Optional support for defining hyperopt parameters in a strategy file and reusing common hyperopt/strategy parts.
This commit is contained in:
parent
8da7d5c009
commit
0a205f52b0
@ -26,6 +26,7 @@ from freqtrade.data.history import get_timerange
|
||||
from freqtrade.misc import file_dump_json, plural
|
||||
from freqtrade.optimize.backtesting import Backtesting
|
||||
# Import IHyperOpt and IHyperOptLoss to allow unpickling classes from these modules
|
||||
from freqtrade.optimize.hyperopt_auto import HyperOptAuto
|
||||
from freqtrade.optimize.hyperopt_interface import IHyperOpt # noqa: F401
|
||||
from freqtrade.optimize.hyperopt_loss_interface import IHyperOptLoss # noqa: F401
|
||||
from freqtrade.optimize.hyperopt_tools import HyperoptTools
|
||||
@ -67,8 +68,11 @@ class Hyperopt:
|
||||
|
||||
self.backtesting = Backtesting(self.config)
|
||||
|
||||
if self.config['hyperopt'] == 'HyperOptAuto':
|
||||
self.custom_hyperopt = HyperOptAuto(self.config)
|
||||
else:
|
||||
self.custom_hyperopt = HyperOptResolver.load_hyperopt(self.config)
|
||||
self.custom_hyperopt.__class__.strategy = self.backtesting.strategy
|
||||
self.custom_hyperopt.strategy = self.backtesting.strategy
|
||||
|
||||
self.custom_hyperoptloss = HyperOptLossResolver.load_hyperoptloss(self.config)
|
||||
self.calculate_loss = self.custom_hyperoptloss.hyperopt_loss_function
|
||||
|
83
freqtrade/optimize/hyperopt_auto.py
Normal file
83
freqtrade/optimize/hyperopt_auto.py
Normal file
@ -0,0 +1,83 @@
|
||||
"""
|
||||
HyperOptAuto class.
|
||||
This module implements a convenience auto-hyperopt class, which can be used together with strategies that implement
|
||||
IHyperStrategy interface.
|
||||
"""
|
||||
from typing import Any, Callable, Dict, List
|
||||
from pandas import DataFrame
|
||||
from skopt.space import Categorical, Dimension, Integer, Real # noqa
|
||||
|
||||
from freqtrade.optimize.hyperopt_interface import IHyperOpt
|
||||
|
||||
|
||||
# noinspection PyUnresolvedReferences
|
||||
class HyperOptAuto(IHyperOpt):
|
||||
"""
|
||||
This class delegates functionality to Strategy(IHyperStrategy) and Strategy.HyperOpt classes. Most of the time
|
||||
Strategy.HyperOpt class would only implement indicator_space and sell_indicator_space methods, but other hyperopt
|
||||
methods can be overridden as well.
|
||||
"""
|
||||
def buy_strategy_generator(self, params: Dict[str, Any]) -> Callable:
|
||||
assert hasattr(self.strategy, 'enumerate_parameters'), 'Strategy must inherit from IHyperStrategy.'
|
||||
|
||||
def populate_buy_trend(dataframe: DataFrame, metadata: dict):
|
||||
for attr_name, attr in self.strategy.enumerate_parameters('buy'):
|
||||
attr.value = params[attr_name]
|
||||
return self.strategy.populate_buy_trend(dataframe, metadata)
|
||||
return populate_buy_trend
|
||||
|
||||
def sell_strategy_generator(self, params: Dict[str, Any]) -> Callable:
|
||||
assert hasattr(self.strategy, 'enumerate_parameters'), 'Strategy must inherit from IHyperStrategy.'
|
||||
|
||||
def populate_buy_trend(dataframe: DataFrame, metadata: dict):
|
||||
for attr_name, attr in self.strategy.enumerate_parameters('sell'):
|
||||
attr.value = params[attr_name]
|
||||
return self.strategy.populate_sell_trend(dataframe, metadata)
|
||||
return populate_buy_trend
|
||||
|
||||
def _get_func(self, name) -> Callable:
|
||||
"""
|
||||
Return a function defined in Strategy.HyperOpt class, or one defined in super() class.
|
||||
:param name: function name.
|
||||
:return: a requested function.
|
||||
"""
|
||||
hyperopt_cls = getattr(self.strategy, 'HyperOpt')
|
||||
default_func = getattr(super(), name)
|
||||
if hyperopt_cls:
|
||||
return getattr(hyperopt_cls, name, default_func)
|
||||
else:
|
||||
return default_func
|
||||
|
||||
def _generate_indicator_space(self, category):
|
||||
assert hasattr(self.strategy, 'enumerate_parameters'), 'Strategy must inherit from IHyperStrategy.'
|
||||
|
||||
for attr_name, attr in self.strategy.enumerate_parameters(category):
|
||||
yield attr.get_space(attr_name)
|
||||
|
||||
def _get_indicator_space(self, category, fallback_method_name):
|
||||
indicator_space = list(self._generate_indicator_space(category))
|
||||
if len(indicator_space) > 0:
|
||||
return indicator_space
|
||||
else:
|
||||
return self._get_func(fallback_method_name)()
|
||||
|
||||
def indicator_space(self) -> List[Dimension]:
|
||||
return self._get_indicator_space('buy', 'indicator_space')
|
||||
|
||||
def sell_indicator_space(self) -> List[Dimension]:
|
||||
return self._get_indicator_space('sell', 'sell_indicator_space')
|
||||
|
||||
def generate_roi_table(self, params: Dict) -> Dict[int, float]:
|
||||
return self._get_func('generate_roi_table')(params)
|
||||
|
||||
def roi_space(self) -> List[Dimension]:
|
||||
return self._get_func('roi_space')()
|
||||
|
||||
def stoploss_space(self) -> List[Dimension]:
|
||||
return self._get_func('stoploss_space')()
|
||||
|
||||
def generate_trailing_params(self, params: Dict) -> Dict:
|
||||
return self._get_func('generate_trailing_params')(params)
|
||||
|
||||
def trailing_space(self) -> List[Dimension]:
|
||||
return self._get_func('trailing_space')()
|
@ -2,4 +2,5 @@
|
||||
from freqtrade.exchange import (timeframe_to_minutes, timeframe_to_msecs, timeframe_to_next_date,
|
||||
timeframe_to_prev_date, timeframe_to_seconds)
|
||||
from freqtrade.strategy.interface import IStrategy
|
||||
from freqtrade.strategy.hyper import IHyperStrategy, Parameter
|
||||
from freqtrade.strategy.strategy_helper import merge_informative_pair, stoploss_from_open
|
||||
|
93
freqtrade/strategy/hyper.py
Normal file
93
freqtrade/strategy/hyper.py
Normal file
@ -0,0 +1,93 @@
|
||||
"""
|
||||
IHyperStrategy interface, hyperoptable Parameter class.
|
||||
This module defines a base class for auto-hyperoptable strategies.
|
||||
"""
|
||||
from abc import ABC
|
||||
from typing import Union, List, Iterator, Tuple
|
||||
|
||||
from skopt.space import Integer, Real, Categorical
|
||||
|
||||
from freqtrade.strategy.interface import IStrategy
|
||||
|
||||
|
||||
class Parameter(object):
|
||||
"""
|
||||
Defines a parameter that can be optimized by hyperopt.
|
||||
"""
|
||||
default: Union[int, float, str, bool]
|
||||
space: List[Union[int, float, str, bool]]
|
||||
category: str
|
||||
|
||||
def __init__(self, *, space: List[Union[int, float, str, bool]], default: Union[int, float, str, bool] = None,
|
||||
category: str = None, **kwargs):
|
||||
"""
|
||||
Initialize hyperopt-optimizable parameter.
|
||||
:param space: Optimization space. [min, max] for ints and floats or a list of strings for categorial parameters.
|
||||
:param default: A default value. Required for ints and floats, optional for categorial parameters (first item
|
||||
from the space will be used). Type of default value determines skopt space used for optimization.
|
||||
:param category: A parameter category. Can be 'buy' or 'sell'. This parameter is optional if parameter field
|
||||
name is prefixed with 'buy_' or 'sell_'.
|
||||
:param kwargs: Extra parameters to skopt.space.(Integer|Real|Categorical).
|
||||
"""
|
||||
assert 'name' not in kwargs, 'Name is determined by parameter field name and can not be specified manually.'
|
||||
self.value = default
|
||||
self.space = space
|
||||
self.category = category
|
||||
self._space_params = kwargs
|
||||
if default is None:
|
||||
assert len(space) > 0
|
||||
self.value = space[0]
|
||||
|
||||
def get_space(self, name: str) -> Union[Integer, Real, Categorical, None]:
|
||||
"""
|
||||
Create skopt optimization space.
|
||||
:param name: A name of parameter field.
|
||||
:return: skopt space of this parameter, or None if parameter is not optimizable (i.e. space is set to None)
|
||||
"""
|
||||
if not self.space:
|
||||
return None
|
||||
if isinstance(self.value, int):
|
||||
assert len(self.space) == 2
|
||||
return Integer(*self.space, name=name, **self._space_params)
|
||||
if isinstance(self.value, float):
|
||||
assert len(self.space) == 2
|
||||
return Real(*self.space, name=name, **self._space_params)
|
||||
|
||||
assert len(self.space) > 0
|
||||
return Categorical(self.space, name=name, **self._space_params)
|
||||
|
||||
|
||||
class IHyperStrategy(IStrategy, ABC):
|
||||
"""
|
||||
A helper base class which allows HyperOptAuto class to reuse implementations of of buy/sell strategy logic.
|
||||
"""
|
||||
|
||||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
self._load_params(getattr(self, 'buy_params', None))
|
||||
self._load_params(getattr(self, 'sell_params', None))
|
||||
|
||||
def enumerate_parameters(self, category: str = None) -> Iterator[Tuple[str, Parameter]]:
|
||||
"""
|
||||
Find all optimizeable parameters and return (name, attr) iterator.
|
||||
:param category:
|
||||
:return:
|
||||
"""
|
||||
assert category in ('buy', 'sell', None)
|
||||
for attr_name in dir(self):
|
||||
if not attr_name.startswith('__'): # Ignore internals, not strictly necessary.
|
||||
attr = getattr(self, attr_name)
|
||||
if isinstance(attr, Parameter):
|
||||
if category is None or category == attr.category or attr_name.startswith(category + '_'):
|
||||
yield attr_name, attr
|
||||
|
||||
def _load_params(self, params: dict) -> None:
|
||||
"""
|
||||
Set optimizeable parameter values.
|
||||
:param params: Dictionary with new parameter values.
|
||||
"""
|
||||
if not params:
|
||||
return
|
||||
for attr_name, attr in self.enumerate_parameters():
|
||||
if attr_name in params:
|
||||
attr.value = params[attr_name]
|
Loading…
Reference in New Issue
Block a user