loss,
|
||||
'status': STATUS_OK,
|
||||
'result': result,
|
||||
'total_profit': total_profit,
|
||||
'avg_profit': results.profit_percent.mean() * 100.0,
|
||||
'result': result_explanation,
|
||||
}
|
||||
|
||||
|
||||
|
@ -1,12 +1,36 @@
|
||||
# pragma pylint: disable=missing-docstring,W0212
|
||||
|
||||
import os
|
||||
import pandas as pd
|
||||
from freqtrade import exchange, optimize
|
||||
from freqtrade.exchange import Bittrex
|
||||
from freqtrade.optimize.backtesting import backtest
|
||||
from freqtrade.optimize.backtesting import backtest, generate_text_table, get_timeframe
|
||||
from freqtrade.optimize.__init__ import testdata_path, download_pairs, download_backtesting_testdata
|
||||
|
||||
|
||||
def test_generate_text_table():
|
||||
results = pd.DataFrame(
|
||||
{
|
||||
'currency': ['BTC_ETH', 'BTC_ETH'],
|
||||
'profit_percent': [0.1, 0.2],
|
||||
'profit_BTC': [0.2, 0.4],
|
||||
'duration': [10, 30]
|
||||
}
|
||||
)
|
||||
assert generate_text_table({'BTC_ETH': {}}, results, 'BTC', 5) == (
|
||||
'pair buy count avg profit total profit avg duration\n'
|
||||
'------- ----------- ------------ -------------- --------------\n'
|
||||
'BTC_ETH 2 15.00% 0.60000000 BTC 100\n'
|
||||
'TOTAL 2 15.00% 0.60000000 BTC 100')
|
||||
|
||||
|
||||
def test_get_timeframe():
|
||||
data = optimize.load_data(ticker_interval=1, pairs=['BTC_UNITEST'])
|
||||
min_date, max_date = get_timeframe(data)
|
||||
assert min_date.isoformat() == '2017-11-04T23:02:00+00:00'
|
||||
assert max_date.isoformat() == '2017-11-14T22:59:00+00:00'
|
||||
|
||||
|
||||
def test_backtest(default_conf, mocker):
|
||||
mocker.patch.dict('freqtrade.main._CONF', default_conf)
|
||||
exchange._API = Bittrex({'key': '', 'secret': ''})
|
79
freqtrade/tests/optimize/test_hyperopt.py
Normal file
79
freqtrade/tests/optimize/test_hyperopt.py
Normal file
@ -0,0 +1,79 @@
|
||||
# pragma pylint: disable=missing-docstring,W0212,C0103
|
||||
|
||||
from freqtrade.optimize.hyperopt import calculate_loss, TARGET_TRADES, EXPECTED_MAX_PROFIT, start, \
|
||||
log_results
|
||||
|
||||
|
||||
def test_loss_calculation_prefer_correct_trade_count():
|
||||
correct = calculate_loss(1, TARGET_TRADES)
|
||||
over = calculate_loss(1, TARGET_TRADES + 100)
|
||||
under = calculate_loss(1, TARGET_TRADES - 100)
|
||||
assert over > correct
|
||||
assert under > correct
|
||||
|
||||
|
||||
def test_loss_calculation_has_limited_profit():
|
||||
correct = calculate_loss(EXPECTED_MAX_PROFIT, TARGET_TRADES)
|
||||
over = calculate_loss(EXPECTED_MAX_PROFIT * 2, TARGET_TRADES)
|
||||
under = calculate_loss(EXPECTED_MAX_PROFIT / 2, TARGET_TRADES)
|
||||
assert over == correct
|
||||
assert under > correct
|
||||
|
||||
|
||||
def create_trials(mocker):
|
||||
return mocker.Mock(
|
||||
results=[{
|
||||
'loss': 1,
|
||||
'result': 'foo'
|
||||
}]
|
||||
)
|
||||
|
||||
|
||||
def test_start_calls_fmin(mocker):
|
||||
mocker.patch('freqtrade.optimize.hyperopt.Trials', return_value=create_trials(mocker))
|
||||
mocker.patch('freqtrade.optimize.preprocess')
|
||||
mocker.patch('freqtrade.optimize.load_data')
|
||||
mock_fmin = mocker.patch('freqtrade.optimize.hyperopt.fmin', return_value={})
|
||||
|
||||
args = mocker.Mock(epochs=1, config='config.json.example', mongodb=False)
|
||||
start(args)
|
||||
|
||||
mock_fmin.assert_called_once()
|
||||
|
||||
|
||||
def test_start_uses_mongotrials(mocker):
|
||||
mock_mongotrials = mocker.patch('freqtrade.optimize.hyperopt.MongoTrials',
|
||||
return_value=create_trials(mocker))
|
||||
mocker.patch('freqtrade.optimize.preprocess')
|
||||
mocker.patch('freqtrade.optimize.load_data')
|
||||
mocker.patch('freqtrade.optimize.hyperopt.fmin', return_value={})
|
||||
|
||||
args = mocker.Mock(epochs=1, config='config.json.example', mongodb=True)
|
||||
start(args)
|
||||
|
||||
mock_mongotrials.assert_called_once()
|
||||
|
||||
|
||||
def test_log_results_if_loss_improves(mocker):
|
||||
logger = mocker.patch('freqtrade.optimize.hyperopt.logger.info')
|
||||
global CURRENT_BEST_LOSS
|
||||
CURRENT_BEST_LOSS = 2
|
||||
log_results({
|
||||
'loss': 1,
|
||||
'current_tries': 1,
|
||||
'total_tries': 2,
|
||||
'result': 'foo'
|
||||
})
|
||||
|
||||
logger.assert_called_once()
|
||||
|
||||
|
||||
def test_no_log_if_loss_does_not_improve(mocker):
|
||||
logger = mocker.patch('freqtrade.optimize.hyperopt.logger.info')
|
||||
global CURRENT_BEST_LOSS
|
||||
CURRENT_BEST_LOSS = 2
|
||||
log_results({
|
||||
'loss': 3,
|
||||
})
|
||||
|
||||
assert not logger.called
|
@ -1,6 +0,0 @@
|
||||
# pragma pylint: disable=missing-docstring,W0212
|
||||
|
||||
|
||||
def test_optimizer(default_conf, mocker):
|
||||
# TODO: implement test
|
||||
pass
|
Loading…
Reference in New Issue
Block a user