Merge pull request #242 from gcarq/backtesting-unittests
Backtesting and hyperopt unit tests
This commit is contained in:
commit
0abf0b0e39
@ -4,11 +4,9 @@ import logging
|
|||||||
import json
|
import json
|
||||||
import os
|
import os
|
||||||
from typing import Optional, List, Dict
|
from typing import Optional, List, Dict
|
||||||
|
from pandas import DataFrame
|
||||||
from freqtrade.exchange import get_ticker_history
|
from freqtrade.exchange import get_ticker_history
|
||||||
from freqtrade.optimize.hyperopt_conf import hyperopt_optimize_conf
|
from freqtrade.optimize.hyperopt_conf import hyperopt_optimize_conf
|
||||||
|
|
||||||
from pandas import DataFrame
|
|
||||||
|
|
||||||
from freqtrade.analyze import populate_indicators, parse_ticker_dataframe
|
from freqtrade.analyze import populate_indicators, parse_ticker_dataframe
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
@ -50,10 +48,8 @@ def load_data(ticker_interval: int = 5, pairs: Optional[List[str]] = None,
|
|||||||
|
|
||||||
def preprocess(tickerdata: Dict[str, List]) -> Dict[str, DataFrame]:
|
def preprocess(tickerdata: Dict[str, List]) -> Dict[str, DataFrame]:
|
||||||
"""Creates a dataframe and populates indicators for given ticker data"""
|
"""Creates a dataframe and populates indicators for given ticker data"""
|
||||||
processed = {}
|
return {pair: populate_indicators(parse_ticker_dataframe(pair_data))
|
||||||
for pair, pair_data in tickerdata.items():
|
for pair, pair_data in tickerdata.items()}
|
||||||
processed[pair] = populate_indicators(parse_ticker_dataframe(pair_data))
|
|
||||||
return processed
|
|
||||||
|
|
||||||
|
|
||||||
def testdata_path() -> str:
|
def testdata_path() -> str:
|
||||||
|
@ -111,14 +111,14 @@ def backtest(stake_amount: float, processed: Dict[str, DataFrame],
|
|||||||
|
|
||||||
if min_roi_reached(trade, row2.close, row2.date) or row2.sell == 1:
|
if min_roi_reached(trade, row2.close, row2.date) or row2.sell == 1:
|
||||||
current_profit_percent = trade.calc_profit_percent(rate=row2.close)
|
current_profit_percent = trade.calc_profit_percent(rate=row2.close)
|
||||||
current_profit_BTC = trade.calc_profit(rate=row2.close)
|
current_profit_btc = trade.calc_profit(rate=row2.close)
|
||||||
lock_pair_until = row2.Index
|
lock_pair_until = row2.Index
|
||||||
|
|
||||||
trades.append(
|
trades.append(
|
||||||
(
|
(
|
||||||
pair,
|
pair,
|
||||||
current_profit_percent,
|
current_profit_percent,
|
||||||
current_profit_BTC,
|
current_profit_btc,
|
||||||
row2.Index - row.Index
|
row2.Index - row.Index
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
|
@ -25,12 +25,10 @@ logging.getLogger('hyperopt.tpe').setLevel(logging.WARNING)
|
|||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
# set TARGET_TRADES to suit your number concurrent trades so its realistic to 20days of data
|
# set TARGET_TRADES to suit your number concurrent trades so its realistic to 20days of data
|
||||||
TARGET_TRADES = 1100
|
TARGET_TRADES = 1100
|
||||||
TOTAL_TRIES = None
|
TOTAL_TRIES = None
|
||||||
_CURRENT_TRIES = 0
|
_CURRENT_TRIES = 0
|
||||||
|
|
||||||
CURRENT_BEST_LOSS = 100
|
CURRENT_BEST_LOSS = 100
|
||||||
|
|
||||||
# this is expexted avg profit * expected trade count
|
# this is expexted avg profit * expected trade count
|
||||||
@ -111,6 +109,13 @@ def log_results(results):
|
|||||||
sys.stdout.flush()
|
sys.stdout.flush()
|
||||||
|
|
||||||
|
|
||||||
|
def calculate_loss(total_profit: float, trade_count: int):
|
||||||
|
""" objective function, returns smaller number for more optimal results """
|
||||||
|
trade_loss = 1 - 0.35 * exp(-(trade_count - TARGET_TRADES) ** 2 / 10 ** 5.2)
|
||||||
|
profit_loss = max(0, 1 - total_profit / EXPECTED_MAX_PROFIT)
|
||||||
|
return trade_loss + profit_loss
|
||||||
|
|
||||||
|
|
||||||
def optimizer(params):
|
def optimizer(params):
|
||||||
global _CURRENT_TRIES
|
global _CURRENT_TRIES
|
||||||
|
|
||||||
@ -118,37 +123,33 @@ def optimizer(params):
|
|||||||
backtesting.populate_buy_trend = buy_strategy_generator(params)
|
backtesting.populate_buy_trend = buy_strategy_generator(params)
|
||||||
|
|
||||||
results = backtest(OPTIMIZE_CONFIG['stake_amount'], PROCESSED)
|
results = backtest(OPTIMIZE_CONFIG['stake_amount'], PROCESSED)
|
||||||
|
result_explanation = format_results(results)
|
||||||
result = format_results(results)
|
|
||||||
|
|
||||||
total_profit = results.profit_percent.sum()
|
total_profit = results.profit_percent.sum()
|
||||||
trade_count = len(results.index)
|
trade_count = len(results.index)
|
||||||
|
|
||||||
if trade_count == 0:
|
if trade_count == 0:
|
||||||
|
print('.', end='')
|
||||||
return {
|
return {
|
||||||
'status': STATUS_FAIL,
|
'status': STATUS_FAIL,
|
||||||
'loss': float('inf')
|
'loss': float('inf')
|
||||||
}
|
}
|
||||||
|
|
||||||
trade_loss = 1 - 0.35 * exp(-(trade_count - TARGET_TRADES) ** 2 / 10 ** 5.2)
|
loss = calculate_loss(total_profit, trade_count)
|
||||||
profit_loss = max(0, 1 - total_profit / EXPECTED_MAX_PROFIT)
|
|
||||||
loss = trade_loss + profit_loss
|
|
||||||
_CURRENT_TRIES += 1
|
_CURRENT_TRIES += 1
|
||||||
|
|
||||||
result_data = {
|
log_results({
|
||||||
'loss': loss,
|
'loss': loss,
|
||||||
'current_tries': _CURRENT_TRIES,
|
'current_tries': _CURRENT_TRIES,
|
||||||
'total_tries': TOTAL_TRIES,
|
'total_tries': TOTAL_TRIES,
|
||||||
'result': result,
|
'result': result_explanation,
|
||||||
}
|
})
|
||||||
log_results(result_data)
|
|
||||||
|
|
||||||
return {
|
return {
|
||||||
'loss': loss,
|
'loss': loss,
|
||||||
'status': STATUS_OK,
|
'status': STATUS_OK,
|
||||||
'result': result,
|
'result': result_explanation,
|
||||||
'total_profit': total_profit,
|
|
||||||
'avg_profit': results.profit_percent.mean() * 100.0,
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
@ -1,12 +1,36 @@
|
|||||||
# pragma pylint: disable=missing-docstring,W0212
|
# pragma pylint: disable=missing-docstring,W0212
|
||||||
|
|
||||||
import os
|
import os
|
||||||
|
import pandas as pd
|
||||||
from freqtrade import exchange, optimize
|
from freqtrade import exchange, optimize
|
||||||
from freqtrade.exchange import Bittrex
|
from freqtrade.exchange import Bittrex
|
||||||
from freqtrade.optimize.backtesting import backtest
|
from freqtrade.optimize.backtesting import backtest, generate_text_table, get_timeframe
|
||||||
from freqtrade.optimize.__init__ import testdata_path, download_pairs, download_backtesting_testdata
|
from freqtrade.optimize.__init__ import testdata_path, download_pairs, download_backtesting_testdata
|
||||||
|
|
||||||
|
|
||||||
|
def test_generate_text_table():
|
||||||
|
results = pd.DataFrame(
|
||||||
|
{
|
||||||
|
'currency': ['BTC_ETH', 'BTC_ETH'],
|
||||||
|
'profit_percent': [0.1, 0.2],
|
||||||
|
'profit_BTC': [0.2, 0.4],
|
||||||
|
'duration': [10, 30]
|
||||||
|
}
|
||||||
|
)
|
||||||
|
assert generate_text_table({'BTC_ETH': {}}, results, 'BTC', 5) == (
|
||||||
|
'pair buy count avg profit total profit avg duration\n'
|
||||||
|
'------- ----------- ------------ -------------- --------------\n'
|
||||||
|
'BTC_ETH 2 15.00% 0.60000000 BTC 100\n'
|
||||||
|
'TOTAL 2 15.00% 0.60000000 BTC 100')
|
||||||
|
|
||||||
|
|
||||||
|
def test_get_timeframe():
|
||||||
|
data = optimize.load_data(ticker_interval=1, pairs=['BTC_UNITEST'])
|
||||||
|
min_date, max_date = get_timeframe(data)
|
||||||
|
assert min_date.isoformat() == '2017-11-04T23:02:00+00:00'
|
||||||
|
assert max_date.isoformat() == '2017-11-14T22:59:00+00:00'
|
||||||
|
|
||||||
|
|
||||||
def test_backtest(default_conf, mocker):
|
def test_backtest(default_conf, mocker):
|
||||||
mocker.patch.dict('freqtrade.main._CONF', default_conf)
|
mocker.patch.dict('freqtrade.main._CONF', default_conf)
|
||||||
exchange._API = Bittrex({'key': '', 'secret': ''})
|
exchange._API = Bittrex({'key': '', 'secret': ''})
|
79
freqtrade/tests/optimize/test_hyperopt.py
Normal file
79
freqtrade/tests/optimize/test_hyperopt.py
Normal file
@ -0,0 +1,79 @@
|
|||||||
|
# pragma pylint: disable=missing-docstring,W0212,C0103
|
||||||
|
|
||||||
|
from freqtrade.optimize.hyperopt import calculate_loss, TARGET_TRADES, EXPECTED_MAX_PROFIT, start, \
|
||||||
|
log_results
|
||||||
|
|
||||||
|
|
||||||
|
def test_loss_calculation_prefer_correct_trade_count():
|
||||||
|
correct = calculate_loss(1, TARGET_TRADES)
|
||||||
|
over = calculate_loss(1, TARGET_TRADES + 100)
|
||||||
|
under = calculate_loss(1, TARGET_TRADES - 100)
|
||||||
|
assert over > correct
|
||||||
|
assert under > correct
|
||||||
|
|
||||||
|
|
||||||
|
def test_loss_calculation_has_limited_profit():
|
||||||
|
correct = calculate_loss(EXPECTED_MAX_PROFIT, TARGET_TRADES)
|
||||||
|
over = calculate_loss(EXPECTED_MAX_PROFIT * 2, TARGET_TRADES)
|
||||||
|
under = calculate_loss(EXPECTED_MAX_PROFIT / 2, TARGET_TRADES)
|
||||||
|
assert over == correct
|
||||||
|
assert under > correct
|
||||||
|
|
||||||
|
|
||||||
|
def create_trials(mocker):
|
||||||
|
return mocker.Mock(
|
||||||
|
results=[{
|
||||||
|
'loss': 1,
|
||||||
|
'result': 'foo'
|
||||||
|
}]
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def test_start_calls_fmin(mocker):
|
||||||
|
mocker.patch('freqtrade.optimize.hyperopt.Trials', return_value=create_trials(mocker))
|
||||||
|
mocker.patch('freqtrade.optimize.preprocess')
|
||||||
|
mocker.patch('freqtrade.optimize.load_data')
|
||||||
|
mock_fmin = mocker.patch('freqtrade.optimize.hyperopt.fmin', return_value={})
|
||||||
|
|
||||||
|
args = mocker.Mock(epochs=1, config='config.json.example', mongodb=False)
|
||||||
|
start(args)
|
||||||
|
|
||||||
|
mock_fmin.assert_called_once()
|
||||||
|
|
||||||
|
|
||||||
|
def test_start_uses_mongotrials(mocker):
|
||||||
|
mock_mongotrials = mocker.patch('freqtrade.optimize.hyperopt.MongoTrials',
|
||||||
|
return_value=create_trials(mocker))
|
||||||
|
mocker.patch('freqtrade.optimize.preprocess')
|
||||||
|
mocker.patch('freqtrade.optimize.load_data')
|
||||||
|
mocker.patch('freqtrade.optimize.hyperopt.fmin', return_value={})
|
||||||
|
|
||||||
|
args = mocker.Mock(epochs=1, config='config.json.example', mongodb=True)
|
||||||
|
start(args)
|
||||||
|
|
||||||
|
mock_mongotrials.assert_called_once()
|
||||||
|
|
||||||
|
|
||||||
|
def test_log_results_if_loss_improves(mocker):
|
||||||
|
logger = mocker.patch('freqtrade.optimize.hyperopt.logger.info')
|
||||||
|
global CURRENT_BEST_LOSS
|
||||||
|
CURRENT_BEST_LOSS = 2
|
||||||
|
log_results({
|
||||||
|
'loss': 1,
|
||||||
|
'current_tries': 1,
|
||||||
|
'total_tries': 2,
|
||||||
|
'result': 'foo'
|
||||||
|
})
|
||||||
|
|
||||||
|
logger.assert_called_once()
|
||||||
|
|
||||||
|
|
||||||
|
def test_no_log_if_loss_does_not_improve(mocker):
|
||||||
|
logger = mocker.patch('freqtrade.optimize.hyperopt.logger.info')
|
||||||
|
global CURRENT_BEST_LOSS
|
||||||
|
CURRENT_BEST_LOSS = 2
|
||||||
|
log_results({
|
||||||
|
'loss': 3,
|
||||||
|
})
|
||||||
|
|
||||||
|
assert not logger.called
|
@ -1,6 +0,0 @@
|
|||||||
# pragma pylint: disable=missing-docstring,W0212
|
|
||||||
|
|
||||||
|
|
||||||
def test_optimizer(default_conf, mocker):
|
|
||||||
# TODO: implement test
|
|
||||||
pass
|
|
Loading…
Reference in New Issue
Block a user