move exchange_helpers to data module
This commit is contained in:
0
freqtrade/data/__init__.py
Normal file
0
freqtrade/data/__init__.py
Normal file
59
freqtrade/data/convert.py
Normal file
59
freqtrade/data/convert.py
Normal file
@@ -0,0 +1,59 @@
|
||||
"""
|
||||
Functions to convert data from one format to another
|
||||
"""
|
||||
import logging
|
||||
import pandas as pd
|
||||
from pandas import DataFrame, to_datetime
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def parse_ticker_dataframe(ticker: list) -> DataFrame:
|
||||
"""
|
||||
Converts a ticker-list (format ccxt.fetch_ohlcv) to a Dataframe
|
||||
:param ticker: ticker list, as returned by exchange.async_get_candle_history
|
||||
:return: DataFrame
|
||||
"""
|
||||
logger.debug("Parsing tickerlist to dataframe")
|
||||
cols = ['date', 'open', 'high', 'low', 'close', 'volume']
|
||||
frame = DataFrame(ticker, columns=cols)
|
||||
|
||||
frame['date'] = to_datetime(frame['date'],
|
||||
unit='ms',
|
||||
utc=True,
|
||||
infer_datetime_format=True)
|
||||
|
||||
# group by index and aggregate results to eliminate duplicate ticks
|
||||
frame = frame.groupby(by='date', as_index=False, sort=True).agg({
|
||||
'open': 'first',
|
||||
'high': 'max',
|
||||
'low': 'min',
|
||||
'close': 'last',
|
||||
'volume': 'max',
|
||||
})
|
||||
frame.drop(frame.tail(1).index, inplace=True) # eliminate partial candle
|
||||
return frame
|
||||
|
||||
|
||||
def order_book_to_dataframe(bids: list, asks: list) -> DataFrame:
|
||||
"""
|
||||
Gets order book list, returns dataframe with below format per suggested by creslin
|
||||
-------------------------------------------------------------------
|
||||
b_sum b_size bids asks a_size a_sum
|
||||
-------------------------------------------------------------------
|
||||
"""
|
||||
cols = ['bids', 'b_size']
|
||||
|
||||
bids_frame = DataFrame(bids, columns=cols)
|
||||
# add cumulative sum column
|
||||
bids_frame['b_sum'] = bids_frame['b_size'].cumsum()
|
||||
cols2 = ['asks', 'a_size']
|
||||
asks_frame = DataFrame(asks, columns=cols2)
|
||||
# add cumulative sum column
|
||||
asks_frame['a_sum'] = asks_frame['a_size'].cumsum()
|
||||
|
||||
frame = pd.concat([bids_frame['b_sum'], bids_frame['b_size'], bids_frame['bids'],
|
||||
asks_frame['asks'], asks_frame['a_size'], asks_frame['a_sum']], axis=1,
|
||||
keys=['b_sum', 'b_size', 'bids', 'asks', 'a_size', 'a_sum'])
|
||||
# logger.info('order book %s', frame )
|
||||
return frame
|
Reference in New Issue
Block a user