Speed up "outstanding balance" function
This commit is contained in:
parent
b7a463539c
commit
09659da488
@ -3,17 +3,17 @@ SortinoHyperOptLoss
|
||||
This module defines the alternative HyperOptLoss class which can be used for
|
||||
Hyperoptimization.
|
||||
"""
|
||||
from datetime import datetime
|
||||
import os
|
||||
|
||||
|
||||
import logging
|
||||
import os
|
||||
from datetime import datetime
|
||||
|
||||
import numpy as np
|
||||
from pandas import DataFrame, DatetimeIndex, Timedelta, date_range
|
||||
from scipy.ndimage.interpolation import shift
|
||||
import numpy as np
|
||||
|
||||
from freqtrade.optimize.hyperopt import IHyperOptLoss
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
interval = os.getenv("FQT_TIMEFRAME") or "5m"
|
||||
|
@ -2,13 +2,12 @@
|
||||
Helpers when analyzing backtest data
|
||||
"""
|
||||
import logging
|
||||
from datetime import datetime, timezone
|
||||
from datetime import timezone
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, Optional, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from scipy.ndimage.interpolation import shift
|
||||
|
||||
from freqtrade.constants import LAST_BT_RESULT_FN
|
||||
from freqtrade.misc import json_load
|
||||
@ -407,91 +406,38 @@ def calculate_max_drawdown(trades: pd.DataFrame, *, date_col: str = 'close_date'
|
||||
return abs(min(max_drawdown_df['drawdown'])), high_date, low_date
|
||||
|
||||
|
||||
def calculate_outstanding_balance(
|
||||
results: pd.DataFrame,
|
||||
timeframe: str,
|
||||
min_date: datetime,
|
||||
max_date: datetime,
|
||||
hloc: Dict[str, pd.DataFrame],
|
||||
slippage=0,
|
||||
) -> pd.DataFrame:
|
||||
def calculate_outstanding_balance(results: pd.DataFrame, timeframe: str,
|
||||
hloc: Dict[str, pd.DataFrame]) -> pd.DataFrame:
|
||||
"""
|
||||
Sums the value of each trade (both open and closed) on each candle
|
||||
:param results: Results Dataframe
|
||||
:param timeframe: Frequency used for the backtest
|
||||
:param min_date: date of the first trade opened (results.open_time.min())
|
||||
:param max_date: date of the last trade closed (results.close_time.max())
|
||||
:param hloc: historical DataFrame of each pair tested
|
||||
:slippage: optional profit value to subtract per trade
|
||||
:return: DataFrame of outstanding balance at each timeframe
|
||||
"""
|
||||
timedelta = pd.Timedelta(timeframe)
|
||||
|
||||
date_index: pd.DatetimeIndex = pd.date_range(
|
||||
start=min_date, end=max_date, freq=timeframe, normalize=True
|
||||
)
|
||||
balance_total = []
|
||||
from freqtrade.exchange import timeframe_to_minutes
|
||||
timeframe_min = timeframe_to_minutes(timeframe)
|
||||
df3 = expand_trades_over_period(results, timeframe, timeframe_min)
|
||||
|
||||
values = {}
|
||||
# Iterate over every pair
|
||||
for pair in hloc:
|
||||
pair_candles = hloc[pair].set_index("date").reindex(date_index)
|
||||
# index becomes open_time
|
||||
pair_trades = (
|
||||
results.loc[results["pair"].values == pair]
|
||||
.set_index("open_time")
|
||||
.resample(timeframe)
|
||||
.asfreq()
|
||||
.reindex(date_index)
|
||||
)
|
||||
open_rate = pair_trades["open_rate"].fillna(0).values
|
||||
open_time = pair_trades.index.values
|
||||
close_time = pair_trades["close_time"].values
|
||||
close = pair_candles["close"].values
|
||||
profits = pair_trades["profit_percent"].values - slippage
|
||||
# at the open_time candle, the balance is matched to the close of the candle
|
||||
pair_balance = np.where(
|
||||
# only the rows with actual trades
|
||||
(open_rate > 0)
|
||||
# only if the trade is not also closed on the same candle
|
||||
& (open_time != close_time),
|
||||
1 - open_rate / close - slippage,
|
||||
0,
|
||||
)
|
||||
# at the close_time candle, the balance just uses the profits col
|
||||
pair_balance = pair_balance + np.where(
|
||||
# only rows with actual trades
|
||||
(open_rate > 0)
|
||||
# the rows where a close happens
|
||||
& (open_time == close_time),
|
||||
profits,
|
||||
pair_balance,
|
||||
)
|
||||
ohlc = hloc[pair].set_index('date')
|
||||
df_pair = df3.loc[df3['pair'] == pair]
|
||||
# filter on pair and convert dateindex to utc
|
||||
# * Temporary workaround
|
||||
df_pair.index = pd.to_datetime(df_pair.index, utc=True)
|
||||
|
||||
# how much time each trade was open, close - open time
|
||||
periods = close_time - open_time
|
||||
# how many candles each trade was open, set as a counter at each trade open_time index
|
||||
hops = np.nan_to_num(periods / timedelta).astype(int)
|
||||
# Combine trades with ohlc data
|
||||
df4 = df_pair.merge(ohlc, left_on=['date'], right_on=['date'])
|
||||
# Calculate the value at each candle
|
||||
df4['current_value'] = df4['amount'] * df4['open']
|
||||
# 0.002 -> slippage / fees
|
||||
df4['value'] = df4['current_value'] - df4['current_value'] * 0.002
|
||||
values[pair] = df4
|
||||
|
||||
# each loop update one timeframe forward, the balance on each timeframe
|
||||
# where there is at least one hop left to do (>0)
|
||||
for _ in range(1, hops.max() + 1):
|
||||
# move hops and open_rate by one
|
||||
hops = shift(hops, 1, cval=0)
|
||||
open_rate = shift(open_rate, 1, cval=0)
|
||||
pair_balance = np.where(
|
||||
hops > 0, pair_balance + (1 - open_rate / close) - slippage, pair_balance
|
||||
)
|
||||
hops -= 1
|
||||
|
||||
# same as above but one loop per pair
|
||||
# trades_indexes = np.nonzero(hops)[0]
|
||||
# for i in trades_indexes:
|
||||
# # start from 1 because counters are set at the open_time balance
|
||||
# # which was already added previously
|
||||
# for c in range(1, hops[i]):
|
||||
# offset = i + c
|
||||
# # the open rate is always for the current date, not the offset
|
||||
# pair_balance[offset] += 1 - open_rate[i] / close[offset] - slippage
|
||||
|
||||
# add the pair balance to the total
|
||||
balance_total.append(pair_balance)
|
||||
balance_total = np.array(balance_total).sum(axis=0)
|
||||
return pd.DataFrame({"balance": balance_total, "date": date_index})
|
||||
balance = pd.concat([df[['value']] for k, df in values.items()])
|
||||
# TODO: Does this resample make sense ... ?
|
||||
balance = balance.resample(f"{timeframe_min}min").agg({"value": sum})
|
||||
return balance
|
||||
|
Loading…
Reference in New Issue
Block a user