paying closer attention to managing live retraining on separate thread without affecting prediction of other coins on master thread
This commit is contained in:
@@ -4,6 +4,7 @@ from typing import Any, Dict, Tuple
|
||||
from catboost import CatBoostRegressor, Pool
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||
from freqtrade.freqai.freqai_interface import IFreqaiModel
|
||||
|
||||
|
||||
@@ -17,7 +18,7 @@ class CatboostPredictionModel(IFreqaiModel):
|
||||
has its own DataHandler where data is held, saved, loaded, and managed.
|
||||
"""
|
||||
|
||||
def make_labels(self, dataframe: DataFrame) -> DataFrame:
|
||||
def make_labels(self, dataframe: DataFrame, dh: FreqaiDataKitchen) -> DataFrame:
|
||||
"""
|
||||
User defines the labels here (target values).
|
||||
:params:
|
||||
@@ -32,14 +33,15 @@ class CatboostPredictionModel(IFreqaiModel):
|
||||
/ dataframe["close"]
|
||||
- 1
|
||||
)
|
||||
self.dh.data["s_mean"] = dataframe["s"].mean()
|
||||
self.dh.data["s_std"] = dataframe["s"].std()
|
||||
dh.data["s_mean"] = dataframe["s"].mean()
|
||||
dh.data["s_std"] = dataframe["s"].std()
|
||||
|
||||
# logger.info("label mean", self.dh.data["s_mean"], "label std", self.dh.data["s_std"])
|
||||
# logger.info("label mean", dh.data["s_mean"], "label std", dh.data["s_std"])
|
||||
|
||||
return dataframe["s"]
|
||||
|
||||
def train(self, unfiltered_dataframe: DataFrame, metadata: dict) -> Tuple[DataFrame, DataFrame]:
|
||||
def train(self, unfiltered_dataframe: DataFrame,
|
||||
metadata: dict, dh: FreqaiDataKitchen) -> Tuple[DataFrame, DataFrame]:
|
||||
"""
|
||||
Filter the training data and train a model to it. Train makes heavy use of the datahkitchen
|
||||
for storing, saving, loading, and analyzing the data.
|
||||
@@ -52,25 +54,25 @@ class CatboostPredictionModel(IFreqaiModel):
|
||||
logger.info("--------------------Starting training--------------------")
|
||||
|
||||
# create the full feature list based on user config info
|
||||
self.dh.training_features_list = self.dh.find_features(unfiltered_dataframe)
|
||||
unfiltered_labels = self.make_labels(unfiltered_dataframe)
|
||||
dh.training_features_list = dh.find_features(unfiltered_dataframe)
|
||||
unfiltered_labels = self.make_labels(unfiltered_dataframe, dh)
|
||||
# filter the features requested by user in the configuration file and elegantly handle NaNs
|
||||
features_filtered, labels_filtered = self.dh.filter_features(
|
||||
features_filtered, labels_filtered = dh.filter_features(
|
||||
unfiltered_dataframe,
|
||||
self.dh.training_features_list,
|
||||
dh.training_features_list,
|
||||
unfiltered_labels,
|
||||
training_filter=True,
|
||||
)
|
||||
|
||||
# split data into train/test data.
|
||||
data_dictionary = self.dh.make_train_test_datasets(features_filtered, labels_filtered)
|
||||
data_dictionary = dh.make_train_test_datasets(features_filtered, labels_filtered)
|
||||
# standardize all data based on train_dataset only
|
||||
data_dictionary = self.dh.standardize_data(data_dictionary)
|
||||
data_dictionary = dh.standardize_data(data_dictionary)
|
||||
|
||||
# optional additional data cleaning/analysis
|
||||
self.data_cleaning_train()
|
||||
self.data_cleaning_train(dh)
|
||||
|
||||
logger.info(f'Training model on {len(self.dh.training_features_list)} features')
|
||||
logger.info(f'Training model on {len(dh.training_features_list)} features')
|
||||
logger.info(f'Training model on {len(data_dictionary["train_features"])} data points')
|
||||
|
||||
model = self.fit(data_dictionary)
|
||||
@@ -107,8 +109,8 @@ class CatboostPredictionModel(IFreqaiModel):
|
||||
|
||||
return model
|
||||
|
||||
def predict(self, unfiltered_dataframe: DataFrame, metadata: dict) -> Tuple[DataFrame,
|
||||
DataFrame]:
|
||||
def predict(self, unfiltered_dataframe: DataFrame,
|
||||
dh: FreqaiDataKitchen) -> Tuple[DataFrame, DataFrame]:
|
||||
"""
|
||||
Filter the prediction features data and predict with it.
|
||||
:param: unfiltered_dataframe: Full dataframe for the current backtest period.
|
||||
@@ -120,23 +122,22 @@ class CatboostPredictionModel(IFreqaiModel):
|
||||
|
||||
# logger.info("--------------------Starting prediction--------------------")
|
||||
|
||||
original_feature_list = self.dh.find_features(unfiltered_dataframe)
|
||||
filtered_dataframe, _ = self.dh.filter_features(
|
||||
original_feature_list = dh.find_features(unfiltered_dataframe)
|
||||
filtered_dataframe, _ = dh.filter_features(
|
||||
unfiltered_dataframe, original_feature_list, training_filter=False
|
||||
)
|
||||
filtered_dataframe = self.dh.standardize_data_from_metadata(filtered_dataframe)
|
||||
self.dh.data_dictionary["prediction_features"] = filtered_dataframe
|
||||
filtered_dataframe = dh.standardize_data_from_metadata(filtered_dataframe)
|
||||
dh.data_dictionary["prediction_features"] = filtered_dataframe
|
||||
|
||||
# optional additional data cleaning/analysis
|
||||
self.data_cleaning_predict(filtered_dataframe)
|
||||
self.data_cleaning_predict(dh)
|
||||
|
||||
predictions = self.model.predict(self.dh.data_dictionary["prediction_features"])
|
||||
predictions = self.model.predict(dh.data_dictionary["prediction_features"])
|
||||
|
||||
# compute the non-standardized predictions
|
||||
self.dh.predictions = (predictions + 1) * (self.dh.data["labels_max"] -
|
||||
self.dh.data["labels_min"]) / 2 + self.dh.data[
|
||||
"labels_min"]
|
||||
dh.predictions = (predictions + 1) * (dh.data["labels_max"] -
|
||||
dh.data["labels_min"]) / 2 + dh.data["labels_min"]
|
||||
|
||||
# logger.info("--------------------Finished prediction--------------------")
|
||||
|
||||
return (self.dh.predictions, self.dh.do_predict)
|
||||
return (dh.predictions, dh.do_predict)
|
||||
|
Reference in New Issue
Block a user