Merge pull request #2048 from hroff-1902/hyperopt-loss-onlyprofit2
minor: add OnlyProfitHyperOptLoss
This commit is contained in:
commit
098a23adc6
@ -156,10 +156,10 @@ Each hyperparameter tuning requires a target. This is usually defined as a loss
|
|||||||
|
|
||||||
By default, FreqTrade uses a loss function, which has been with freqtrade since the beginning and optimizes mostly for short trade duration and avoiding losses.
|
By default, FreqTrade uses a loss function, which has been with freqtrade since the beginning and optimizes mostly for short trade duration and avoiding losses.
|
||||||
|
|
||||||
A different version this can be used by using the `--hyperopt-loss <Class-name>` argument.
|
A different loss function can be specified by using the `--hyperopt-loss <Class-name>` argument.
|
||||||
This class should be in it's own file within the `user_data/hyperopts/` directory.
|
This class should be in its own file within the `user_data/hyperopts/` directory.
|
||||||
|
|
||||||
Currently, the following loss functions are builtin: `SharpeHyperOptLoss` and `DefaultHyperOptLoss`.
|
Currently, the following loss functions are builtin: `DefaultHyperOptLoss` (default legacy Freqtrade hyperoptimization loss function), `SharpeHyperOptLoss` (optimizes Sharpe Ratio calculated on the trade returns) and `OnlyProfitHyperOptLoss` (which takes only amount of profit into consideration).
|
||||||
|
|
||||||
### Creating and using a custom loss function
|
### Creating and using a custom loss function
|
||||||
|
|
||||||
|
@ -3,27 +3,26 @@ DefaultHyperOptLoss
|
|||||||
This module defines the default HyperoptLoss class which is being used for
|
This module defines the default HyperoptLoss class which is being used for
|
||||||
Hyperoptimization.
|
Hyperoptimization.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
from math import exp
|
from math import exp
|
||||||
|
|
||||||
from pandas import DataFrame
|
from pandas import DataFrame
|
||||||
|
|
||||||
from freqtrade.optimize.hyperopt import IHyperOptLoss
|
from freqtrade.optimize.hyperopt import IHyperOptLoss
|
||||||
|
|
||||||
# Define some constants:
|
|
||||||
|
|
||||||
# set TARGET_TRADES to suit your number concurrent trades so its realistic
|
# Set TARGET_TRADES to suit your number concurrent trades so its realistic
|
||||||
# to the number of days
|
# to the number of days
|
||||||
TARGET_TRADES = 600
|
TARGET_TRADES = 600
|
||||||
|
|
||||||
# This is assumed to be expected avg profit * expected trade count.
|
# This is assumed to be expected avg profit * expected trade count.
|
||||||
# For example, for 0.35% avg per trade (or 0.0035 as ratio) and 1100 trades,
|
# For example, for 0.35% avg per trade (or 0.0035 as ratio) and 1100 trades,
|
||||||
# self.expected_max_profit = 3.85
|
# expected max profit = 3.85
|
||||||
# Check that the reported Σ% values do not exceed this!
|
# Check that the reported Σ% values do not exceed this!
|
||||||
# Note, this is ratio. 3.85 stated above means 385Σ%.
|
# Note, this is ratio. 3.85 stated above means 385Σ%.
|
||||||
EXPECTED_MAX_PROFIT = 3.0
|
EXPECTED_MAX_PROFIT = 3.0
|
||||||
|
|
||||||
# max average trade duration in minutes
|
# Max average trade duration in minutes.
|
||||||
# if eval ends with higher value, we consider it a failed eval
|
# If eval ends with higher value, we consider it a failed eval.
|
||||||
MAX_ACCEPTED_TRADE_DURATION = 300
|
MAX_ACCEPTED_TRADE_DURATION = 300
|
||||||
|
|
||||||
|
|
||||||
|
38
freqtrade/optimize/hyperopt_loss_onlyprofit.py
Normal file
38
freqtrade/optimize/hyperopt_loss_onlyprofit.py
Normal file
@ -0,0 +1,38 @@
|
|||||||
|
"""
|
||||||
|
OnlyProfitHyperOptLoss
|
||||||
|
|
||||||
|
This module defines the alternative HyperOptLoss class which can be used for
|
||||||
|
Hyperoptimization.
|
||||||
|
"""
|
||||||
|
from pandas import DataFrame
|
||||||
|
|
||||||
|
from freqtrade.optimize.hyperopt import IHyperOptLoss
|
||||||
|
|
||||||
|
|
||||||
|
# This is assumed to be expected avg profit * expected trade count.
|
||||||
|
# For example, for 0.35% avg per trade (or 0.0035 as ratio) and 1100 trades,
|
||||||
|
# expected max profit = 3.85
|
||||||
|
#
|
||||||
|
# Note, this is ratio. 3.85 stated above means 385Σ%, 3.0 means 300Σ%.
|
||||||
|
#
|
||||||
|
# In this implementation it's only used in calculation of the resulting value
|
||||||
|
# of the objective function as a normalization coefficient and does not
|
||||||
|
# represent any limit for profits as in the Freqtrade legacy default loss function.
|
||||||
|
EXPECTED_MAX_PROFIT = 3.0
|
||||||
|
|
||||||
|
|
||||||
|
class OnlyProfitHyperOptLoss(IHyperOptLoss):
|
||||||
|
"""
|
||||||
|
Defines the loss function for hyperopt.
|
||||||
|
|
||||||
|
This implementation takes only profit into account.
|
||||||
|
"""
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def hyperopt_loss_function(results: DataFrame, trade_count: int,
|
||||||
|
*args, **kwargs) -> float:
|
||||||
|
"""
|
||||||
|
Objective function, returns smaller number for better results.
|
||||||
|
"""
|
||||||
|
total_profit = results.profit_percent.sum()
|
||||||
|
return 1 - total_profit / EXPECTED_MAX_PROFIT
|
@ -1,8 +1,9 @@
|
|||||||
"""
|
"""
|
||||||
IHyperOptLoss interface
|
SharpeHyperOptLoss
|
||||||
This module defines the interface for the loss-function for hyperopts
|
|
||||||
"""
|
|
||||||
|
|
||||||
|
This module defines the alternative HyperOptLoss class which can be used for
|
||||||
|
Hyperoptimization.
|
||||||
|
"""
|
||||||
from datetime import datetime
|
from datetime import datetime
|
||||||
|
|
||||||
from pandas import DataFrame
|
from pandas import DataFrame
|
||||||
@ -13,8 +14,9 @@ from freqtrade.optimize.hyperopt import IHyperOptLoss
|
|||||||
|
|
||||||
class SharpeHyperOptLoss(IHyperOptLoss):
|
class SharpeHyperOptLoss(IHyperOptLoss):
|
||||||
"""
|
"""
|
||||||
Defines the a loss function for hyperopt.
|
Defines the loss function for hyperopt.
|
||||||
This implementation uses the sharpe ratio calculation.
|
|
||||||
|
This implementation uses the Sharpe Ratio calculation.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
@ -22,8 +24,9 @@ class SharpeHyperOptLoss(IHyperOptLoss):
|
|||||||
min_date: datetime, max_date: datetime,
|
min_date: datetime, max_date: datetime,
|
||||||
*args, **kwargs) -> float:
|
*args, **kwargs) -> float:
|
||||||
"""
|
"""
|
||||||
Objective function, returns smaller number for more optimal results
|
Objective function, returns smaller number for more optimal results.
|
||||||
Using sharpe ratio calculation
|
|
||||||
|
Uses Sharpe Ratio calculation.
|
||||||
"""
|
"""
|
||||||
total_profit = results.profit_percent
|
total_profit = results.profit_percent
|
||||||
days_period = (max_date - min_date).days
|
days_period = (max_date - min_date).days
|
||||||
|
@ -337,6 +337,24 @@ def test_sharpe_loss_prefers_higher_profits(default_conf, hyperopt_results) -> N
|
|||||||
assert under > correct
|
assert under > correct
|
||||||
|
|
||||||
|
|
||||||
|
def test_onlyprofit_loss_prefers_higher_profits(default_conf, hyperopt_results) -> None:
|
||||||
|
results_over = hyperopt_results.copy()
|
||||||
|
results_over['profit_percent'] = hyperopt_results['profit_percent'] * 2
|
||||||
|
results_under = hyperopt_results.copy()
|
||||||
|
results_under['profit_percent'] = hyperopt_results['profit_percent'] / 2
|
||||||
|
|
||||||
|
default_conf.update({'hyperopt_loss': 'OnlyProfitHyperOptLoss'})
|
||||||
|
hl = HyperOptLossResolver(default_conf).hyperoptloss
|
||||||
|
correct = hl.hyperopt_loss_function(hyperopt_results, len(hyperopt_results),
|
||||||
|
datetime(2019, 1, 1), datetime(2019, 5, 1))
|
||||||
|
over = hl.hyperopt_loss_function(results_over, len(hyperopt_results),
|
||||||
|
datetime(2019, 1, 1), datetime(2019, 5, 1))
|
||||||
|
under = hl.hyperopt_loss_function(results_under, len(hyperopt_results),
|
||||||
|
datetime(2019, 1, 1), datetime(2019, 5, 1))
|
||||||
|
assert over < correct
|
||||||
|
assert under > correct
|
||||||
|
|
||||||
|
|
||||||
def test_log_results_if_loss_improves(hyperopt, capsys) -> None:
|
def test_log_results_if_loss_improves(hyperopt, capsys) -> None:
|
||||||
hyperopt.current_best_loss = 2
|
hyperopt.current_best_loss = 2
|
||||||
hyperopt.log_results(
|
hyperopt.log_results(
|
||||||
|
Loading…
Reference in New Issue
Block a user