add classifier, improve model naming scheme

This commit is contained in:
Robert Caulk
2022-07-09 10:13:33 +02:00
parent ce8fbbf743
commit 07763d0d4f
12 changed files with 62 additions and 39 deletions

View File

@@ -19,15 +19,6 @@ class BaseRegressionModel(IFreqaiModel):
such as prediction_models/CatboostPredictionModel.py for guidance.
"""
def return_values(self, dataframe: DataFrame) -> DataFrame:
"""
User uses this function to add any additional return values to the dataframe.
e.g.
dataframe['volatility'] = dk.volatility_values
"""
return dataframe
def train(
self, unfiltered_dataframe: DataFrame, pair: str, dk: FreqaiDataKitchen
) -> Any:

View File

@@ -16,15 +16,6 @@ class BaseTensorFlowModel(IFreqaiModel):
User *must* inherit from this class and set fit() and predict().
"""
def return_values(self, dataframe: DataFrame) -> DataFrame:
"""
User uses this function to add any additional return values to the dataframe.
e.g.
dataframe['volatility'] = dk.volatility_values
"""
return dataframe
def train(
self, unfiltered_dataframe: DataFrame, pair: str, dk: FreqaiDataKitchen
) -> Any:

View File

@@ -0,0 +1,44 @@
import logging
from typing import Any, Dict
from catboost import CatBoostClassifier, Pool
from freqtrade.freqai.prediction_models.BaseRegressionModel import BaseRegressionModel
logger = logging.getLogger(__name__)
class CatboostClassifier(BaseRegressionModel):
"""
User created prediction model. The class needs to override three necessary
functions, predict(), train(), fit(). The class inherits ModelHandler which
has its own DataHandler where data is held, saved, loaded, and managed.
"""
def fit(self, data_dictionary: Dict) -> Any:
"""
User sets up the training and test data to fit their desired model here
:params:
:data_dictionary: the dictionary constructed by DataHandler to hold
all the training and test data/labels.
"""
train_data = Pool(
data=data_dictionary["train_features"],
label=data_dictionary["train_labels"],
weight=data_dictionary["train_weights"],
)
cbr = CatBoostClassifier(
allow_writing_files=False,
gpu_ram_part=0.5,
verbose=100,
early_stopping_rounds=400,
loss_function='MultiClass',
**self.model_training_parameters,
)
cbr.fit(train_data)
return cbr

View File

@@ -10,7 +10,7 @@ from freqtrade.freqai.prediction_models.BaseRegressionModel import BaseRegressio
logger = logging.getLogger(__name__)
class CatboostPredictionModel(BaseRegressionModel):
class CatboostRegressor(BaseRegressionModel):
"""
User created prediction model. The class needs to override three necessary
functions, predict(), train(), fit(). The class inherits ModelHandler which

View File

@@ -10,7 +10,7 @@ from freqtrade.freqai.prediction_models.BaseRegressionModel import BaseRegressio
logger = logging.getLogger(__name__)
class CatboostPredictionMultiModel(BaseRegressionModel):
class CatboostRegressorMultiTarget(BaseRegressionModel):
"""
User created prediction model. The class needs to override three necessary
functions, predict(), train(), fit(). The class inherits ModelHandler which

View File

@@ -9,7 +9,7 @@ from freqtrade.freqai.prediction_models.BaseRegressionModel import BaseRegressio
logger = logging.getLogger(__name__)
class LightGBMPredictionModel(BaseRegressionModel):
class LightGBMRegressor(BaseRegressionModel):
"""
User created prediction model. The class needs to override three necessary
functions, predict(), train(), fit(). The class inherits ModelHandler which

View File

@@ -10,7 +10,7 @@ from freqtrade.freqai.prediction_models.BaseRegressionModel import BaseRegressio
logger = logging.getLogger(__name__)
class LightGBMPredictionMultiModel(BaseRegressionModel):
class LightGBMRegressorMultiTarget(BaseRegressionModel):
"""
User created prediction model. The class needs to override three necessary
functions, predict(), train(), fit(). The class inherits ModelHandler which