Merge branch 'develop' into pr/stash86/7810
This commit is contained in:
commit
02eb00fa33
2
.github/ISSUE_TEMPLATE/bug_report.md
vendored
2
.github/ISSUE_TEMPLATE/bug_report.md
vendored
@ -20,7 +20,7 @@ Please do not use bug reports to request new features.
|
||||
* Operating system: ____
|
||||
* Python Version: _____ (`python -V`)
|
||||
* CCXT version: _____ (`pip freeze | grep ccxt`)
|
||||
* Freqtrade Version: ____ (`freqtrade -V` or `docker-compose run --rm freqtrade -V` for Freqtrade running in docker)
|
||||
* Freqtrade Version: ____ (`freqtrade -V` or `docker compose run --rm freqtrade -V` for Freqtrade running in docker)
|
||||
|
||||
Note: All issues other than enhancement requests will be closed without further comment if the above template is deleted or not filled out.
|
||||
|
||||
|
2
.github/ISSUE_TEMPLATE/feature_request.md
vendored
2
.github/ISSUE_TEMPLATE/feature_request.md
vendored
@ -18,7 +18,7 @@ Have you search for this feature before requesting it? It's highly likely that a
|
||||
* Operating system: ____
|
||||
* Python Version: _____ (`python -V`)
|
||||
* CCXT version: _____ (`pip freeze | grep ccxt`)
|
||||
* Freqtrade Version: ____ (`freqtrade -V` or `docker-compose run --rm freqtrade -V` for Freqtrade running in docker)
|
||||
* Freqtrade Version: ____ (`freqtrade -V` or `docker compose run --rm freqtrade -V` for Freqtrade running in docker)
|
||||
|
||||
|
||||
## Describe the enhancement
|
||||
|
2
.github/ISSUE_TEMPLATE/question.md
vendored
2
.github/ISSUE_TEMPLATE/question.md
vendored
@ -18,7 +18,7 @@ Please do not use the question template to report bugs or to request new feature
|
||||
* Operating system: ____
|
||||
* Python Version: _____ (`python -V`)
|
||||
* CCXT version: _____ (`pip freeze | grep ccxt`)
|
||||
* Freqtrade Version: ____ (`freqtrade -V` or `docker-compose run --rm freqtrade -V` for Freqtrade running in docker)
|
||||
* Freqtrade Version: ____ (`freqtrade -V` or `docker compose run --rm freqtrade -V` for Freqtrade running in docker)
|
||||
|
||||
## Your question
|
||||
|
||||
|
82
.github/workflows/ci.yml
vendored
82
.github/workflows/ci.yml
vendored
@ -66,12 +66,6 @@ jobs:
|
||||
- name: Tests
|
||||
run: |
|
||||
pytest --random-order --cov=freqtrade --cov-config=.coveragerc
|
||||
if: matrix.python-version != '3.9' || matrix.os != 'ubuntu-22.04'
|
||||
|
||||
- name: Tests incl. ccxt compatibility tests
|
||||
run: |
|
||||
pytest --random-order --cov=freqtrade --cov-config=.coveragerc --longrun
|
||||
if: matrix.python-version == '3.9' && matrix.os == 'ubuntu-22.04'
|
||||
|
||||
- name: Coveralls
|
||||
if: (runner.os == 'Linux' && matrix.python-version == '3.10' && matrix.os == 'ubuntu-22.04')
|
||||
@ -94,7 +88,7 @@ jobs:
|
||||
run: |
|
||||
cp config_examples/config_bittrex.example.json config.json
|
||||
freqtrade create-userdir --userdir user_data
|
||||
freqtrade hyperopt --datadir tests/testdata -e 5 --strategy SampleStrategy --hyperopt-loss SharpeHyperOptLossDaily --print-all
|
||||
freqtrade hyperopt --datadir tests/testdata -e 6 --strategy SampleStrategy --hyperopt-loss SharpeHyperOptLossDaily --print-all
|
||||
|
||||
- name: Flake8
|
||||
run: |
|
||||
@ -154,6 +148,19 @@ jobs:
|
||||
if: runner.os == 'macOS'
|
||||
run: |
|
||||
brew update
|
||||
# homebrew fails to update python due to unlinking failures
|
||||
# https://github.com/actions/runner-images/issues/6817
|
||||
rm /usr/local/bin/2to3 || true
|
||||
rm /usr/local/bin/2to3-3.11 || true
|
||||
rm /usr/local/bin/idle3 || true
|
||||
rm /usr/local/bin/idle3.11 || true
|
||||
rm /usr/local/bin/pydoc3 || true
|
||||
rm /usr/local/bin/pydoc3.11 || true
|
||||
rm /usr/local/bin/python3 || true
|
||||
rm /usr/local/bin/python3.11 || true
|
||||
rm /usr/local/bin/python3-config || true
|
||||
rm /usr/local/bin/python3.11-config || true
|
||||
|
||||
brew install hdf5 c-blosc
|
||||
python -m pip install --upgrade pip wheel
|
||||
export LD_LIBRARY_PATH=${HOME}/dependencies/lib:$LD_LIBRARY_PATH
|
||||
@ -310,9 +317,64 @@ jobs:
|
||||
details: Freqtrade doc test failed!
|
||||
webhookUrl: ${{ secrets.DISCORD_WEBHOOK }}
|
||||
|
||||
|
||||
build_linux_online:
|
||||
# Run pytest with "live" checks
|
||||
runs-on: ubuntu-22.04
|
||||
# permissions:
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: "3.9"
|
||||
|
||||
- name: Cache_dependencies
|
||||
uses: actions/cache@v3
|
||||
id: cache
|
||||
with:
|
||||
path: ~/dependencies/
|
||||
key: ${{ runner.os }}-dependencies
|
||||
|
||||
- name: pip cache (linux)
|
||||
uses: actions/cache@v3
|
||||
if: runner.os == 'Linux'
|
||||
with:
|
||||
path: ~/.cache/pip
|
||||
key: test-${{ matrix.os }}-${{ matrix.python-version }}-pip
|
||||
|
||||
- name: TA binary *nix
|
||||
if: steps.cache.outputs.cache-hit != 'true'
|
||||
run: |
|
||||
cd build_helpers && ./install_ta-lib.sh ${HOME}/dependencies/; cd ..
|
||||
|
||||
- name: Installation - *nix
|
||||
if: runner.os == 'Linux'
|
||||
run: |
|
||||
python -m pip install --upgrade pip wheel
|
||||
export LD_LIBRARY_PATH=${HOME}/dependencies/lib:$LD_LIBRARY_PATH
|
||||
export TA_LIBRARY_PATH=${HOME}/dependencies/lib
|
||||
export TA_INCLUDE_PATH=${HOME}/dependencies/include
|
||||
pip install -r requirements-dev.txt
|
||||
pip install -e .
|
||||
|
||||
- name: Tests incl. ccxt compatibility tests
|
||||
run: |
|
||||
pytest --random-order --cov=freqtrade --cov-config=.coveragerc --longrun
|
||||
|
||||
|
||||
# Notify only once - when CI completes (and after deploy) in case it's successfull
|
||||
notify-complete:
|
||||
needs: [ build_linux, build_macos, build_windows, docs_check, mypy_version_check, pre-commit ]
|
||||
needs: [
|
||||
build_linux,
|
||||
build_macos,
|
||||
build_windows,
|
||||
docs_check,
|
||||
mypy_version_check,
|
||||
pre-commit,
|
||||
build_linux_online
|
||||
]
|
||||
runs-on: ubuntu-22.04
|
||||
# Discord notification can't handle schedule events
|
||||
if: (github.event_name != 'schedule')
|
||||
@ -361,7 +423,7 @@ jobs:
|
||||
python setup.py sdist bdist_wheel
|
||||
|
||||
- name: Publish to PyPI (Test)
|
||||
uses: pypa/gh-action-pypi-publish@v1.5.1
|
||||
uses: pypa/gh-action-pypi-publish@v1.6.4
|
||||
if: (github.event_name == 'release')
|
||||
with:
|
||||
user: __token__
|
||||
@ -369,7 +431,7 @@ jobs:
|
||||
repository_url: https://test.pypi.org/legacy/
|
||||
|
||||
- name: Publish to PyPI
|
||||
uses: pypa/gh-action-pypi-publish@v1.5.1
|
||||
uses: pypa/gh-action-pypi-publish@v1.6.4
|
||||
if: (github.event_name == 'release')
|
||||
with:
|
||||
user: __token__
|
||||
|
@ -15,9 +15,9 @@ repos:
|
||||
additional_dependencies:
|
||||
- types-cachetools==5.2.1
|
||||
- types-filelock==3.2.7
|
||||
- types-requests==2.28.11.5
|
||||
- types-requests==2.28.11.7
|
||||
- types-tabulate==0.9.0.0
|
||||
- types-python-dateutil==2.8.19.4
|
||||
- types-python-dateutil==2.8.19.5
|
||||
# stages: [push]
|
||||
|
||||
- repo: https://github.com/pycqa/isort
|
||||
|
@ -79,9 +79,7 @@
|
||||
"test_size": 0.33,
|
||||
"random_state": 1
|
||||
},
|
||||
"model_training_parameters": {
|
||||
"n_estimators": 1000
|
||||
}
|
||||
"model_training_parameters": {}
|
||||
},
|
||||
"bot_name": "",
|
||||
"force_entry_enable": true,
|
||||
|
@ -100,3 +100,17 @@ freqtrade backtesting-analysis -c <config.json> --analysis-groups 0 2 --enter-re
|
||||
The indicators have to be present in your strategy's main DataFrame (either for your main
|
||||
timeframe or for informative timeframes) otherwise they will simply be ignored in the script
|
||||
output.
|
||||
|
||||
### Filtering the trade output by date
|
||||
|
||||
To show only trades between dates within your backtested timerange, supply the usual `timerange` option in `YYYYMMDD-[YYYYMMDD]` format:
|
||||
|
||||
```
|
||||
--timerange : Timerange to filter output trades, start date inclusive, end date exclusive. e.g. 20220101-20221231
|
||||
```
|
||||
|
||||
For example, if your backtest timerange was `20220101-20221231` but you only want to output trades in January:
|
||||
|
||||
```bash
|
||||
freqtrade backtesting-analysis -c <config.json> --timerange 20220101-20220201
|
||||
```
|
||||
|
@ -5,7 +5,7 @@ You can analyze the results of backtests and trading history easily using Jupyte
|
||||
## Quick start with docker
|
||||
|
||||
Freqtrade provides a docker-compose file which starts up a jupyter lab server.
|
||||
You can run this server using the following command: `docker-compose -f docker/docker-compose-jupyter.yml up`
|
||||
You can run this server using the following command: `docker compose -f docker/docker-compose-jupyter.yml up`
|
||||
|
||||
This will create a dockercontainer running jupyter lab, which will be accessible using `https://127.0.0.1:8888/lab`.
|
||||
Please use the link that's printed in the console after startup for simplified login.
|
||||
@ -83,7 +83,7 @@ from pathlib import Path
|
||||
project_root = "somedir/freqtrade"
|
||||
i=0
|
||||
try:
|
||||
os.chdirdir(project_root)
|
||||
os.chdir(project_root)
|
||||
assert Path('LICENSE').is_file()
|
||||
except:
|
||||
while i<4 and (not Path('LICENSE').is_file()):
|
||||
|
@ -4,20 +4,22 @@ This page explains how to run the bot with Docker. It is not meant to work out o
|
||||
|
||||
## Install Docker
|
||||
|
||||
Start by downloading and installing Docker CE for your platform:
|
||||
Start by downloading and installing Docker / Docker Desktop for your platform:
|
||||
|
||||
* [Mac](https://docs.docker.com/docker-for-mac/install/)
|
||||
* [Windows](https://docs.docker.com/docker-for-windows/install/)
|
||||
* [Linux](https://docs.docker.com/install/)
|
||||
|
||||
To simplify running freqtrade, [`docker-compose`](https://docs.docker.com/compose/install/) should be installed and available to follow the below [docker quick start guide](#docker-quick-start).
|
||||
!!! Info "Docker compose install"
|
||||
Freqtrade documentation assumes the use of Docker desktop (or the docker compose plugin).
|
||||
While the docker-compose standalone installation still works, it will require changing all `docker compose` commands from `docker compose` to `docker-compose` to work (e.g. `docker compose up -d` will become `docker-compose up -d`).
|
||||
|
||||
## Freqtrade with docker-compose
|
||||
## Freqtrade with docker
|
||||
|
||||
Freqtrade provides an official Docker image on [Dockerhub](https://hub.docker.com/r/freqtradeorg/freqtrade/), as well as a [docker-compose file](https://github.com/freqtrade/freqtrade/blob/stable/docker-compose.yml) ready for usage.
|
||||
Freqtrade provides an official Docker image on [Dockerhub](https://hub.docker.com/r/freqtradeorg/freqtrade/), as well as a [docker compose file](https://github.com/freqtrade/freqtrade/blob/stable/docker-compose.yml) ready for usage.
|
||||
|
||||
!!! Note
|
||||
- The following section assumes that `docker` and `docker-compose` are installed and available to the logged in user.
|
||||
- The following section assumes that `docker` is installed and available to the logged in user.
|
||||
- All below commands use relative directories and will have to be executed from the directory containing the `docker-compose.yml` file.
|
||||
|
||||
### Docker quick start
|
||||
@ -31,13 +33,13 @@ cd ft_userdata/
|
||||
curl https://raw.githubusercontent.com/freqtrade/freqtrade/stable/docker-compose.yml -o docker-compose.yml
|
||||
|
||||
# Pull the freqtrade image
|
||||
docker-compose pull
|
||||
docker compose pull
|
||||
|
||||
# Create user directory structure
|
||||
docker-compose run --rm freqtrade create-userdir --userdir user_data
|
||||
docker compose run --rm freqtrade create-userdir --userdir user_data
|
||||
|
||||
# Create configuration - Requires answering interactive questions
|
||||
docker-compose run --rm freqtrade new-config --config user_data/config.json
|
||||
docker compose run --rm freqtrade new-config --config user_data/config.json
|
||||
```
|
||||
|
||||
The above snippet creates a new directory called `ft_userdata`, downloads the latest compose file and pulls the freqtrade image.
|
||||
@ -64,7 +66,7 @@ The `SampleStrategy` is run by default.
|
||||
Once this is done, you're ready to launch the bot in trading mode (Dry-run or Live-trading, depending on your answer to the corresponding question you made above).
|
||||
|
||||
``` bash
|
||||
docker-compose up -d
|
||||
docker compose up -d
|
||||
```
|
||||
|
||||
!!! Warning "Default configuration"
|
||||
@ -84,27 +86,27 @@ You can now access the UI by typing localhost:8080 in your browser.
|
||||
|
||||
#### Monitoring the bot
|
||||
|
||||
You can check for running instances with `docker-compose ps`.
|
||||
You can check for running instances with `docker compose ps`.
|
||||
This should list the service `freqtrade` as `running`. If that's not the case, best check the logs (see next point).
|
||||
|
||||
#### Docker-compose logs
|
||||
#### Docker compose logs
|
||||
|
||||
Logs will be written to: `user_data/logs/freqtrade.log`.
|
||||
You can also check the latest log with the command `docker-compose logs -f`.
|
||||
You can also check the latest log with the command `docker compose logs -f`.
|
||||
|
||||
#### Database
|
||||
|
||||
The database will be located at: `user_data/tradesv3.sqlite`
|
||||
|
||||
#### Updating freqtrade with docker-compose
|
||||
#### Updating freqtrade with docker
|
||||
|
||||
Updating freqtrade when using `docker-compose` is as simple as running the following 2 commands:
|
||||
Updating freqtrade when using `docker` is as simple as running the following 2 commands:
|
||||
|
||||
``` bash
|
||||
# Download the latest image
|
||||
docker-compose pull
|
||||
docker compose pull
|
||||
# Restart the image
|
||||
docker-compose up -d
|
||||
docker compose up -d
|
||||
```
|
||||
|
||||
This will first pull the latest image, and will then restart the container with the just pulled version.
|
||||
@ -116,43 +118,43 @@ This will first pull the latest image, and will then restart the container with
|
||||
|
||||
Advanced users may edit the docker-compose file further to include all possible options or arguments.
|
||||
|
||||
All freqtrade arguments will be available by running `docker-compose run --rm freqtrade <command> <optional arguments>`.
|
||||
All freqtrade arguments will be available by running `docker compose run --rm freqtrade <command> <optional arguments>`.
|
||||
|
||||
!!! Warning "`docker-compose` for trade commands"
|
||||
Trade commands (`freqtrade trade <...>`) should not be ran via `docker-compose run` - but should use `docker-compose up -d` instead.
|
||||
!!! Warning "`docker compose` for trade commands"
|
||||
Trade commands (`freqtrade trade <...>`) should not be ran via `docker compose run` - but should use `docker compose up -d` instead.
|
||||
This makes sure that the container is properly started (including port forwardings) and will make sure that the container will restart after a system reboot.
|
||||
If you intend to use freqUI, please also ensure to adjust the [configuration accordingly](rest-api.md#configuration-with-docker), otherwise the UI will not be available.
|
||||
|
||||
!!! Note "`docker-compose run --rm`"
|
||||
!!! Note "`docker compose run --rm`"
|
||||
Including `--rm` will remove the container after completion, and is highly recommended for all modes except trading mode (running with `freqtrade trade` command).
|
||||
|
||||
??? Note "Using docker without docker-compose"
|
||||
"`docker-compose run --rm`" will require a compose file to be provided.
|
||||
??? Note "Using docker without docker"
|
||||
"`docker compose run --rm`" will require a compose file to be provided.
|
||||
Some freqtrade commands that don't require authentication such as `list-pairs` can be run with "`docker run --rm`" instead.
|
||||
For example `docker run --rm freqtradeorg/freqtrade:stable list-pairs --exchange binance --quote BTC --print-json`.
|
||||
This can be useful for fetching exchange information to add to your `config.json` without affecting your running containers.
|
||||
|
||||
#### Example: Download data with docker-compose
|
||||
#### Example: Download data with docker
|
||||
|
||||
Download backtesting data for 5 days for the pair ETH/BTC and 1h timeframe from Binance. The data will be stored in the directory `user_data/data/` on the host.
|
||||
|
||||
``` bash
|
||||
docker-compose run --rm freqtrade download-data --pairs ETH/BTC --exchange binance --days 5 -t 1h
|
||||
docker compose run --rm freqtrade download-data --pairs ETH/BTC --exchange binance --days 5 -t 1h
|
||||
```
|
||||
|
||||
Head over to the [Data Downloading Documentation](data-download.md) for more details on downloading data.
|
||||
|
||||
#### Example: Backtest with docker-compose
|
||||
#### Example: Backtest with docker
|
||||
|
||||
Run backtesting in docker-containers for SampleStrategy and specified timerange of historical data, on 5m timeframe:
|
||||
|
||||
``` bash
|
||||
docker-compose run --rm freqtrade backtesting --config user_data/config.json --strategy SampleStrategy --timerange 20190801-20191001 -i 5m
|
||||
docker compose run --rm freqtrade backtesting --config user_data/config.json --strategy SampleStrategy --timerange 20190801-20191001 -i 5m
|
||||
```
|
||||
|
||||
Head over to the [Backtesting Documentation](backtesting.md) to learn more.
|
||||
|
||||
### Additional dependencies with docker-compose
|
||||
### Additional dependencies with docker
|
||||
|
||||
If your strategy requires dependencies not included in the default image - it will be necessary to build the image on your host.
|
||||
For this, please create a Dockerfile containing installation steps for the additional dependencies (have a look at [docker/Dockerfile.custom](https://github.com/freqtrade/freqtrade/blob/develop/docker/Dockerfile.custom) for an example).
|
||||
@ -166,15 +168,15 @@ You'll then also need to modify the `docker-compose.yml` file and uncomment the
|
||||
dockerfile: "./Dockerfile.<yourextension>"
|
||||
```
|
||||
|
||||
You can then run `docker-compose build --pull` to build the docker image, and run it using the commands described above.
|
||||
You can then run `docker compose build --pull` to build the docker image, and run it using the commands described above.
|
||||
|
||||
### Plotting with docker-compose
|
||||
### Plotting with docker
|
||||
|
||||
Commands `freqtrade plot-profit` and `freqtrade plot-dataframe` ([Documentation](plotting.md)) are available by changing the image to `*_plot` in your docker-compose.yml file.
|
||||
You can then use these commands as follows:
|
||||
|
||||
``` bash
|
||||
docker-compose run --rm freqtrade plot-dataframe --strategy AwesomeStrategy -p BTC/ETH --timerange=20180801-20180805
|
||||
docker compose run --rm freqtrade plot-dataframe --strategy AwesomeStrategy -p BTC/ETH --timerange=20180801-20180805
|
||||
```
|
||||
|
||||
The output will be stored in the `user_data/plot` directory, and can be opened with any modern browser.
|
||||
@ -185,7 +187,7 @@ Freqtrade provides a docker-compose file which starts up a jupyter lab server.
|
||||
You can run this server using the following command:
|
||||
|
||||
``` bash
|
||||
docker-compose -f docker/docker-compose-jupyter.yml up
|
||||
docker compose -f docker/docker-compose-jupyter.yml up
|
||||
```
|
||||
|
||||
This will create a docker-container running jupyter lab, which will be accessible using `https://127.0.0.1:8888/lab`.
|
||||
@ -194,7 +196,7 @@ Please use the link that's printed in the console after startup for simplified l
|
||||
Since part of this image is built on your machine, it is recommended to rebuild the image from time to time to keep freqtrade (and dependencies) up-to-date.
|
||||
|
||||
``` bash
|
||||
docker-compose -f docker/docker-compose-jupyter.yml build --no-cache
|
||||
docker compose -f docker/docker-compose-jupyter.yml build --no-cache
|
||||
```
|
||||
|
||||
## Troubleshooting
|
||||
|
@ -54,6 +54,9 @@ This configuration enables kraken, as well as rate-limiting to avoid bans from t
|
||||
|
||||
## Binance
|
||||
|
||||
!!! Warning "Server location and geo-ip restrictions"
|
||||
Please be aware that binance restrict api access regarding the server country. The currents and non exhaustive countries blocked are United States, Malaysia (Singapour), Ontario (Canada). Please go to [binance terms > b. Eligibility](https://www.binance.com/en/terms) to find up to date list.
|
||||
|
||||
Binance supports [time_in_force](configuration.md#understand-order_time_in_force).
|
||||
|
||||
!!! Tip "Stoploss on Exchange"
|
||||
|
@ -26,10 +26,7 @@ FreqAI is configured through the typical [Freqtrade config file](configuration.m
|
||||
},
|
||||
"data_split_parameters" : {
|
||||
"test_size": 0.25
|
||||
},
|
||||
"model_training_parameters" : {
|
||||
"n_estimators": 100
|
||||
},
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
|
@ -15,7 +15,7 @@ Mandatory parameters are marked as **Required** and have to be set in one of the
|
||||
| `identifier` | **Required.** <br> A unique ID for the current model. If models are saved to disk, the `identifier` allows for reloading specific pre-trained models/data. <br> **Datatype:** String.
|
||||
| `live_retrain_hours` | Frequency of retraining during dry/live runs. <br> **Datatype:** Float > 0. <br> Default: `0` (models retrain as often as possible).
|
||||
| `expiration_hours` | Avoid making predictions if a model is more than `expiration_hours` old. <br> **Datatype:** Positive integer. <br> Default: `0` (models never expire).
|
||||
| `purge_old_models` | Delete obsolete models. <br> **Datatype:** Boolean. <br> Default: `False` (all historic models remain on disk).
|
||||
| `purge_old_models` | Delete all unused models during live runs (not relevant to backtesting). If set to false (not default), dry/live runs will accumulate all unused models to disk. If <br> **Datatype:** Boolean. <br> Default: `True`.
|
||||
| `save_backtest_models` | Save models to disk when running backtesting. Backtesting operates most efficiently by saving the prediction data and reusing them directly for subsequent runs (when you wish to tune entry/exit parameters). Saving backtesting models to disk also allows to use the same model files for starting a dry/live instance with the same model `identifier`. <br> **Datatype:** Boolean. <br> Default: `False` (no models are saved).
|
||||
| `fit_live_predictions_candles` | Number of historical candles to use for computing target (label) statistics from prediction data, instead of from the training dataset (more information can be found [here](freqai-configuration.md#creating-a-dynamic-target-threshold)). <br> **Datatype:** Positive integer.
|
||||
| `follow_mode` | Use a `follower` that will look for models associated with a specific `identifier` and load those for inferencing. A `follower` will **not** train new models. <br> **Datatype:** Boolean. <br> Default: `False`.
|
||||
@ -37,7 +37,7 @@ Mandatory parameters are marked as **Required** and have to be set in one of the
|
||||
| `indicator_max_period_candles` | **No longer used (#7325)**. Replaced by `startup_candle_count` which is set in the [strategy](freqai-configuration.md#building-a-freqai-strategy). `startup_candle_count` is timeframe independent and defines the maximum *period* used in `populate_any_indicators()` for indicator creation. FreqAI uses this parameter together with the maximum timeframe in `include_time_frames` to calculate how many data points to download such that the first data point does not include a NaN. <br> **Datatype:** Positive integer.
|
||||
| `indicator_periods_candles` | Time periods to calculate indicators for. The indicators are added to the base indicator dataset. <br> **Datatype:** List of positive integers.
|
||||
| `principal_component_analysis` | Automatically reduce the dimensionality of the data set using Principal Component Analysis. See details about how it works [here](#reducing-data-dimensionality-with-principal-component-analysis) <br> **Datatype:** Boolean. <br> Default: `False`.
|
||||
| `plot_feature_importances` | Create a feature importance plot for each model for the top/bottom `plot_feature_importances` number of features. <br> **Datatype:** Integer. <br> Default: `0`.
|
||||
| `plot_feature_importances` | Create a feature importance plot for each model for the top/bottom `plot_feature_importances` number of features. Plot is stored in `user_data/models/<identifier>/sub-train-<COIN>_<timestamp>.html`. <br> **Datatype:** Integer. <br> Default: `0`.
|
||||
| `DI_threshold` | Activates the use of the Dissimilarity Index for outlier detection when set to > 0. See details about how it works [here](freqai-feature-engineering.md#identifying-outliers-with-the-dissimilarity-index-di). <br> **Datatype:** Positive float (typically < 1).
|
||||
| `use_SVM_to_remove_outliers` | Train a support vector machine to detect and remove outliers from the training dataset, as well as from incoming data points. See details about how it works [here](freqai-feature-engineering.md#identifying-outliers-using-a-support-vector-machine-svm). <br> **Datatype:** Boolean.
|
||||
| `svm_params` | All parameters available in Sklearn's `SGDOneClassSVM()`. See details about some select parameters [here](freqai-feature-engineering.md#identifying-outliers-using-a-support-vector-machine-svm). <br> **Datatype:** Dictionary.
|
||||
@ -82,6 +82,7 @@ Mandatory parameters are marked as **Required** and have to be set in one of the
|
||||
| `model_reward_parameters` | Parameters used inside the customizable `calculate_reward()` function in `ReinforcementLearner.py` <br> **Datatype:** int.
|
||||
| `add_state_info` | Tell FreqAI to include state information in the feature set for training and inferencing. The current state variables include trade duration, current profit, trade position. This is only available in dry/live runs, and is automatically switched to false for backtesting. <br> **Datatype:** bool. <br> Default: `False`.
|
||||
| `net_arch` | Network architecture which is well described in [`stable_baselines3` doc](https://stable-baselines3.readthedocs.io/en/master/guide/custom_policy.html#examples). In summary: `[<shared layers>, dict(vf=[<non-shared value network layers>], pi=[<non-shared policy network layers>])]`. By default this is set to `[128, 128]`, which defines 2 shared hidden layers with 128 units each.
|
||||
| `randomize_starting_position` | Randomize the starting point of each episode to avoid overfitting. <br> **Datatype:** bool. <br> Default: `False`.
|
||||
|
||||
### Additional parameters
|
||||
|
||||
|
@ -8,7 +8,7 @@
|
||||
|
||||
### What is RL and why does FreqAI need it?
|
||||
|
||||
Reinforcement learning involves two important components, the *agent* and the training *environment*. During agent training, the agent moves through historical data candle by candle, always making 1 of a set of actions: Long entry, long exit, short entry, short exit, neutral). During this training process, the environment tracks the performance of these actions and rewards the agent according to a custom user made `calculate_reward()` (here we offer a default reward for users to build on if they wish [details here](#creating-the-reward)). The reward is used to train weights in a neural network.
|
||||
Reinforcement learning involves two important components, the *agent* and the training *environment*. During agent training, the agent moves through historical data candle by candle, always making 1 of a set of actions: Long entry, long exit, short entry, short exit, neutral). During this training process, the environment tracks the performance of these actions and rewards the agent according to a custom user made `calculate_reward()` (here we offer a default reward for users to build on if they wish [details here](#creating-a-custom-reward-function)). The reward is used to train weights in a neural network.
|
||||
|
||||
A second important component of the FreqAI RL implementation is the use of *state* information. State information is fed into the network at each step, including current profit, current position, and current trade duration. These are used to train the agent in the training environment, and to reinforce the agent in dry/live (this functionality is not available in backtesting). *FreqAI + Freqtrade is a perfect match for this reinforcing mechanism since this information is readily available in live deployments.*
|
||||
|
||||
@ -16,15 +16,15 @@ Reinforcement learning is a natural progression for FreqAI, since it adds a new
|
||||
|
||||
### The RL interface
|
||||
|
||||
With the current framework, we aim to expose the training environment via the common "prediction model" file, which is a user inherited `BaseReinforcementLearner` object (e.g. `freqai/prediction_models/ReinforcementLearner`). Inside this user class, the RL environment is available and customized via `MyRLEnv` as [shown below](#creating-the-reward).
|
||||
With the current framework, we aim to expose the training environment via the common "prediction model" file, which is a user inherited `BaseReinforcementLearner` object (e.g. `freqai/prediction_models/ReinforcementLearner`). Inside this user class, the RL environment is available and customized via `MyRLEnv` as [shown below](#creating-a-custom-reward-function).
|
||||
|
||||
We envision the majority of users focusing their effort on creative design of the `calculate_reward()` function [details here](#creating-the-reward), while leaving the rest of the environment untouched. Other users may not touch the environment at all, and they will only play with the configuration settings and the powerful feature engineering that already exists in FreqAI. Meanwhile, we enable advanced users to create their own model classes entirely.
|
||||
We envision the majority of users focusing their effort on creative design of the `calculate_reward()` function [details here](#creating-a-custom-reward-function), while leaving the rest of the environment untouched. Other users may not touch the environment at all, and they will only play with the configuration settings and the powerful feature engineering that already exists in FreqAI. Meanwhile, we enable advanced users to create their own model classes entirely.
|
||||
|
||||
The framework is built on stable_baselines3 (torch) and OpenAI gym for the base environment class. But generally speaking, the model class is well isolated. Thus, the addition of competing libraries can be easily integrated into the existing framework. For the environment, it is inheriting from `gym.env` which means that it is necessary to write an entirely new environment in order to switch to a different library.
|
||||
|
||||
### Important considerations
|
||||
|
||||
As explained above, the agent is "trained" in an artificial trading "environment". In our case, that environment may seem quite similar to a real Freqtrade backtesting environment, but it is *NOT*. In fact, the RL trading environment is much more simplified. It does not incorporate any of the complicated strategy logic, such as callbacks such as `custom_exit`, `custom_stoploss`, leverage controls, etc. The RL environment is instead a very "raw" representation of the true market, where the agent has free-will to learn the policy (read: stoploss, take profit, ect) which is enforced by the `calculate_reward()`. Thus, it is important to consider that the agent training environment is not identical to the real world.
|
||||
As explained above, the agent is "trained" in an artificial trading "environment". In our case, that environment may seem quite similar to a real Freqtrade backtesting environment, but it is *NOT*. In fact, the RL training environment is much more simplified. It does not incorporate any of the complicated strategy logic, such as callbacks like `custom_exit`, `custom_stoploss`, leverage controls, etc. The RL environment is instead a very "raw" representation of the true market, where the agent has free-will to learn the policy (read: stoploss, take profit, etc.) which is enforced by the `calculate_reward()`. Thus, it is important to consider that the agent training environment is not identical to the real world.
|
||||
|
||||
## Running Reinforcement Learning
|
||||
|
||||
@ -95,7 +95,7 @@ Most of the function remains the same as for typical Regressors, however, the fu
|
||||
informative[f"%-{pair}raw_low"] = informative["low"]
|
||||
```
|
||||
|
||||
Finally, there is no explicit "label" to make - instead the you need to assign the `&-action` column which will contain the agent's actions when accessed in `populate_entry/exit_trends()`. In the present example, the neutral action to 0. This value should align with the environment used. FreqAI provides two environments, both use 0 as the neutral action.
|
||||
Finally, there is no explicit "label" to make - instead it is necessary to assign the `&-action` column which will contain the agent's actions when accessed in `populate_entry/exit_trends()`. In the present example, the neutral action to 0. This value should align with the environment used. FreqAI provides two environments, both use 0 as the neutral action.
|
||||
|
||||
After users realize there are no labels to set, they will soon understand that the agent is making its "own" entry and exit decisions. This makes strategy construction rather simple. The entry and exit signals come from the agent in the form of an integer - which are used directly to decide entries and exits in the strategy:
|
||||
|
||||
@ -166,7 +166,8 @@ As you begin to modify the strategy and the prediction model, you will quickly r
|
||||
|
||||
```python
|
||||
from freqtrade.freqai.prediction_models.ReinforcementLearner import ReinforcementLearner
|
||||
from freqtrade.freqai.RL.Base5ActionRLEnv import Base5ActionRLEnv
|
||||
from freqtrade.freqai.RL.Base5ActionRLEnv import Actions, Base5ActionRLEnv, Positions
|
||||
|
||||
|
||||
class MyCoolRLModel(ReinforcementLearner):
|
||||
"""
|
||||
@ -242,18 +243,44 @@ cd freqtrade
|
||||
tensorboard --logdir user_data/models/unique-id
|
||||
```
|
||||
|
||||
where `unique-id` is the `identifier` set in the `freqai` configuration file. This command must be run in a separate shell to view the output in their browser at 127.0.0.1:6060 (6060 is the default port used by Tensorboard).
|
||||
where `unique-id` is the `identifier` set in the `freqai` configuration file. This command must be run in a separate shell to view the output in their browser at 127.0.0.1:6006 (6006 is the default port used by Tensorboard).
|
||||
|
||||
![tensorboard](assets/tensorboard.jpg)
|
||||
|
||||
|
||||
### Custom logging
|
||||
|
||||
FreqAI also provides a built in episodic summary logger called `self.tensorboard_log` for adding custom information to the Tensorboard log. By default, this function is already called once per step inside the environment to record the agent actions. All values accumulated for all steps in a single episode are reported at the conclusion of each episode, followed by a full reset of all metrics to 0 in preparation for the subsequent episode.
|
||||
|
||||
|
||||
`self.tensorboard_log` can also be used anywhere inside the environment, for example, it can be added to the `calculate_reward` function to collect more detailed information about how often various parts of the reward were called:
|
||||
|
||||
```py
|
||||
class MyRLEnv(Base5ActionRLEnv):
|
||||
"""
|
||||
User made custom environment. This class inherits from BaseEnvironment and gym.env.
|
||||
Users can override any functions from those parent classes. Here is an example
|
||||
of a user customized `calculate_reward()` function.
|
||||
"""
|
||||
def calculate_reward(self, action: int) -> float:
|
||||
if not self._is_valid(action):
|
||||
self.tensorboard_log("is_valid")
|
||||
return -2
|
||||
|
||||
```
|
||||
|
||||
!!! Note
|
||||
The `self.tensorboard_log()` function is designed for tracking incremented objects only i.e. events, actions inside the training environment. If the event of interest is a float, the float can be passed as the second argument e.g. `self.tensorboard_log("float_metric1", 0.23)` would add 0.23 to `float_metric`. In this case you can also disable incrementing using `inc=False` parameter.
|
||||
|
||||
|
||||
### Choosing a base environment
|
||||
|
||||
FreqAI provides two base environments, `Base4ActionEnvironment` and `Base5ActionEnvironment`. As the names imply, the environments are customized for agents that can select from 4 or 5 actions. In the `Base4ActionEnvironment`, the agent can enter long, enter short, hold neutral, or exit position. Meanwhile, in the `Base5ActionEnvironment`, the agent has the same actions as Base4, but instead of a single exit action, it separates exit long and exit short. The main changes stemming from the environment selection include:
|
||||
FreqAI provides three base environments, `Base3ActionRLEnvironment`, `Base4ActionEnvironment` and `Base5ActionEnvironment`. As the names imply, the environments are customized for agents that can select from 3, 4 or 5 actions. The `Base3ActionEnvironment` is the simplest, the agent can select from hold, long, or short. This environment can also be used for long-only bots (it automatically follows the `can_short` flag from the strategy), where long is the enter condition and short is the exit condition. Meanwhile, in the `Base4ActionEnvironment`, the agent can enter long, enter short, hold neutral, or exit position. Finally, in the `Base5ActionEnvironment`, the agent has the same actions as Base4, but instead of a single exit action, it separates exit long and exit short. The main changes stemming from the environment selection include:
|
||||
|
||||
* the actions available in the `calculate_reward`
|
||||
* the actions consumed by the user strategy
|
||||
|
||||
Both of the FreqAI provided environments inherit from an action/position agnostic environment object called the `BaseEnvironment`, which contains all shared logic. The architecture is designed to be easily customized. The simplest customization is the `calculate_reward()` (see details [here](#creating-the-reward)). However, the customizations can be further extended into any of the functions inside the environment. You can do this by simply overriding those functions inside your `MyRLEnv` in the prediction model file. Or for more advanced customizations, it is encouraged to create an entirely new environment inherited from `BaseEnvironment`.
|
||||
All of the FreqAI provided environments inherit from an action/position agnostic environment object called the `BaseEnvironment`, which contains all shared logic. The architecture is designed to be easily customized. The simplest customization is the `calculate_reward()` (see details [here](#creating-a-custom-reward-function)). However, the customizations can be further extended into any of the functions inside the environment. You can do this by simply overriding those functions inside your `MyRLEnv` in the prediction model file. Or for more advanced customizations, it is encouraged to create an entirely new environment inherited from `BaseEnvironment`.
|
||||
|
||||
!!! Note
|
||||
FreqAI does not provide by default, a long-only training environment. However, creating one should be as simple as copy-pasting one of the built in environments and removing the `short` actions (and all associated references to those).
|
||||
Only the `Base3ActionRLEnv` can do long-only training/trading (set the user strategy attribute `can_short = False`).
|
||||
|
@ -79,16 +79,11 @@ To change your **features**, you **must** set a new `identifier` in the config t
|
||||
|
||||
To save the models generated during a particular backtest so that you can start a live deployment from one of them instead of training a new model, you must set `save_backtest_models` to `True` in the config.
|
||||
|
||||
### Backtest live models
|
||||
### Backtest live collected predictions
|
||||
|
||||
FreqAI allow you to reuse ready models through the backtest parameter `--freqai-backtest-live-models`. This can be useful when you want to reuse models generated in dry/run for comparison or other study. For that, you must set `"purge_old_models"` to `True` in the config.
|
||||
FreqAI allow you to reuse live historic predictions through the backtest parameter `--freqai-backtest-live-models`. This can be useful when you want to reuse predictions generated in dry/run for comparison or other study.
|
||||
|
||||
The `--timerange` parameter must not be informed, as it will be automatically calculated through the training end dates of the models.
|
||||
|
||||
Each model has an identifier derived from the training end date. If you have only 1 model trained, FreqAI will backtest from the training end date until the current date. If you have more than 1 model, each model will perform the backtesting according to the training end date until the training end date of the next model and so on. For the last model, the period of the previous model will be used for the execution.
|
||||
|
||||
!!! Note
|
||||
Currently, there is no checking for expired models, even if the `expired_hours` parameter is set.
|
||||
The `--timerange` parameter must not be informed, as it will be automatically calculated through the data in the historic predictions file.
|
||||
|
||||
|
||||
### Downloading data to cover the full backtest period
|
||||
|
@ -72,11 +72,25 @@ pip install -r requirements-freqai.txt
|
||||
|
||||
If you are using docker, a dedicated tag with FreqAI dependencies is available as `:freqai`. As such - you can replace the image line in your docker-compose file with `image: freqtradeorg/freqtrade:develop_freqai`. This image contains the regular FreqAI dependencies. Similar to native installs, Catboost will not be available on ARM based devices.
|
||||
|
||||
|
||||
### FreqAI position in open-source machine learning landscape
|
||||
|
||||
Forecasting chaotic time-series based systems, such as equity/cryptocurrency markets, requires a broad set of tools geared toward testing a wide range of hypotheses. Fortunately, a recent maturation of robust machine learning libraries (e.g. `scikit-learn`) has opened up a wide range of research possibilities. Scientists from a diverse range of fields can now easily prototype their studies on an abundance of established machine learning algorithms. Similarly, these user-friendly libraries enable "citzen scientists" to use their basic Python skills for data-exploration. However, leveraging these machine learning libraries on historical and live chaotic data sources can be logistically difficult and expensive. Additionally, robust data-collection, storage, and handling presents a disparate challenge. [`FreqAI`](#freqai) aims to provide a generalized and extensible open-sourced framework geared toward live deployments of adaptive modeling for market forecasting. The `FreqAI` framework is effectively a sandbox for the rich world of open-source machine learning libraries. Inside the `FreqAI` sandbox, users find they can combine a wide variety of third-party libraries to test creative hypotheses on a free live 24/7 chaotic data source - cryptocurrency exchange data.
|
||||
|
||||
### Citing FreqAI
|
||||
|
||||
FreqAI is [published in the Journal of Open Source Software](https://joss.theoj.org/papers/10.21105/joss.04864). If you find FreqAI useful in your research, please use the following citation:
|
||||
|
||||
```bibtex
|
||||
@article{Caulk2022,
|
||||
doi = {10.21105/joss.04864},
|
||||
url = {https://doi.org/10.21105/joss.04864},
|
||||
year = {2022}, publisher = {The Open Journal},
|
||||
volume = {7}, number = {80}, pages = {4864},
|
||||
author = {Robert A. Caulk and Elin Törnquist and Matthias Voppichler and Andrew R. Lawless and Ryan McMullan and Wagner Costa Santos and Timothy C. Pogue and Johan van der Vlugt and Stefan P. Gehring and Pascal Schmidt},
|
||||
title = {FreqAI: generalizing adaptive modeling for chaotic time-series market forecasts},
|
||||
journal = {Journal of Open Source Software} }
|
||||
```
|
||||
|
||||
## Common pitfalls
|
||||
|
||||
FreqAI cannot be combined with dynamic `VolumePairlists` (or any pairlist filter that adds and removes pairs dynamically).
|
||||
@ -99,6 +113,8 @@ Code review and software architecture brainstorming:
|
||||
|
||||
Software development:
|
||||
Wagner Costa @wagnercosta
|
||||
Emre Suzen @aemr3
|
||||
Timothy Pogue @wizrds
|
||||
|
||||
Beta testing and bug reporting:
|
||||
Stefan Gehring @bloodhunter4rc, @longyu, Andrew Lawless @paranoidandy, Pascal Schmidt @smidelis, Ryan McMullan @smarmau, Juha Nykänen @suikula, Johan van der Vlugt @jooopiert, Richárd Józsa @richardjosza, Timothy Pogue @wizrds
|
||||
Stefan Gehring @bloodhunter4rc, @longyu, Andrew Lawless @paranoidandy, Pascal Schmidt @smidelis, Ryan McMullan @smarmau, Juha Nykänen @suikula, Johan van der Vlugt @jooopiert, Richárd Józsa @richardjosza
|
||||
|
@ -23,6 +23,7 @@ You may also use something like `.*DOWN/BTC` or `.*UP/BTC` to exclude leveraged
|
||||
* [`StaticPairList`](#static-pair-list) (default, if not configured differently)
|
||||
* [`VolumePairList`](#volume-pair-list)
|
||||
* [`ProducerPairList`](#producerpairlist)
|
||||
* [`RemotePairList`](#remotepairlist)
|
||||
* [`AgeFilter`](#agefilter)
|
||||
* [`OffsetFilter`](#offsetfilter)
|
||||
* [`PerformanceFilter`](#performancefilter)
|
||||
@ -173,6 +174,48 @@ You can limit the length of the pairlist with the optional parameter `number_ass
|
||||
`ProducerPairList` can also be used multiple times in sequence, combining the pairs from multiple producers.
|
||||
Obviously in complex such configurations, the Producer may not provide data for all pairs, so the strategy must be fit for this.
|
||||
|
||||
#### RemotePairList
|
||||
|
||||
It allows the user to fetch a pairlist from a remote server or a locally stored json file within the freqtrade directory, enabling dynamic updates and customization of the trading pairlist.
|
||||
|
||||
The RemotePairList is defined in the pairlists section of the configuration settings. It uses the following configuration options:
|
||||
|
||||
```json
|
||||
"pairlists": [
|
||||
{
|
||||
"method": "RemotePairList",
|
||||
"pairlist_url": "https://example.com/pairlist",
|
||||
"number_assets": 10,
|
||||
"refresh_period": 1800,
|
||||
"keep_pairlist_on_failure": true,
|
||||
"read_timeout": 60,
|
||||
"bearer_token": "my-bearer-token"
|
||||
}
|
||||
]
|
||||
```
|
||||
|
||||
The `pairlist_url` option specifies the URL of the remote server where the pairlist is located, or the path to a local file (if file:/// is prepended). This allows the user to use either a remote server or a local file as the source for the pairlist.
|
||||
|
||||
The user is responsible for providing a server or local file that returns a JSON object with the following structure:
|
||||
|
||||
```json
|
||||
{
|
||||
"pairs": ["XRP/USDT", "ETH/USDT", "LTC/USDT"],
|
||||
"refresh_period": 1800,
|
||||
}
|
||||
```
|
||||
|
||||
The `pairs` property should contain a list of strings with the trading pairs to be used by the bot. The `refresh_period` property is optional and specifies the number of seconds that the pairlist should be cached before being refreshed.
|
||||
|
||||
The optional `keep_pairlist_on_failure` specifies whether the previous received pairlist should be used if the remote server is not reachable or returns an error. The default value is true.
|
||||
|
||||
The optional `read_timeout` specifies the maximum amount of time (in seconds) to wait for a response from the remote source, The default value is 60.
|
||||
|
||||
The optional `bearer_token` will be included in the requests Authorization Header.
|
||||
|
||||
!!! Note
|
||||
In case of a server error the last received pairlist will be kept if `keep_pairlist_on_failure` is set to true, when set to false a empty pairlist is returned.
|
||||
|
||||
#### AgeFilter
|
||||
|
||||
Removes pairs that have been listed on the exchange for less than `min_days_listed` days (defaults to `10`) or more than `max_days_listed` days (defaults `None` mean infinity).
|
||||
|
@ -1,6 +1,6 @@
|
||||
markdown==3.3.7
|
||||
mkdocs==1.4.2
|
||||
mkdocs-material==8.5.10
|
||||
mkdocs-material==8.5.11
|
||||
mdx_truly_sane_lists==1.3
|
||||
pymdown-extensions==9.8
|
||||
pymdown-extensions==9.9
|
||||
jinja2==3.1.2
|
||||
|
@ -13,12 +13,12 @@ Feel free to use a visual Database editor like SqliteBrowser if you feel more co
|
||||
sudo apt-get install sqlite3
|
||||
```
|
||||
|
||||
### Using sqlite3 via docker-compose
|
||||
### Using sqlite3 via docker
|
||||
|
||||
The freqtrade docker image does contain sqlite3, so you can edit the database without having to install anything on the host system.
|
||||
|
||||
``` bash
|
||||
docker-compose exec freqtrade /bin/bash
|
||||
docker compose exec freqtrade /bin/bash
|
||||
sqlite3 <database-file>.sqlite
|
||||
```
|
||||
|
||||
|
@ -773,7 +773,7 @@ class DigDeeperStrategy(IStrategy):
|
||||
* Sell 100@10\$ -> Avg price: 8.5\$, realized profit 150\$, 17.65%
|
||||
* Buy 150@11\$ -> Avg price: 10\$, realized profit 150\$, 17.65%
|
||||
* Sell 100@12\$ -> Avg price: 10\$, total realized profit 350\$, 20%
|
||||
* Sell 150@14\$ -> Avg price: 10\$, total realized profit 950\$, 40%
|
||||
* Sell 150@14\$ -> Avg price: 10\$, total realized profit 950\$, 40% <- *This will be the last "Exit" message*
|
||||
|
||||
The total profit for this trade was 950$ on a 3350$ investment (`100@8$ + 100@9$ + 150@11$`). As such - the final relative profit is 28.35% (`950 / 3350`).
|
||||
|
||||
|
@ -364,8 +364,8 @@ class AwesomeStrategy(IStrategy):
|
||||
timeframe_mins = timeframe_to_minutes(timeframe)
|
||||
minimal_roi = {
|
||||
"0": 0.05, # 5% for the first 3 candles
|
||||
str(timeframe_mins * 3)): 0.02, # 2% after 3 candles
|
||||
str(timeframe_mins * 6)): 0.01, # 1% After 6 candles
|
||||
str(timeframe_mins * 3): 0.02, # 2% after 3 candles
|
||||
str(timeframe_mins * 6): 0.01, # 1% After 6 candles
|
||||
}
|
||||
```
|
||||
|
||||
@ -989,38 +989,18 @@ from freqtrade.persistence import Trade
|
||||
The following example queries for the current pair and trades from today, however other filters can easily be added.
|
||||
|
||||
``` python
|
||||
if self.config['runmode'].value in ('live', 'dry_run'):
|
||||
trades = Trade.get_trades([Trade.pair == metadata['pair'],
|
||||
Trade.open_date > datetime.utcnow() - timedelta(days=1),
|
||||
Trade.is_open.is_(False),
|
||||
trades = Trade.get_trades_proxy(pair=metadata['pair'],
|
||||
open_date=datetime.now(timezone.utc) - timedelta(days=1),
|
||||
is_open=False,
|
||||
]).order_by(Trade.close_date).all()
|
||||
# Summarize profit for this pair.
|
||||
curdayprofit = sum(trade.close_profit for trade in trades)
|
||||
# Summarize profit for this pair.
|
||||
curdayprofit = sum(trade.close_profit for trade in trades)
|
||||
```
|
||||
|
||||
Get amount of stake_currency currently invested in Trades:
|
||||
|
||||
``` python
|
||||
if self.config['runmode'].value in ('live', 'dry_run'):
|
||||
total_stakes = Trade.total_open_trades_stakes()
|
||||
```
|
||||
|
||||
Retrieve performance per pair.
|
||||
Returns a List of dicts per pair.
|
||||
|
||||
``` python
|
||||
if self.config['runmode'].value in ('live', 'dry_run'):
|
||||
performance = Trade.get_overall_performance()
|
||||
```
|
||||
|
||||
Sample return value: ETH/BTC had 5 trades, with a total profit of 1.5% (ratio of 0.015).
|
||||
|
||||
``` json
|
||||
{"pair": "ETH/BTC", "profit": 0.015, "count": 5}
|
||||
```
|
||||
For a full list of available methods, please consult the [Trade object](trade-object.md) documentation.
|
||||
|
||||
!!! Warning
|
||||
Trade history is not available during backtesting or hyperopt.
|
||||
Trade history is not available in `populate_*` methods during backtesting or hyperopt, and will result in empty results.
|
||||
|
||||
## Prevent trades from happening for a specific pair
|
||||
|
||||
|
@ -2,12 +2,37 @@
|
||||
|
||||
Debugging a strategy can be time-consuming. Freqtrade offers helper functions to visualize raw data.
|
||||
The following assumes you work with SampleStrategy, data for 5m timeframe from Binance and have downloaded them into the data directory in the default location.
|
||||
Please follow the [documentation](https://www.freqtrade.io/en/stable/data-download/) for more details.
|
||||
|
||||
## Setup
|
||||
|
||||
### Change Working directory to repository root
|
||||
|
||||
|
||||
```python
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
# Change directory
|
||||
# Modify this cell to insure that the output shows the correct path.
|
||||
# Define all paths relative to the project root shown in the cell output
|
||||
project_root = "somedir/freqtrade"
|
||||
i=0
|
||||
try:
|
||||
os.chdirdir(project_root)
|
||||
assert Path('LICENSE').is_file()
|
||||
except:
|
||||
while i<4 and (not Path('LICENSE').is_file()):
|
||||
os.chdir(Path(Path.cwd(), '../'))
|
||||
i+=1
|
||||
project_root = Path.cwd()
|
||||
print(Path.cwd())
|
||||
```
|
||||
|
||||
### Configure Freqtrade environment
|
||||
|
||||
|
||||
```python
|
||||
from freqtrade.configuration import Configuration
|
||||
|
||||
# Customize these according to your needs.
|
||||
@ -15,14 +40,14 @@ from freqtrade.configuration import Configuration
|
||||
# Initialize empty configuration object
|
||||
config = Configuration.from_files([])
|
||||
# Optionally (recommended), use existing configuration file
|
||||
# config = Configuration.from_files(["config.json"])
|
||||
# config = Configuration.from_files(["user_data/config.json"])
|
||||
|
||||
# Define some constants
|
||||
config["timeframe"] = "5m"
|
||||
# Name of the strategy class
|
||||
config["strategy"] = "SampleStrategy"
|
||||
# Location of the data
|
||||
data_location = config['datadir']
|
||||
data_location = config["datadir"]
|
||||
# Pair to analyze - Only use one pair here
|
||||
pair = "BTC/USDT"
|
||||
```
|
||||
@ -36,12 +61,12 @@ from freqtrade.enums import CandleType
|
||||
candles = load_pair_history(datadir=data_location,
|
||||
timeframe=config["timeframe"],
|
||||
pair=pair,
|
||||
data_format = "hdf5",
|
||||
data_format = "json", # Make sure to update this to your data
|
||||
candle_type=CandleType.SPOT,
|
||||
)
|
||||
|
||||
# Confirm success
|
||||
print("Loaded " + str(len(candles)) + f" rows of data for {pair} from {data_location}")
|
||||
print(f"Loaded {len(candles)} rows of data for {pair} from {data_location}")
|
||||
candles.head()
|
||||
```
|
||||
|
||||
@ -232,7 +257,7 @@ graph = generate_candlestick_graph(pair=pair,
|
||||
# Show graph inline
|
||||
# graph.show()
|
||||
|
||||
# Render graph in a seperate window
|
||||
# Render graph in a separate window
|
||||
graph.show(renderer="browser")
|
||||
|
||||
```
|
||||
|
148
docs/trade-object.md
Normal file
148
docs/trade-object.md
Normal file
@ -0,0 +1,148 @@
|
||||
# Trade Object
|
||||
|
||||
## Trade
|
||||
|
||||
A position freqtrade enters is stored in a `Trade` object - which is persisted to the database.
|
||||
It's a core concept of freqtrade - and something you'll come across in many sections of the documentation, which will most likely point you to this location.
|
||||
|
||||
It will be passed to the strategy in many [strategy callbacks](strategy-callbacks.md). The object passed to the strategy cannot be modified directly. Indirect modifications may occur based on callback results.
|
||||
|
||||
## Trade - Available attributes
|
||||
|
||||
The following attributes / properties are available for each individual trade - and can be used with `trade.<property>` (e.g. `trade.pair`).
|
||||
|
||||
| Attribute | DataType | Description |
|
||||
|------------|-------------|-------------|
|
||||
`pair`| string | Pair of this trade
|
||||
`is_open`| boolean | Is the trade currently open, or has it been concluded
|
||||
`open_rate`| float | Rate this trade was entered at (Avg. entry rate in case of trade-adjustments)
|
||||
`close_rate`| float | Close rate - only set when is_open = False
|
||||
`stake_amount`| float | Amount in Stake (or Quote) currency.
|
||||
`amount`| float | Amount in Asset / Base currency that is currently owned.
|
||||
`open_date`| datetime | Timestamp when trade was opened **use `open_date_utc` instead**
|
||||
`open_date_utc`| datetime | Timestamp when trade was opened - in UTC
|
||||
`close_date`| datetime | Timestamp when trade was closed **use `close_date_utc` instead**
|
||||
`close_date_utc`| datetime | Timestamp when trade was closed - in UTC
|
||||
`close_profit`| float | Relative profit at the time of trade closure. `0.01` == 1%
|
||||
`close_profit_abs`| float | Absolute profit (in stake currency) at the time of trade closure.
|
||||
`leverage` | float | Leverage used for this trade - defaults to 1.0 in spot markets.
|
||||
`enter_tag`| string | Tag provided on entry via the `enter_tag` column in the dataframe
|
||||
`is_short` | boolean | True for short trades, False otherwise
|
||||
`orders` | Order[] | List of order objects attached to this trade (includes both filled and cancelled orders)
|
||||
`date_last_filled_utc` | datetime | Time of the last filled order
|
||||
`entry_side` | "buy" / "sell" | Order Side the trade was entered
|
||||
`exit_side` | "buy" / "sell" | Order Side that will result in a trade exit / position reduction.
|
||||
`trade_direction` | "long" / "short" | Trade direction in text - long or short.
|
||||
`nr_of_successful_entries` | int | Number of successful (filled) entry orders
|
||||
`nr_of_successful_exits` | int | Number of successful (filled) exit orders
|
||||
|
||||
## Class methods
|
||||
|
||||
The following are class methods - which return generic information, and usually result in an explicit query against the database.
|
||||
They can be used as `Trade.<method>` - e.g. `open_trades = Trade.get_open_trade_count()`
|
||||
|
||||
!!! Warning "Backtesting/hyperopt"
|
||||
Most methods will work in both backtesting / hyperopt and live/dry modes.
|
||||
During backtesting, it's limited to usage in [strategy callbacks](strategy-callbacks.md). Usage in `populate_*()` methods is not supported and will result in wrong results.
|
||||
|
||||
### get_trades_proxy
|
||||
|
||||
When your strategy needs some information on existing (open or close) trades - it's best to use `Trade.get_trades_proxy()`.
|
||||
|
||||
Usage:
|
||||
|
||||
``` python
|
||||
from freqtrade.persistence import Trade
|
||||
from datetime import timedelta
|
||||
|
||||
# ...
|
||||
trade_hist = Trade.get_trades_proxy(pair='ETH/USDT', is_open=False, open_date=current_date - timedelta(days=2))
|
||||
|
||||
```
|
||||
|
||||
`get_trades_proxy()` supports the following keyword arguments. All arguments are optional - calling `get_trades_proxy()` without arguments will return a list of all trades in the database.
|
||||
|
||||
* `pair` e.g. `pair='ETH/USDT'`
|
||||
* `is_open` e.g. `is_open=False`
|
||||
* `open_date` e.g. `open_date=current_date - timedelta(days=2)`
|
||||
* `close_date` e.g. `close_date=current_date - timedelta(days=5)`
|
||||
|
||||
### get_open_trade_count
|
||||
|
||||
Get the number of currently open trades
|
||||
|
||||
``` python
|
||||
from freqtrade.persistence import Trade
|
||||
# ...
|
||||
open_trades = Trade.get_open_trade_count()
|
||||
```
|
||||
|
||||
### get_total_closed_profit
|
||||
|
||||
Retrieve the total profit the bot has generated so far.
|
||||
Aggregates `close_profit_abs` for all closed trades.
|
||||
|
||||
``` python
|
||||
from freqtrade.persistence import Trade
|
||||
|
||||
# ...
|
||||
profit = Trade.get_total_closed_profit()
|
||||
```
|
||||
|
||||
### total_open_trades_stakes
|
||||
|
||||
Retrieve the total stake_amount that's currently in trades.
|
||||
|
||||
``` python
|
||||
from freqtrade.persistence import Trade
|
||||
|
||||
# ...
|
||||
profit = Trade.total_open_trades_stakes()
|
||||
```
|
||||
|
||||
### get_overall_performance
|
||||
|
||||
Retrieve the overall performance - similar to the `/performance` telegram command.
|
||||
|
||||
``` python
|
||||
from freqtrade.persistence import Trade
|
||||
|
||||
# ...
|
||||
if self.config['runmode'].value in ('live', 'dry_run'):
|
||||
performance = Trade.get_overall_performance()
|
||||
```
|
||||
|
||||
Sample return value: ETH/BTC had 5 trades, with a total profit of 1.5% (ratio of 0.015).
|
||||
|
||||
``` json
|
||||
{"pair": "ETH/BTC", "profit": 0.015, "count": 5}
|
||||
```
|
||||
|
||||
## Order Object
|
||||
|
||||
An `Order` object represents an order on the exchange (or a simulated order in dry-run mode).
|
||||
An `Order` object will always be tied to it's corresponding [`Trade`](#trade-object), and only really makes sense in the context of a trade.
|
||||
|
||||
### Order - Available attributes
|
||||
|
||||
an Order object is typically attached to a trade.
|
||||
Most properties here can be None as they are dependant on the exchange response.
|
||||
|
||||
| Attribute | DataType | Description |
|
||||
|------------|-------------|-------------|
|
||||
`trade` | Trade | Trade object this order is attached to
|
||||
`ft_pair` | string | Pair this order is for
|
||||
`ft_is_open` | boolean | is the order filled?
|
||||
`order_type` | string | Order type as defined on the exchange - usually market, limit or stoploss
|
||||
`status` | string | Status as defined by ccxt. Usually open, closed, expired or canceled
|
||||
`side` | string | Buy or Sell
|
||||
`price` | float | Price the order was placed at
|
||||
`average` | float | Average price the order filled at
|
||||
`amount` | float | Amount in base currency
|
||||
`filled` | float | Filled amount (in base currency)
|
||||
`remaining` | float | Remaining amount
|
||||
`cost` | float | Cost of the order - usually average * filled
|
||||
`order_date` | datetime | Order creation date **use `order_date_utc` instead**
|
||||
`order_date_utc` | datetime | Order creation date (in UTC)
|
||||
`order_fill_date` | datetime | Order fill date **use `order_fill_utc` instead**
|
||||
`order_fill_date_utc` | datetime | Order fill date
|
@ -6,14 +6,14 @@ To update your freqtrade installation, please use one of the below methods, corr
|
||||
Breaking changes / changed behavior will be documented in the changelog that is posted alongside every release.
|
||||
For the develop branch, please follow PR's to avoid being surprised by changes.
|
||||
|
||||
## docker-compose
|
||||
## docker
|
||||
|
||||
!!! Note "Legacy installations using the `master` image"
|
||||
We're switching from master to stable for the release Images - please adjust your docker-file and replace `freqtradeorg/freqtrade:master` with `freqtradeorg/freqtrade:stable`
|
||||
|
||||
``` bash
|
||||
docker-compose pull
|
||||
docker-compose up -d
|
||||
docker compose pull
|
||||
docker compose up -d
|
||||
```
|
||||
|
||||
## Installation via setup script
|
||||
|
@ -652,7 +652,7 @@ Common arguments:
|
||||
|
||||
You can also use webserver mode via docker.
|
||||
Starting a one-off container requires the configuration of the port explicitly, as ports are not exposed by default.
|
||||
You can use `docker-compose run --rm -p 127.0.0.1:8080:8080 freqtrade webserver` to start a one-off container that'll be removed once you stop it. This assumes that port 8080 is still available and no other bot is running on that port.
|
||||
You can use `docker compose run --rm -p 127.0.0.1:8080:8080 freqtrade webserver` to start a one-off container that'll be removed once you stop it. This assumes that port 8080 is still available and no other bot is running on that port.
|
||||
|
||||
Alternatively, you can reconfigure the docker-compose file to have the command updated:
|
||||
|
||||
@ -662,7 +662,7 @@ Alternatively, you can reconfigure the docker-compose file to have the command u
|
||||
--config /freqtrade/user_data/config.json
|
||||
```
|
||||
|
||||
You can now use `docker-compose up` to start the webserver.
|
||||
You can now use `docker compose up` to start the webserver.
|
||||
This assumes that the configuration has a webserver enabled and configured for docker (listening port = `0.0.0.0`).
|
||||
|
||||
!!! Tip
|
||||
@ -722,6 +722,7 @@ usage: freqtrade backtesting-analysis [-h] [-v] [--logfile FILE] [-V]
|
||||
[--enter-reason-list ENTER_REASON_LIST [ENTER_REASON_LIST ...]]
|
||||
[--exit-reason-list EXIT_REASON_LIST [EXIT_REASON_LIST ...]]
|
||||
[--indicator-list INDICATOR_LIST [INDICATOR_LIST ...]]
|
||||
[--timerange YYYYMMDD-[YYYYMMDD]]
|
||||
|
||||
optional arguments:
|
||||
-h, --help show this help message and exit
|
||||
@ -744,6 +745,10 @@ optional arguments:
|
||||
--indicator-list INDICATOR_LIST [INDICATOR_LIST ...]
|
||||
Comma separated list of indicators to analyse. e.g.
|
||||
'close,rsi,bb_lowerband,profit_abs'
|
||||
--timerange YYYYMMDD-[YYYYMMDD]
|
||||
Timerange to filter trades for analysis,
|
||||
start inclusive, end exclusive. e.g.
|
||||
20220101-20220201
|
||||
|
||||
Common arguments:
|
||||
-v, --verbose Verbose mode (-vv for more, -vvv to get all messages).
|
||||
|
@ -60,10 +60,4 @@ def start_analysis_entries_exits(args: Dict[str, Any]) -> None:
|
||||
|
||||
logger.info('Starting freqtrade in analysis mode')
|
||||
|
||||
process_entry_exit_reasons(config['exportfilename'],
|
||||
config['exchange']['pair_whitelist'],
|
||||
config['analysis_groups'],
|
||||
config['enter_reason_list'],
|
||||
config['exit_reason_list'],
|
||||
config['indicator_list']
|
||||
)
|
||||
process_entry_exit_reasons(config)
|
||||
|
@ -106,7 +106,7 @@ ARGS_HYPEROPT_SHOW = ["hyperopt_list_best", "hyperopt_list_profitable", "hyperop
|
||||
"disableparamexport", "backtest_breakdown"]
|
||||
|
||||
ARGS_ANALYZE_ENTRIES_EXITS = ["exportfilename", "analysis_groups", "enter_reason_list",
|
||||
"exit_reason_list", "indicator_list"]
|
||||
"exit_reason_list", "indicator_list", "timerange"]
|
||||
|
||||
NO_CONF_REQURIED = ["convert-data", "convert-trade-data", "download-data", "list-timeframes",
|
||||
"list-markets", "list-pairs", "list-strategies", "list-freqaimodels",
|
||||
|
@ -355,6 +355,13 @@ def _validate_freqai_include_timeframes(conf: Dict[str, Any]) -> None:
|
||||
f"Main timeframe of {main_tf} must be smaller or equal to FreqAI "
|
||||
f"`include_timeframes`.Offending include-timeframes: {', '.join(offending_lines)}")
|
||||
|
||||
# Ensure that the base timeframe is included in the include_timeframes list
|
||||
if main_tf not in freqai_include_timeframes:
|
||||
feature_parameters = conf.get('freqai', {}).get('feature_parameters', {})
|
||||
include_timeframes = [main_tf] + freqai_include_timeframes
|
||||
conf.get('freqai', {}).get('feature_parameters', {}) \
|
||||
.update({**feature_parameters, 'include_timeframes': include_timeframes})
|
||||
|
||||
|
||||
def _validate_freqai_backtest(conf: Dict[str, Any]) -> None:
|
||||
if conf.get('runmode', RunMode.OTHER) == RunMode.BACKTEST:
|
||||
|
@ -462,6 +462,9 @@ class Configuration:
|
||||
self._args_to_config(config, argname='indicator_list',
|
||||
logstring='Analysis indicator list: {}')
|
||||
|
||||
self._args_to_config(config, argname='timerange',
|
||||
logstring='Filter trades by timerange: {}')
|
||||
|
||||
def _process_runmode(self, config: Config) -> None:
|
||||
|
||||
self._args_to_config(config, argname='dry_run',
|
||||
|
@ -31,7 +31,7 @@ HYPEROPT_LOSS_BUILTIN = ['ShortTradeDurHyperOptLoss', 'OnlyProfitHyperOptLoss',
|
||||
'CalmarHyperOptLoss',
|
||||
'MaxDrawDownHyperOptLoss', 'MaxDrawDownRelativeHyperOptLoss',
|
||||
'ProfitDrawDownHyperOptLoss']
|
||||
AVAILABLE_PAIRLISTS = ['StaticPairList', 'VolumePairList', 'ProducerPairList',
|
||||
AVAILABLE_PAIRLISTS = ['StaticPairList', 'VolumePairList', 'ProducerPairList', 'RemotePairList',
|
||||
'AgeFilter', 'OffsetFilter', 'PerformanceFilter',
|
||||
'PrecisionFilter', 'PriceFilter', 'RangeStabilityFilter',
|
||||
'ShuffleFilter', 'SpreadFilter', 'VolatilityFilter']
|
||||
@ -61,6 +61,7 @@ USERPATH_FREQAIMODELS = 'freqaimodels'
|
||||
|
||||
TELEGRAM_SETTING_OPTIONS = ['on', 'off', 'silent']
|
||||
WEBHOOK_FORMAT_OPTIONS = ['form', 'json', 'raw']
|
||||
FULL_DATAFRAME_THRESHOLD = 100
|
||||
|
||||
ENV_VAR_PREFIX = 'FREQTRADE__'
|
||||
|
||||
@ -591,6 +592,7 @@ CONF_SCHEMA = {
|
||||
"model_type": {"type": "string", "default": "PPO"},
|
||||
"policy_type": {"type": "string", "default": "MlpPolicy"},
|
||||
"net_arch": {"type": "array", "default": [128, 128]},
|
||||
"randomize_startinng_position": {"type": "boolean", "default": False},
|
||||
"model_reward_parameters": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
@ -607,8 +609,7 @@ CONF_SCHEMA = {
|
||||
"backtest_period_days",
|
||||
"identifier",
|
||||
"feature_parameters",
|
||||
"data_split_parameters",
|
||||
"model_training_parameters"
|
||||
"data_split_parameters"
|
||||
]
|
||||
},
|
||||
},
|
||||
|
@ -20,8 +20,8 @@ from freqtrade.persistence import LocalTrade, Trade, init_db
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Newest format
|
||||
BT_DATA_COLUMNS = ['pair', 'stake_amount', 'amount', 'open_date', 'close_date',
|
||||
'open_rate', 'close_rate',
|
||||
BT_DATA_COLUMNS = ['pair', 'stake_amount', 'max_stake_amount', 'amount',
|
||||
'open_date', 'close_date', 'open_rate', 'close_rate',
|
||||
'fee_open', 'fee_close', 'trade_duration',
|
||||
'profit_ratio', 'profit_abs', 'exit_reason',
|
||||
'initial_stop_loss_abs', 'initial_stop_loss_ratio', 'stop_loss_abs',
|
||||
@ -241,6 +241,33 @@ def find_existing_backtest_stats(dirname: Union[Path, str], run_ids: Dict[str, s
|
||||
return results
|
||||
|
||||
|
||||
def _load_backtest_data_df_compatibility(df: pd.DataFrame) -> pd.DataFrame:
|
||||
"""
|
||||
Compatibility support for older backtest data.
|
||||
"""
|
||||
df['open_date'] = pd.to_datetime(df['open_date'],
|
||||
utc=True,
|
||||
infer_datetime_format=True
|
||||
)
|
||||
df['close_date'] = pd.to_datetime(df['close_date'],
|
||||
utc=True,
|
||||
infer_datetime_format=True
|
||||
)
|
||||
# Compatibility support for pre short Columns
|
||||
if 'is_short' not in df.columns:
|
||||
df['is_short'] = False
|
||||
if 'leverage' not in df.columns:
|
||||
df['leverage'] = 1.0
|
||||
if 'enter_tag' not in df.columns:
|
||||
df['enter_tag'] = df['buy_tag']
|
||||
df = df.drop(['buy_tag'], axis=1)
|
||||
if 'max_stake_amount' not in df.columns:
|
||||
df['max_stake_amount'] = df['stake_amount']
|
||||
if 'orders' not in df.columns:
|
||||
df['orders'] = None
|
||||
return df
|
||||
|
||||
|
||||
def load_backtest_data(filename: Union[Path, str], strategy: Optional[str] = None) -> pd.DataFrame:
|
||||
"""
|
||||
Load backtest data file.
|
||||
@ -269,24 +296,7 @@ def load_backtest_data(filename: Union[Path, str], strategy: Optional[str] = Non
|
||||
data = data['strategy'][strategy]['trades']
|
||||
df = pd.DataFrame(data)
|
||||
if not df.empty:
|
||||
df['open_date'] = pd.to_datetime(df['open_date'],
|
||||
utc=True,
|
||||
infer_datetime_format=True
|
||||
)
|
||||
df['close_date'] = pd.to_datetime(df['close_date'],
|
||||
utc=True,
|
||||
infer_datetime_format=True
|
||||
)
|
||||
# Compatibility support for pre short Columns
|
||||
if 'is_short' not in df.columns:
|
||||
df['is_short'] = 0
|
||||
if 'leverage' not in df.columns:
|
||||
df['leverage'] = 1.0
|
||||
if 'enter_tag' not in df.columns:
|
||||
df['enter_tag'] = df['buy_tag']
|
||||
df = df.drop(['buy_tag'], axis=1)
|
||||
if 'orders' not in df.columns:
|
||||
df['orders'] = None
|
||||
df = _load_backtest_data_df_compatibility(df)
|
||||
|
||||
else:
|
||||
# old format - only with lists.
|
||||
|
@ -9,14 +9,16 @@ from collections import deque
|
||||
from datetime import datetime, timezone
|
||||
from typing import Any, Dict, List, Optional, Tuple
|
||||
|
||||
from pandas import DataFrame
|
||||
from pandas import DataFrame, to_timedelta
|
||||
|
||||
from freqtrade.configuration import TimeRange
|
||||
from freqtrade.constants import Config, ListPairsWithTimeframes, PairWithTimeframe
|
||||
from freqtrade.constants import (FULL_DATAFRAME_THRESHOLD, Config, ListPairsWithTimeframes,
|
||||
PairWithTimeframe)
|
||||
from freqtrade.data.history import load_pair_history
|
||||
from freqtrade.enums import CandleType, RPCMessageType, RunMode
|
||||
from freqtrade.exceptions import ExchangeError, OperationalException
|
||||
from freqtrade.exchange import Exchange, timeframe_to_seconds
|
||||
from freqtrade.misc import append_candles_to_dataframe
|
||||
from freqtrade.rpc import RPCManager
|
||||
from freqtrade.util import PeriodicCache
|
||||
|
||||
@ -104,13 +106,15 @@ class DataProvider:
|
||||
def _emit_df(
|
||||
self,
|
||||
pair_key: PairWithTimeframe,
|
||||
dataframe: DataFrame
|
||||
dataframe: DataFrame,
|
||||
new_candle: bool
|
||||
) -> None:
|
||||
"""
|
||||
Send this dataframe as an ANALYZED_DF message to RPC
|
||||
|
||||
:param pair_key: PairWithTimeframe tuple
|
||||
:param data: Tuple containing the DataFrame and the datetime it was cached
|
||||
:param dataframe: Dataframe to emit
|
||||
:param new_candle: This is a new candle
|
||||
"""
|
||||
if self.__rpc:
|
||||
self.__rpc.send_msg(
|
||||
@ -118,13 +122,18 @@ class DataProvider:
|
||||
'type': RPCMessageType.ANALYZED_DF,
|
||||
'data': {
|
||||
'key': pair_key,
|
||||
'df': dataframe,
|
||||
'df': dataframe.tail(1),
|
||||
'la': datetime.now(timezone.utc)
|
||||
}
|
||||
}
|
||||
)
|
||||
if new_candle:
|
||||
self.__rpc.send_msg({
|
||||
'type': RPCMessageType.NEW_CANDLE,
|
||||
'data': pair_key,
|
||||
})
|
||||
|
||||
def _add_external_df(
|
||||
def _replace_external_df(
|
||||
self,
|
||||
pair: str,
|
||||
dataframe: DataFrame,
|
||||
@ -150,6 +159,85 @@ class DataProvider:
|
||||
self.__producer_pairs_df[producer_name][pair_key] = (dataframe, _last_analyzed)
|
||||
logger.debug(f"External DataFrame for {pair_key} from {producer_name} added.")
|
||||
|
||||
def _add_external_df(
|
||||
self,
|
||||
pair: str,
|
||||
dataframe: DataFrame,
|
||||
last_analyzed: datetime,
|
||||
timeframe: str,
|
||||
candle_type: CandleType,
|
||||
producer_name: str = "default"
|
||||
) -> Tuple[bool, int]:
|
||||
"""
|
||||
Append a candle to the existing external dataframe. The incoming dataframe
|
||||
must have at least 1 candle.
|
||||
|
||||
:param pair: pair to get the data for
|
||||
:param timeframe: Timeframe to get data for
|
||||
:param candle_type: Any of the enum CandleType (must match trading mode!)
|
||||
:returns: False if the candle could not be appended, or the int number of missing candles.
|
||||
"""
|
||||
pair_key = (pair, timeframe, candle_type)
|
||||
|
||||
if dataframe.empty:
|
||||
# The incoming dataframe must have at least 1 candle
|
||||
return (False, 0)
|
||||
|
||||
if len(dataframe) >= FULL_DATAFRAME_THRESHOLD:
|
||||
# This is likely a full dataframe
|
||||
# Add the dataframe to the dataprovider
|
||||
self._replace_external_df(
|
||||
pair,
|
||||
dataframe,
|
||||
last_analyzed=last_analyzed,
|
||||
timeframe=timeframe,
|
||||
candle_type=candle_type,
|
||||
producer_name=producer_name
|
||||
)
|
||||
return (True, 0)
|
||||
|
||||
if (producer_name not in self.__producer_pairs_df
|
||||
or pair_key not in self.__producer_pairs_df[producer_name]):
|
||||
# We don't have data from this producer yet,
|
||||
# or we don't have data for this pair_key
|
||||
# return False and 1000 for the full df
|
||||
return (False, 1000)
|
||||
|
||||
existing_df, _ = self.__producer_pairs_df[producer_name][pair_key]
|
||||
|
||||
# CHECK FOR MISSING CANDLES
|
||||
timeframe_delta = to_timedelta(timeframe) # Convert the timeframe to a timedelta for pandas
|
||||
local_last = existing_df.iloc[-1]['date'] # We want the last date from our copy
|
||||
incoming_first = dataframe.iloc[0]['date'] # We want the first date from the incoming
|
||||
|
||||
# Remove existing candles that are newer than the incoming first candle
|
||||
existing_df1 = existing_df[existing_df['date'] < incoming_first]
|
||||
|
||||
candle_difference = (incoming_first - local_last) / timeframe_delta
|
||||
|
||||
# If the difference divided by the timeframe is 1, then this
|
||||
# is the candle we want and the incoming data isn't missing any.
|
||||
# If the candle_difference is more than 1, that means
|
||||
# we missed some candles between our data and the incoming
|
||||
# so return False and candle_difference.
|
||||
if candle_difference > 1:
|
||||
return (False, candle_difference)
|
||||
if existing_df1.empty:
|
||||
appended_df = dataframe
|
||||
else:
|
||||
appended_df = append_candles_to_dataframe(existing_df1, dataframe)
|
||||
|
||||
# Everything is good, we appended
|
||||
self._replace_external_df(
|
||||
pair,
|
||||
appended_df,
|
||||
last_analyzed=last_analyzed,
|
||||
timeframe=timeframe,
|
||||
candle_type=candle_type,
|
||||
producer_name=producer_name
|
||||
)
|
||||
return (True, 0)
|
||||
|
||||
def get_producer_df(
|
||||
self,
|
||||
pair: str,
|
||||
|
@ -1,11 +1,12 @@
|
||||
import logging
|
||||
from pathlib import Path
|
||||
from typing import List, Optional
|
||||
|
||||
import joblib
|
||||
import pandas as pd
|
||||
from tabulate import tabulate
|
||||
|
||||
from freqtrade.configuration import TimeRange
|
||||
from freqtrade.constants import Config
|
||||
from freqtrade.data.btanalysis import (get_latest_backtest_filename, load_backtest_data,
|
||||
load_backtest_stats)
|
||||
from freqtrade.exceptions import OperationalException
|
||||
@ -152,37 +153,55 @@ def _do_group_table_output(bigdf, glist):
|
||||
logger.warning("Invalid group mask specified.")
|
||||
|
||||
|
||||
def _print_results(analysed_trades, stratname, analysis_groups,
|
||||
enter_reason_list, exit_reason_list,
|
||||
indicator_list, columns=None):
|
||||
if columns is None:
|
||||
columns = ['pair', 'open_date', 'close_date', 'profit_abs', 'enter_reason', 'exit_reason']
|
||||
def _select_rows_within_dates(df, timerange=None, df_date_col: str = 'date'):
|
||||
if timerange:
|
||||
if timerange.starttype == 'date':
|
||||
df = df.loc[(df[df_date_col] >= timerange.startdt)]
|
||||
if timerange.stoptype == 'date':
|
||||
df = df.loc[(df[df_date_col] < timerange.stopdt)]
|
||||
return df
|
||||
|
||||
bigdf = pd.DataFrame()
|
||||
for pair, trades in analysed_trades[stratname].items():
|
||||
bigdf = pd.concat([bigdf, trades], ignore_index=True)
|
||||
|
||||
if bigdf.shape[0] > 0 and ('enter_reason' in bigdf.columns):
|
||||
if analysis_groups:
|
||||
_do_group_table_output(bigdf, analysis_groups)
|
||||
|
||||
def _select_rows_by_tags(df, enter_reason_list, exit_reason_list):
|
||||
if enter_reason_list and "all" not in enter_reason_list:
|
||||
bigdf = bigdf.loc[(bigdf['enter_reason'].isin(enter_reason_list))]
|
||||
df = df.loc[(df['enter_reason'].isin(enter_reason_list))]
|
||||
|
||||
if exit_reason_list and "all" not in exit_reason_list:
|
||||
bigdf = bigdf.loc[(bigdf['exit_reason'].isin(exit_reason_list))]
|
||||
df = df.loc[(df['exit_reason'].isin(exit_reason_list))]
|
||||
return df
|
||||
|
||||
|
||||
def prepare_results(analysed_trades, stratname,
|
||||
enter_reason_list, exit_reason_list,
|
||||
timerange=None):
|
||||
res_df = pd.DataFrame()
|
||||
for pair, trades in analysed_trades[stratname].items():
|
||||
res_df = pd.concat([res_df, trades], ignore_index=True)
|
||||
|
||||
res_df = _select_rows_within_dates(res_df, timerange)
|
||||
|
||||
if res_df is not None and res_df.shape[0] > 0 and ('enter_reason' in res_df.columns):
|
||||
res_df = _select_rows_by_tags(res_df, enter_reason_list, exit_reason_list)
|
||||
|
||||
return res_df
|
||||
|
||||
|
||||
def print_results(res_df, analysis_groups, indicator_list):
|
||||
if res_df.shape[0] > 0:
|
||||
if analysis_groups:
|
||||
_do_group_table_output(res_df, analysis_groups)
|
||||
|
||||
if "all" in indicator_list:
|
||||
print(bigdf)
|
||||
print(res_df)
|
||||
elif indicator_list is not None:
|
||||
available_inds = []
|
||||
for ind in indicator_list:
|
||||
if ind in bigdf:
|
||||
if ind in res_df:
|
||||
available_inds.append(ind)
|
||||
ilist = ["pair", "enter_reason", "exit_reason"] + available_inds
|
||||
_print_table(bigdf[ilist], sortcols=['exit_reason'], show_index=False)
|
||||
_print_table(res_df[ilist], sortcols=['exit_reason'], show_index=False)
|
||||
else:
|
||||
print("\\_ No trades to show")
|
||||
print("\\No trades to show")
|
||||
|
||||
|
||||
def _print_table(df, sortcols=None, show_index=False):
|
||||
@ -201,26 +220,33 @@ def _print_table(df, sortcols=None, show_index=False):
|
||||
)
|
||||
|
||||
|
||||
def process_entry_exit_reasons(backtest_dir: Path,
|
||||
pairlist: List[str],
|
||||
analysis_groups: Optional[List[str]] = ["0", "1", "2"],
|
||||
enter_reason_list: Optional[List[str]] = ["all"],
|
||||
exit_reason_list: Optional[List[str]] = ["all"],
|
||||
indicator_list: Optional[List[str]] = []):
|
||||
def process_entry_exit_reasons(config: Config):
|
||||
try:
|
||||
backtest_stats = load_backtest_stats(backtest_dir)
|
||||
analysis_groups = config.get('analysis_groups', [])
|
||||
enter_reason_list = config.get('enter_reason_list', ["all"])
|
||||
exit_reason_list = config.get('exit_reason_list', ["all"])
|
||||
indicator_list = config.get('indicator_list', [])
|
||||
|
||||
timerange = TimeRange.parse_timerange(None if config.get(
|
||||
'timerange') is None else str(config.get('timerange')))
|
||||
|
||||
backtest_stats = load_backtest_stats(config['exportfilename'])
|
||||
|
||||
for strategy_name, results in backtest_stats['strategy'].items():
|
||||
trades = load_backtest_data(backtest_dir, strategy_name)
|
||||
trades = load_backtest_data(config['exportfilename'], strategy_name)
|
||||
|
||||
if not trades.empty:
|
||||
signal_candles = _load_signal_candles(backtest_dir)
|
||||
analysed_trades_dict = _process_candles_and_indicators(pairlist, strategy_name,
|
||||
signal_candles = _load_signal_candles(config['exportfilename'])
|
||||
analysed_trades_dict = _process_candles_and_indicators(
|
||||
config['exchange']['pair_whitelist'], strategy_name,
|
||||
trades, signal_candles)
|
||||
_print_results(analysed_trades_dict,
|
||||
strategy_name,
|
||||
|
||||
res_df = prepare_results(analysed_trades_dict, strategy_name,
|
||||
enter_reason_list, exit_reason_list,
|
||||
timerange=timerange)
|
||||
|
||||
print_results(res_df,
|
||||
analysis_groups,
|
||||
enter_reason_list,
|
||||
exit_reason_list,
|
||||
indicator_list)
|
||||
|
||||
except ValueError as e:
|
||||
|
@ -6,7 +6,7 @@ from freqtrade.enums.exittype import ExitType
|
||||
from freqtrade.enums.hyperoptstate import HyperoptState
|
||||
from freqtrade.enums.marginmode import MarginMode
|
||||
from freqtrade.enums.ordertypevalue import OrderTypeValues
|
||||
from freqtrade.enums.rpcmessagetype import RPCMessageType, RPCRequestType
|
||||
from freqtrade.enums.rpcmessagetype import NO_ECHO_MESSAGES, RPCMessageType, RPCRequestType
|
||||
from freqtrade.enums.runmode import NON_UTIL_MODES, OPTIMIZE_MODES, TRADING_MODES, RunMode
|
||||
from freqtrade.enums.signaltype import SignalDirection, SignalTagType, SignalType
|
||||
from freqtrade.enums.state import State
|
||||
|
@ -21,6 +21,7 @@ class RPCMessageType(str, Enum):
|
||||
|
||||
WHITELIST = 'whitelist'
|
||||
ANALYZED_DF = 'analyzed_df'
|
||||
NEW_CANDLE = 'new_candle'
|
||||
|
||||
def __repr__(self):
|
||||
return self.value
|
||||
@ -35,3 +36,6 @@ class RPCRequestType(str, Enum):
|
||||
|
||||
WHITELIST = 'whitelist'
|
||||
ANALYZED_DF = 'analyzed_df'
|
||||
|
||||
|
||||
NO_ECHO_MESSAGES = (RPCMessageType.ANALYZED_DF, RPCMessageType.WHITELIST, RPCMessageType.NEW_CANDLE)
|
||||
|
@ -3,7 +3,6 @@
|
||||
from freqtrade.exchange.common import remove_credentials, MAP_EXCHANGE_CHILDCLASS
|
||||
from freqtrade.exchange.exchange import Exchange
|
||||
# isort: on
|
||||
from freqtrade.exchange.bibox import Bibox
|
||||
from freqtrade.exchange.binance import Binance
|
||||
from freqtrade.exchange.bitpanda import Bitpanda
|
||||
from freqtrade.exchange.bittrex import Bittrex
|
||||
|
@ -1,28 +0,0 @@
|
||||
""" Bibox exchange subclass """
|
||||
import logging
|
||||
from typing import Dict
|
||||
|
||||
from freqtrade.exchange import Exchange
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class Bibox(Exchange):
|
||||
"""
|
||||
Bibox exchange class. Contains adjustments needed for Freqtrade to work
|
||||
with this exchange.
|
||||
|
||||
Please note that this exchange is not included in the list of exchanges
|
||||
officially supported by the Freqtrade development team. So some features
|
||||
may still not work as expected.
|
||||
"""
|
||||
|
||||
# fetchCurrencies API point requires authentication for Bibox,
|
||||
# so switch it off for Freqtrade load_markets()
|
||||
@property
|
||||
def _ccxt_config(self) -> Dict:
|
||||
# Parameters to add directly to ccxt sync/async initialization.
|
||||
config = {"has": {"fetchCurrencies": False}}
|
||||
config.update(super()._ccxt_config)
|
||||
return config
|
@ -31,7 +31,7 @@ class Binance(Exchange):
|
||||
"ccxt_futures_name": "future"
|
||||
}
|
||||
_ft_has_futures: Dict = {
|
||||
"stoploss_order_types": {"limit": "limit", "market": "market"},
|
||||
"stoploss_order_types": {"limit": "stop", "market": "stop_market"},
|
||||
"tickers_have_price": False,
|
||||
}
|
||||
|
||||
|
125
freqtrade/freqai/RL/Base3ActionRLEnv.py
Normal file
125
freqtrade/freqai/RL/Base3ActionRLEnv.py
Normal file
@ -0,0 +1,125 @@
|
||||
import logging
|
||||
from enum import Enum
|
||||
|
||||
from gym import spaces
|
||||
|
||||
from freqtrade.freqai.RL.BaseEnvironment import BaseEnvironment, Positions
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class Actions(Enum):
|
||||
Neutral = 0
|
||||
Buy = 1
|
||||
Sell = 2
|
||||
|
||||
|
||||
class Base3ActionRLEnv(BaseEnvironment):
|
||||
"""
|
||||
Base class for a 3 action environment
|
||||
"""
|
||||
def __init__(self, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
self.actions = Actions
|
||||
|
||||
def set_action_space(self):
|
||||
self.action_space = spaces.Discrete(len(Actions))
|
||||
|
||||
def step(self, action: int):
|
||||
"""
|
||||
Logic for a single step (incrementing one candle in time)
|
||||
by the agent
|
||||
:param: action: int = the action type that the agent plans
|
||||
to take for the current step.
|
||||
:returns:
|
||||
observation = current state of environment
|
||||
step_reward = the reward from `calculate_reward()`
|
||||
_done = if the agent "died" or if the candles finished
|
||||
info = dict passed back to openai gym lib
|
||||
"""
|
||||
self._done = False
|
||||
self._current_tick += 1
|
||||
|
||||
if self._current_tick == self._end_tick:
|
||||
self._done = True
|
||||
|
||||
self._update_unrealized_total_profit()
|
||||
step_reward = self.calculate_reward(action)
|
||||
self.total_reward += step_reward
|
||||
self.tensorboard_log(self.actions._member_names_[action])
|
||||
|
||||
trade_type = None
|
||||
if self.is_tradesignal(action):
|
||||
if action == Actions.Buy.value:
|
||||
if self._position == Positions.Short:
|
||||
self._update_total_profit()
|
||||
self._position = Positions.Long
|
||||
trade_type = "long"
|
||||
self._last_trade_tick = self._current_tick
|
||||
elif action == Actions.Sell.value and self.can_short:
|
||||
if self._position == Positions.Long:
|
||||
self._update_total_profit()
|
||||
self._position = Positions.Short
|
||||
trade_type = "short"
|
||||
self._last_trade_tick = self._current_tick
|
||||
elif action == Actions.Sell.value and not self.can_short:
|
||||
self._update_total_profit()
|
||||
self._position = Positions.Neutral
|
||||
trade_type = "neutral"
|
||||
self._last_trade_tick = None
|
||||
else:
|
||||
print("case not defined")
|
||||
|
||||
if trade_type is not None:
|
||||
self.trade_history.append(
|
||||
{'price': self.current_price(), 'index': self._current_tick,
|
||||
'type': trade_type})
|
||||
|
||||
if (self._total_profit < self.max_drawdown or
|
||||
self._total_unrealized_profit < self.max_drawdown):
|
||||
self._done = True
|
||||
|
||||
self._position_history.append(self._position)
|
||||
|
||||
info = dict(
|
||||
tick=self._current_tick,
|
||||
action=action,
|
||||
total_reward=self.total_reward,
|
||||
total_profit=self._total_profit,
|
||||
position=self._position.value,
|
||||
trade_duration=self.get_trade_duration(),
|
||||
current_profit_pct=self.get_unrealized_profit()
|
||||
)
|
||||
|
||||
observation = self._get_observation()
|
||||
|
||||
self._update_history(info)
|
||||
|
||||
return observation, step_reward, self._done, info
|
||||
|
||||
def is_tradesignal(self, action: int) -> bool:
|
||||
"""
|
||||
Determine if the signal is a trade signal
|
||||
e.g.: agent wants a Actions.Buy while it is in a Positions.short
|
||||
"""
|
||||
return (
|
||||
(action == Actions.Buy.value and self._position == Positions.Neutral)
|
||||
or (action == Actions.Sell.value and self._position == Positions.Long)
|
||||
or (action == Actions.Sell.value and self._position == Positions.Neutral
|
||||
and self.can_short)
|
||||
or (action == Actions.Buy.value and self._position == Positions.Short
|
||||
and self.can_short)
|
||||
)
|
||||
|
||||
def _is_valid(self, action: int) -> bool:
|
||||
"""
|
||||
Determine if the signal is valid.
|
||||
e.g.: agent wants a Actions.Sell while it is in a Positions.Long
|
||||
"""
|
||||
if self.can_short:
|
||||
return action in [Actions.Buy.value, Actions.Sell.value, Actions.Neutral.value]
|
||||
else:
|
||||
if action == Actions.Sell.value and self._position != Positions.Long:
|
||||
return False
|
||||
return True
|
@ -20,6 +20,9 @@ class Base4ActionRLEnv(BaseEnvironment):
|
||||
"""
|
||||
Base class for a 4 action environment
|
||||
"""
|
||||
def __init__(self, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
self.actions = Actions
|
||||
|
||||
def set_action_space(self):
|
||||
self.action_space = spaces.Discrete(len(Actions))
|
||||
@ -43,9 +46,9 @@ class Base4ActionRLEnv(BaseEnvironment):
|
||||
self._done = True
|
||||
|
||||
self._update_unrealized_total_profit()
|
||||
|
||||
step_reward = self.calculate_reward(action)
|
||||
self.total_reward += step_reward
|
||||
self.tensorboard_log(self.actions._member_names_[action])
|
||||
|
||||
trade_type = None
|
||||
if self.is_tradesignal(action):
|
||||
@ -85,16 +88,20 @@ class Base4ActionRLEnv(BaseEnvironment):
|
||||
{'price': self.current_price(), 'index': self._current_tick,
|
||||
'type': trade_type})
|
||||
|
||||
if self._total_profit < 1 - self.rl_config.get('max_training_drawdown_pct', 0.8):
|
||||
if (self._total_profit < self.max_drawdown or
|
||||
self._total_unrealized_profit < self.max_drawdown):
|
||||
self._done = True
|
||||
|
||||
self._position_history.append(self._position)
|
||||
|
||||
info = dict(
|
||||
tick=self._current_tick,
|
||||
action=action,
|
||||
total_reward=self.total_reward,
|
||||
total_profit=self._total_profit,
|
||||
position=self._position.value
|
||||
position=self._position.value,
|
||||
trade_duration=self.get_trade_duration(),
|
||||
current_profit_pct=self.get_unrealized_profit()
|
||||
)
|
||||
|
||||
observation = self._get_observation()
|
||||
|
@ -21,6 +21,9 @@ class Base5ActionRLEnv(BaseEnvironment):
|
||||
"""
|
||||
Base class for a 5 action environment
|
||||
"""
|
||||
def __init__(self, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
self.actions = Actions
|
||||
|
||||
def set_action_space(self):
|
||||
self.action_space = spaces.Discrete(len(Actions))
|
||||
@ -46,6 +49,7 @@ class Base5ActionRLEnv(BaseEnvironment):
|
||||
self._update_unrealized_total_profit()
|
||||
step_reward = self.calculate_reward(action)
|
||||
self.total_reward += step_reward
|
||||
self.tensorboard_log(self.actions._member_names_[action])
|
||||
|
||||
trade_type = None
|
||||
if self.is_tradesignal(action):
|
||||
@ -98,9 +102,12 @@ class Base5ActionRLEnv(BaseEnvironment):
|
||||
|
||||
info = dict(
|
||||
tick=self._current_tick,
|
||||
action=action,
|
||||
total_reward=self.total_reward,
|
||||
total_profit=self._total_profit,
|
||||
position=self._position.value
|
||||
position=self._position.value,
|
||||
trade_duration=self.get_trade_duration(),
|
||||
current_profit_pct=self.get_unrealized_profit()
|
||||
)
|
||||
|
||||
observation = self._get_observation()
|
||||
|
@ -1,7 +1,8 @@
|
||||
import logging
|
||||
import random
|
||||
from abc import abstractmethod
|
||||
from enum import Enum
|
||||
from typing import Optional
|
||||
from typing import Optional, Type, Union
|
||||
|
||||
import gym
|
||||
import numpy as np
|
||||
@ -10,12 +11,21 @@ from gym import spaces
|
||||
from gym.utils import seeding
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade.data.dataprovider import DataProvider
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class BaseActions(Enum):
|
||||
"""
|
||||
Default action space, mostly used for type handling.
|
||||
"""
|
||||
Neutral = 0
|
||||
Long_enter = 1
|
||||
Long_exit = 2
|
||||
Short_enter = 3
|
||||
Short_exit = 4
|
||||
|
||||
|
||||
class Positions(Enum):
|
||||
Short = 0
|
||||
Long = 1
|
||||
@ -34,8 +44,8 @@ class BaseEnvironment(gym.Env):
|
||||
|
||||
def __init__(self, df: DataFrame = DataFrame(), prices: DataFrame = DataFrame(),
|
||||
reward_kwargs: dict = {}, window_size=10, starting_point=True,
|
||||
id: str = 'baseenv-1', seed: int = 1, config: dict = {},
|
||||
dp: Optional[DataProvider] = None):
|
||||
id: str = 'baseenv-1', seed: int = 1, config: dict = {}, live: bool = False,
|
||||
fee: float = 0.0015, can_short: bool = False):
|
||||
"""
|
||||
Initializes the training/eval environment.
|
||||
:param df: dataframe of features
|
||||
@ -46,22 +56,31 @@ class BaseEnvironment(gym.Env):
|
||||
:param id: string id of the environment (used in backend for multiprocessed env)
|
||||
:param seed: Sets the seed of the environment higher in the gym.Env object
|
||||
:param config: Typical user configuration file
|
||||
:param dp: dataprovider from freqtrade
|
||||
:param live: Whether or not this environment is active in dry/live/backtesting
|
||||
:param fee: The fee to use for environmental interactions.
|
||||
:param can_short: Whether or not the environment can short
|
||||
"""
|
||||
self.config = config
|
||||
self.rl_config = config['freqai']['rl_config']
|
||||
self.add_state_info = self.rl_config.get('add_state_info', False)
|
||||
self.id = id
|
||||
self.seed(seed)
|
||||
self.reset_env(df, prices, window_size, reward_kwargs, starting_point)
|
||||
self.max_drawdown = 1 - self.rl_config.get('max_training_drawdown_pct', 0.8)
|
||||
self.compound_trades = config['stake_amount'] == 'unlimited'
|
||||
if self.config.get('fee', None) is not None:
|
||||
self.fee = self.config['fee']
|
||||
elif dp is not None:
|
||||
self.fee = dp._exchange.get_fee(symbol=dp.current_whitelist()[0]) # type: ignore
|
||||
else:
|
||||
self.fee = 0.0015
|
||||
self.fee = fee
|
||||
|
||||
# set here to default 5Ac, but all children envs can override this
|
||||
self.actions: Type[Enum] = BaseActions
|
||||
self.tensorboard_metrics: dict = {}
|
||||
self.can_short = can_short
|
||||
self.live = live
|
||||
if not self.live and self.add_state_info:
|
||||
self.add_state_info = False
|
||||
logger.warning("add_state_info is not available in backtesting. Deactivating.")
|
||||
self.seed(seed)
|
||||
self.reset_env(df, prices, window_size, reward_kwargs, starting_point)
|
||||
|
||||
def reset_env(self, df: DataFrame, prices: DataFrame, window_size: int,
|
||||
reward_kwargs: dict, starting_point=True):
|
||||
@ -116,11 +135,46 @@ class BaseEnvironment(gym.Env):
|
||||
self.np_random, seed = seeding.np_random(seed)
|
||||
return [seed]
|
||||
|
||||
def tensorboard_log(self, metric: str, value: Union[int, float] = 1, inc: bool = True):
|
||||
"""
|
||||
Function builds the tensorboard_metrics dictionary
|
||||
to be parsed by the TensorboardCallback. This
|
||||
function is designed for tracking incremented objects,
|
||||
events, actions inside the training environment.
|
||||
For example, a user can call this to track the
|
||||
frequency of occurence of an `is_valid` call in
|
||||
their `calculate_reward()`:
|
||||
|
||||
def calculate_reward(self, action: int) -> float:
|
||||
if not self._is_valid(action):
|
||||
self.tensorboard_log("is_valid")
|
||||
return -2
|
||||
|
||||
:param metric: metric to be tracked and incremented
|
||||
:param value: value to increment `metric` by
|
||||
:param inc: sets whether the `value` is incremented or not
|
||||
"""
|
||||
if not inc or metric not in self.tensorboard_metrics:
|
||||
self.tensorboard_metrics[metric] = value
|
||||
else:
|
||||
self.tensorboard_metrics[metric] += value
|
||||
|
||||
def reset_tensorboard_log(self):
|
||||
self.tensorboard_metrics = {}
|
||||
|
||||
def reset(self):
|
||||
"""
|
||||
Reset is called at the beginning of every episode
|
||||
"""
|
||||
self.reset_tensorboard_log()
|
||||
|
||||
self._done = False
|
||||
|
||||
if self.starting_point is True:
|
||||
if self.rl_config.get('randomize_starting_position', False):
|
||||
length_of_data = int(self._end_tick / 4)
|
||||
start_tick = random.randint(self.window_size + 1, length_of_data)
|
||||
self._start_tick = start_tick
|
||||
self._position_history = (self._start_tick * [None]) + [self._position]
|
||||
else:
|
||||
self._position_history = (self.window_size * [None]) + [self._position]
|
||||
@ -189,12 +243,12 @@ class BaseEnvironment(gym.Env):
|
||||
if self._position == Positions.Neutral:
|
||||
return 0.
|
||||
elif self._position == Positions.Short:
|
||||
current_price = self.add_exit_fee(self.prices.iloc[self._current_tick].open)
|
||||
last_trade_price = self.add_entry_fee(self.prices.iloc[self._last_trade_tick].open)
|
||||
return (last_trade_price - current_price) / last_trade_price
|
||||
elif self._position == Positions.Long:
|
||||
current_price = self.add_entry_fee(self.prices.iloc[self._current_tick].open)
|
||||
last_trade_price = self.add_exit_fee(self.prices.iloc[self._last_trade_tick].open)
|
||||
return (last_trade_price - current_price) / last_trade_price
|
||||
elif self._position == Positions.Long:
|
||||
current_price = self.add_exit_fee(self.prices.iloc[self._current_tick].open)
|
||||
last_trade_price = self.add_entry_fee(self.prices.iloc[self._last_trade_tick].open)
|
||||
return (current_price - last_trade_price) / last_trade_price
|
||||
else:
|
||||
return 0.
|
||||
@ -266,6 +320,13 @@ class BaseEnvironment(gym.Env):
|
||||
def current_price(self) -> float:
|
||||
return self.prices.iloc[self._current_tick].open
|
||||
|
||||
def get_actions(self) -> Type[Enum]:
|
||||
"""
|
||||
Used by SubprocVecEnv to get actions from
|
||||
initialized env for tensorboard callback
|
||||
"""
|
||||
return self.actions
|
||||
|
||||
# Keeping around incase we want to start building more complex environment
|
||||
# templates in the future.
|
||||
# def most_recent_return(self):
|
||||
|
@ -21,7 +21,8 @@ from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||
from freqtrade.freqai.freqai_interface import IFreqaiModel
|
||||
from freqtrade.freqai.RL.Base5ActionRLEnv import Actions, Base5ActionRLEnv
|
||||
from freqtrade.freqai.RL.BaseEnvironment import Positions
|
||||
from freqtrade.freqai.RL.BaseEnvironment import BaseActions, Positions
|
||||
from freqtrade.freqai.RL.TensorboardCallback import TensorboardCallback
|
||||
from freqtrade.persistence import Trade
|
||||
|
||||
|
||||
@ -44,8 +45,8 @@ class BaseReinforcementLearningModel(IFreqaiModel):
|
||||
'cpu_count', 1), max(int(self.max_system_threads / 2), 1))
|
||||
th.set_num_threads(self.max_threads)
|
||||
self.reward_params = self.freqai_info['rl_config']['model_reward_parameters']
|
||||
self.train_env: Union[SubprocVecEnv, gym.Env] = None
|
||||
self.eval_env: Union[SubprocVecEnv, gym.Env] = None
|
||||
self.train_env: Union[SubprocVecEnv, Type[gym.Env]] = gym.Env()
|
||||
self.eval_env: Union[SubprocVecEnv, Type[gym.Env]] = gym.Env()
|
||||
self.eval_callback: Optional[EvalCallback] = None
|
||||
self.model_type = self.freqai_info['rl_config']['model_type']
|
||||
self.rl_config = self.freqai_info['rl_config']
|
||||
@ -64,6 +65,9 @@ class BaseReinforcementLearningModel(IFreqaiModel):
|
||||
self.policy_type = self.freqai_info['rl_config']['policy_type']
|
||||
self.unset_outlier_removal()
|
||||
self.net_arch = self.rl_config.get('net_arch', [128, 128])
|
||||
self.dd.model_type = import_str
|
||||
self.tensorboard_callback: TensorboardCallback = \
|
||||
TensorboardCallback(verbose=1, actions=BaseActions)
|
||||
|
||||
def unset_outlier_removal(self):
|
||||
"""
|
||||
@ -139,22 +143,36 @@ class BaseReinforcementLearningModel(IFreqaiModel):
|
||||
train_df = data_dictionary["train_features"]
|
||||
test_df = data_dictionary["test_features"]
|
||||
|
||||
env_info = self.pack_env_dict()
|
||||
|
||||
self.train_env = self.MyRLEnv(df=train_df,
|
||||
prices=prices_train,
|
||||
window_size=self.CONV_WIDTH,
|
||||
reward_kwargs=self.reward_params,
|
||||
config=self.config,
|
||||
dp=self.data_provider)
|
||||
**env_info)
|
||||
self.eval_env = Monitor(self.MyRLEnv(df=test_df,
|
||||
prices=prices_test,
|
||||
window_size=self.CONV_WIDTH,
|
||||
reward_kwargs=self.reward_params,
|
||||
config=self.config,
|
||||
dp=self.data_provider))
|
||||
**env_info))
|
||||
self.eval_callback = EvalCallback(self.eval_env, deterministic=True,
|
||||
render=False, eval_freq=len(train_df),
|
||||
best_model_save_path=str(dk.data_path))
|
||||
|
||||
actions = self.train_env.get_actions()
|
||||
self.tensorboard_callback = TensorboardCallback(verbose=1, actions=actions)
|
||||
|
||||
def pack_env_dict(self) -> Dict[str, Any]:
|
||||
"""
|
||||
Create dictionary of environment arguments
|
||||
"""
|
||||
env_info = {"window_size": self.CONV_WIDTH,
|
||||
"reward_kwargs": self.reward_params,
|
||||
"config": self.config,
|
||||
"live": self.live,
|
||||
"can_short": self.can_short}
|
||||
if self.data_provider:
|
||||
env_info["fee"] = self.data_provider._exchange \
|
||||
.get_fee(symbol=self.data_provider.current_whitelist()[0]) # type: ignore
|
||||
|
||||
return env_info
|
||||
|
||||
@abstractmethod
|
||||
def fit(self, data_dictionary: Dict[str, Any], dk: FreqaiDataKitchen, **kwargs):
|
||||
"""
|
||||
@ -192,6 +210,10 @@ class BaseReinforcementLearningModel(IFreqaiModel):
|
||||
now = datetime.now(timezone.utc).timestamp()
|
||||
trade_duration = int((now - trade.open_date_utc.timestamp()) / self.base_tf_seconds)
|
||||
current_profit = trade.calc_profit_ratio(current_rate)
|
||||
if trade.is_short:
|
||||
market_side = 0
|
||||
else:
|
||||
market_side = 1
|
||||
|
||||
return market_side, current_profit, int(trade_duration)
|
||||
|
||||
@ -372,8 +394,8 @@ class BaseReinforcementLearningModel(IFreqaiModel):
|
||||
|
||||
def make_env(MyRLEnv: Type[gym.Env], env_id: str, rank: int,
|
||||
seed: int, train_df: DataFrame, price: DataFrame,
|
||||
reward_params: Dict[str, int], window_size: int, monitor: bool = False,
|
||||
config: Dict[str, Any] = {}) -> Callable:
|
||||
monitor: bool = False,
|
||||
env_info: Dict[str, Any] = {}) -> Callable:
|
||||
"""
|
||||
Utility function for multiprocessed env.
|
||||
|
||||
@ -381,13 +403,14 @@ def make_env(MyRLEnv: Type[gym.Env], env_id: str, rank: int,
|
||||
:param num_env: (int) the number of environment you wish to have in subprocesses
|
||||
:param seed: (int) the inital seed for RNG
|
||||
:param rank: (int) index of the subprocess
|
||||
:param env_info: (dict) all required arguments to instantiate the environment.
|
||||
:return: (Callable)
|
||||
"""
|
||||
|
||||
def _init() -> gym.Env:
|
||||
|
||||
env = MyRLEnv(df=train_df, prices=price, window_size=window_size,
|
||||
reward_kwargs=reward_params, id=env_id, seed=seed + rank, config=config)
|
||||
env = MyRLEnv(df=train_df, prices=price, id=env_id, seed=seed + rank,
|
||||
**env_info)
|
||||
if monitor:
|
||||
env = Monitor(env)
|
||||
return env
|
||||
|
59
freqtrade/freqai/RL/TensorboardCallback.py
Normal file
59
freqtrade/freqai/RL/TensorboardCallback.py
Normal file
@ -0,0 +1,59 @@
|
||||
from enum import Enum
|
||||
from typing import Any, Dict, Type, Union
|
||||
|
||||
from stable_baselines3.common.callbacks import BaseCallback
|
||||
from stable_baselines3.common.logger import HParam
|
||||
|
||||
from freqtrade.freqai.RL.BaseEnvironment import BaseActions, BaseEnvironment
|
||||
|
||||
|
||||
class TensorboardCallback(BaseCallback):
|
||||
"""
|
||||
Custom callback for plotting additional values in tensorboard and
|
||||
episodic summary reports.
|
||||
"""
|
||||
def __init__(self, verbose=1, actions: Type[Enum] = BaseActions):
|
||||
super(TensorboardCallback, self).__init__(verbose)
|
||||
self.model: Any = None
|
||||
self.logger = None # type: Any
|
||||
self.training_env: BaseEnvironment = None # type: ignore
|
||||
self.actions: Type[Enum] = actions
|
||||
|
||||
def _on_training_start(self) -> None:
|
||||
hparam_dict = {
|
||||
"algorithm": self.model.__class__.__name__,
|
||||
"learning_rate": self.model.learning_rate,
|
||||
# "gamma": self.model.gamma,
|
||||
# "gae_lambda": self.model.gae_lambda,
|
||||
# "batch_size": self.model.batch_size,
|
||||
# "n_steps": self.model.n_steps,
|
||||
}
|
||||
metric_dict: Dict[str, Union[float, int]] = {
|
||||
"eval/mean_reward": 0,
|
||||
"rollout/ep_rew_mean": 0,
|
||||
"rollout/ep_len_mean": 0,
|
||||
"train/value_loss": 0,
|
||||
"train/explained_variance": 0,
|
||||
}
|
||||
self.logger.record(
|
||||
"hparams",
|
||||
HParam(hparam_dict, metric_dict),
|
||||
exclude=("stdout", "log", "json", "csv"),
|
||||
)
|
||||
|
||||
def _on_step(self) -> bool:
|
||||
|
||||
local_info = self.locals["infos"][0]
|
||||
tensorboard_metrics = self.training_env.get_attr("tensorboard_metrics")[0]
|
||||
|
||||
for info in local_info:
|
||||
if info not in ["episode", "terminal_observation"]:
|
||||
self.logger.record(f"_info/{info}", local_info[info])
|
||||
|
||||
for info in tensorboard_metrics:
|
||||
if info in [action.name for action in self.actions]:
|
||||
self.logger.record(f"_actions/{info}", tensorboard_metrics[info])
|
||||
else:
|
||||
self.logger.record(f"_custom/{info}", tensorboard_metrics[info])
|
||||
|
||||
return True
|
@ -95,9 +95,14 @@ class BaseClassifierModel(IFreqaiModel):
|
||||
self.data_cleaning_predict(dk)
|
||||
|
||||
predictions = self.model.predict(dk.data_dictionary["prediction_features"])
|
||||
if self.CONV_WIDTH == 1:
|
||||
predictions = np.reshape(predictions, (-1, len(dk.label_list)))
|
||||
|
||||
pred_df = DataFrame(predictions, columns=dk.label_list)
|
||||
|
||||
predictions_prob = self.model.predict_proba(dk.data_dictionary["prediction_features"])
|
||||
if self.CONV_WIDTH == 1:
|
||||
predictions_prob = np.reshape(predictions_prob, (-1, len(self.model.classes_)))
|
||||
pred_df_prob = DataFrame(predictions_prob, columns=self.model.classes_)
|
||||
|
||||
pred_df = pd.concat([pred_df, pred_df_prob], axis=1)
|
||||
|
@ -95,6 +95,9 @@ class BaseRegressionModel(IFreqaiModel):
|
||||
self.data_cleaning_predict(dk)
|
||||
|
||||
predictions = self.model.predict(dk.data_dictionary["prediction_features"])
|
||||
if self.CONV_WIDTH == 1:
|
||||
predictions = np.reshape(predictions, (-1, len(dk.label_list)))
|
||||
|
||||
pred_df = DataFrame(predictions, columns=dk.label_list)
|
||||
|
||||
pred_df = dk.denormalize_labels_from_metadata(pred_df)
|
||||
|
@ -4,7 +4,7 @@ import logging
|
||||
import re
|
||||
import shutil
|
||||
import threading
|
||||
from datetime import datetime, timezone
|
||||
from datetime import datetime, timedelta, timezone
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, Tuple, TypedDict
|
||||
|
||||
@ -82,6 +82,7 @@ class FreqaiDataDrawer:
|
||||
self.historic_predictions_bkp_path = Path(
|
||||
self.full_path / "historic_predictions.backup.pkl")
|
||||
self.pair_dictionary_path = Path(self.full_path / "pair_dictionary.json")
|
||||
self.global_metadata_path = Path(self.full_path / "global_metadata.json")
|
||||
self.metric_tracker_path = Path(self.full_path / "metric_tracker.json")
|
||||
self.follow_mode = follow_mode
|
||||
if follow_mode:
|
||||
@ -99,11 +100,6 @@ class FreqaiDataDrawer:
|
||||
self.empty_pair_dict: pair_info = {
|
||||
"model_filename": "", "trained_timestamp": 0,
|
||||
"data_path": "", "extras": {}}
|
||||
if 'Reinforcement' in self.config['freqaimodel']:
|
||||
self.model_type = 'stable_baselines'
|
||||
logger.warning('User passed a ReinforcementLearner model, FreqAI will '
|
||||
'now use stable_baselines3 to save models.')
|
||||
else:
|
||||
self.model_type = self.freqai_info.get('model_save_type', 'joblib')
|
||||
|
||||
def update_metric_tracker(self, metric: str, value: float, pair: str) -> None:
|
||||
@ -132,6 +128,17 @@ class FreqaiDataDrawer:
|
||||
self.update_metric_tracker('cpu_load5min', load5 / cpus, pair)
|
||||
self.update_metric_tracker('cpu_load15min', load15 / cpus, pair)
|
||||
|
||||
def load_global_metadata_from_disk(self):
|
||||
"""
|
||||
Locate and load a previously saved global metadata in present model folder.
|
||||
"""
|
||||
exists = self.global_metadata_path.is_file()
|
||||
if exists:
|
||||
with open(self.global_metadata_path, "r") as fp:
|
||||
metatada_dict = rapidjson.load(fp, number_mode=rapidjson.NM_NATIVE)
|
||||
return metatada_dict
|
||||
return {}
|
||||
|
||||
def load_drawer_from_disk(self):
|
||||
"""
|
||||
Locate and load a previously saved data drawer full of all pair model metadata in
|
||||
@ -232,6 +239,15 @@ class FreqaiDataDrawer:
|
||||
rapidjson.dump(self.follower_dict, fp, default=self.np_encoder,
|
||||
number_mode=rapidjson.NM_NATIVE)
|
||||
|
||||
def save_global_metadata_to_disk(self, metadata: Dict[str, Any]):
|
||||
"""
|
||||
Save global metadata json to disk
|
||||
"""
|
||||
with self.save_lock:
|
||||
with open(self.global_metadata_path, 'w') as fp:
|
||||
rapidjson.dump(metadata, fp, default=self.np_encoder,
|
||||
number_mode=rapidjson.NM_NATIVE)
|
||||
|
||||
def create_follower_dict(self):
|
||||
"""
|
||||
Create or dictionary for each follower to maintain unique persistent prediction targets
|
||||
@ -487,7 +503,7 @@ class FreqaiDataDrawer:
|
||||
dump(model, save_path / f"{dk.model_filename}_model.joblib")
|
||||
elif self.model_type == 'keras':
|
||||
model.save(save_path / f"{dk.model_filename}_model.h5")
|
||||
elif 'stable_baselines' in self.model_type:
|
||||
elif 'stable_baselines' in self.model_type or 'sb3_contrib' == self.model_type:
|
||||
model.save(save_path / f"{dk.model_filename}_model.zip")
|
||||
|
||||
if dk.svm_model is not None:
|
||||
@ -573,9 +589,9 @@ class FreqaiDataDrawer:
|
||||
elif self.model_type == 'keras':
|
||||
from tensorflow import keras
|
||||
model = keras.models.load_model(dk.data_path / f"{dk.model_filename}_model.h5")
|
||||
elif self.model_type == 'stable_baselines':
|
||||
elif 'stable_baselines' in self.model_type or 'sb3_contrib' == self.model_type:
|
||||
mod = importlib.import_module(
|
||||
'stable_baselines3', self.freqai_info['rl_config']['model_type'])
|
||||
self.model_type, self.freqai_info['rl_config']['model_type'])
|
||||
MODELCLASS = getattr(mod, self.freqai_info['rl_config']['model_type'])
|
||||
model = MODELCLASS.load(dk.data_path / f"{dk.model_filename}_model")
|
||||
|
||||
@ -701,3 +717,31 @@ class FreqaiDataDrawer:
|
||||
).reset_index(drop=True)
|
||||
|
||||
return corr_dataframes, base_dataframes
|
||||
|
||||
def get_timerange_from_live_historic_predictions(self) -> TimeRange:
|
||||
"""
|
||||
Returns timerange information based on historic predictions file
|
||||
:return: timerange calculated from saved live data
|
||||
"""
|
||||
if not self.historic_predictions_path.is_file():
|
||||
raise OperationalException(
|
||||
'Historic predictions not found. Historic predictions data is required '
|
||||
'to run backtest with the freqai-backtest-live-models option '
|
||||
)
|
||||
|
||||
self.load_historic_predictions_from_disk()
|
||||
|
||||
all_pairs_end_dates = []
|
||||
for pair in self.historic_predictions:
|
||||
pair_historic_data = self.historic_predictions[pair]
|
||||
all_pairs_end_dates.append(pair_historic_data.date_pred.max())
|
||||
|
||||
global_metadata = self.load_global_metadata_from_disk()
|
||||
start_date = datetime.fromtimestamp(int(global_metadata["start_dry_live_date"]))
|
||||
end_date = max(all_pairs_end_dates)
|
||||
# add 1 day to string timerange to ensure BT module will load all dataframe data
|
||||
end_date = end_date + timedelta(days=1)
|
||||
backtesting_timerange = TimeRange(
|
||||
'date', 'date', int(start_date.timestamp()), int(end_date.timestamp())
|
||||
)
|
||||
return backtesting_timerange
|
||||
|
@ -1,7 +1,7 @@
|
||||
import copy
|
||||
import logging
|
||||
import shutil
|
||||
from datetime import datetime, timedelta, timezone
|
||||
from datetime import datetime, timezone
|
||||
from math import cos, sin
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, List, Tuple
|
||||
@ -87,12 +87,7 @@ class FreqaiDataKitchen:
|
||||
if not self.live:
|
||||
self.full_path = self.get_full_models_path(self.config)
|
||||
|
||||
if self.backtest_live_models:
|
||||
if self.pair:
|
||||
self.set_timerange_from_ready_models()
|
||||
(self.training_timeranges,
|
||||
self.backtesting_timeranges) = self.split_timerange_live_models()
|
||||
else:
|
||||
if not self.backtest_live_models:
|
||||
self.full_timerange = self.create_fulltimerange(
|
||||
self.config["timerange"], self.freqai_config.get("train_period_days", 0)
|
||||
)
|
||||
@ -460,29 +455,6 @@ class FreqaiDataKitchen:
|
||||
# print(tr_training_list, tr_backtesting_list)
|
||||
return tr_training_list_timerange, tr_backtesting_list_timerange
|
||||
|
||||
def split_timerange_live_models(
|
||||
self
|
||||
) -> Tuple[list, list]:
|
||||
|
||||
tr_backtesting_list_timerange = []
|
||||
asset = self.pair.split("/")[0]
|
||||
if asset not in self.backtest_live_models_data["assets_end_dates"]:
|
||||
raise OperationalException(
|
||||
f"Model not available for pair {self.pair}. "
|
||||
"Please, try again after removing this pair from the configuration file."
|
||||
)
|
||||
asset_data = self.backtest_live_models_data["assets_end_dates"][asset]
|
||||
backtesting_timerange = self.backtest_live_models_data["backtesting_timerange"]
|
||||
model_end_dates = [x for x in asset_data]
|
||||
model_end_dates.append(backtesting_timerange.stopts)
|
||||
model_end_dates.sort()
|
||||
for index, item in enumerate(model_end_dates):
|
||||
if len(model_end_dates) > (index + 1):
|
||||
tr_to_add = TimeRange("date", "date", item, model_end_dates[index + 1])
|
||||
tr_backtesting_list_timerange.append(tr_to_add)
|
||||
|
||||
return tr_backtesting_list_timerange, tr_backtesting_list_timerange
|
||||
|
||||
def slice_dataframe(self, timerange: TimeRange, df: DataFrame) -> DataFrame:
|
||||
"""
|
||||
Given a full dataframe, extract the user desired window
|
||||
@ -490,10 +462,10 @@ class FreqaiDataKitchen:
|
||||
:param df: Dataframe containing all candles to run the entire backtest. Here
|
||||
it is sliced down to just the present training period.
|
||||
"""
|
||||
|
||||
df = df.loc[df["date"] >= timerange.startdt, :]
|
||||
if not self.live:
|
||||
df = df.loc[df["date"] < timerange.stopdt, :]
|
||||
df = df.loc[(df["date"] >= timerange.startdt) & (df["date"] < timerange.stopdt), :]
|
||||
else:
|
||||
df = df.loc[df["date"] >= timerange.startdt, :]
|
||||
|
||||
return df
|
||||
|
||||
@ -978,7 +950,8 @@ class FreqaiDataKitchen:
|
||||
return weights
|
||||
|
||||
def get_predictions_to_append(self, predictions: DataFrame,
|
||||
do_predict: npt.ArrayLike) -> DataFrame:
|
||||
do_predict: npt.ArrayLike,
|
||||
dataframe_backtest: DataFrame) -> DataFrame:
|
||||
"""
|
||||
Get backtest prediction from current backtest period
|
||||
"""
|
||||
@ -1000,7 +973,9 @@ class FreqaiDataKitchen:
|
||||
if self.freqai_config["feature_parameters"].get("DI_threshold", 0) > 0:
|
||||
append_df["DI_values"] = self.DI_values
|
||||
|
||||
return append_df
|
||||
dataframe_backtest.reset_index(drop=True, inplace=True)
|
||||
merged_df = pd.concat([dataframe_backtest["date"], append_df], axis=1)
|
||||
return merged_df
|
||||
|
||||
def append_predictions(self, append_df: DataFrame) -> None:
|
||||
"""
|
||||
@ -1010,23 +985,18 @@ class FreqaiDataKitchen:
|
||||
if self.full_df.empty:
|
||||
self.full_df = append_df
|
||||
else:
|
||||
self.full_df = pd.concat([self.full_df, append_df], axis=0)
|
||||
self.full_df = pd.concat([self.full_df, append_df], axis=0, ignore_index=True)
|
||||
|
||||
def fill_predictions(self, dataframe):
|
||||
"""
|
||||
Back fill values to before the backtesting range so that the dataframe matches size
|
||||
when it goes back to the strategy. These rows are not included in the backtest.
|
||||
"""
|
||||
|
||||
len_filler = len(dataframe) - len(self.full_df.index) # startup_candle_count
|
||||
filler_df = pd.DataFrame(
|
||||
np.zeros((len_filler, len(self.full_df.columns))), columns=self.full_df.columns
|
||||
)
|
||||
|
||||
self.full_df = pd.concat([filler_df, self.full_df], axis=0, ignore_index=True)
|
||||
|
||||
to_keep = [col for col in dataframe.columns if not col.startswith("&")]
|
||||
self.return_dataframe = pd.concat([dataframe[to_keep], self.full_df], axis=1)
|
||||
self.return_dataframe = pd.merge(dataframe[to_keep],
|
||||
self.full_df, how='left', on='date')
|
||||
self.return_dataframe[self.full_df.columns] = (
|
||||
self.return_dataframe[self.full_df.columns].fillna(value=0))
|
||||
self.full_df = DataFrame()
|
||||
|
||||
return
|
||||
@ -1323,22 +1293,22 @@ class FreqaiDataKitchen:
|
||||
self, append_df: DataFrame
|
||||
) -> None:
|
||||
"""
|
||||
Save prediction dataframe from backtesting to h5 file format
|
||||
Save prediction dataframe from backtesting to feather file format
|
||||
:param append_df: dataframe for backtesting period
|
||||
"""
|
||||
full_predictions_folder = Path(self.full_path / self.backtest_predictions_folder)
|
||||
if not full_predictions_folder.is_dir():
|
||||
full_predictions_folder.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
append_df.to_hdf(self.backtesting_results_path, key='append_df', mode='w')
|
||||
append_df.to_feather(self.backtesting_results_path)
|
||||
|
||||
def get_backtesting_prediction(
|
||||
self
|
||||
) -> DataFrame:
|
||||
"""
|
||||
Get prediction dataframe from h5 file format
|
||||
Get prediction dataframe from feather file format
|
||||
"""
|
||||
append_df = pd.read_hdf(self.backtesting_results_path)
|
||||
append_df = pd.read_feather(self.backtesting_results_path)
|
||||
return append_df
|
||||
|
||||
def check_if_backtest_prediction_is_valid(
|
||||
@ -1354,19 +1324,20 @@ class FreqaiDataKitchen:
|
||||
"""
|
||||
path_to_predictionfile = Path(self.full_path /
|
||||
self.backtest_predictions_folder /
|
||||
f"{self.model_filename}_prediction.h5")
|
||||
f"{self.model_filename}_prediction.feather")
|
||||
self.backtesting_results_path = path_to_predictionfile
|
||||
|
||||
file_exists = path_to_predictionfile.is_file()
|
||||
|
||||
if file_exists:
|
||||
append_df = self.get_backtesting_prediction()
|
||||
if len(append_df) == len_backtest_df:
|
||||
if len(append_df) == len_backtest_df and 'date' in append_df:
|
||||
logger.info(f"Found backtesting prediction file at {path_to_predictionfile}")
|
||||
return True
|
||||
else:
|
||||
logger.info("A new backtesting prediction file is required. "
|
||||
"(Number of predictions is different from dataframe length).")
|
||||
"(Number of predictions is different from dataframe length or "
|
||||
"old prediction file version).")
|
||||
return False
|
||||
else:
|
||||
logger.info(
|
||||
@ -1374,17 +1345,6 @@ class FreqaiDataKitchen:
|
||||
)
|
||||
return False
|
||||
|
||||
def set_timerange_from_ready_models(self):
|
||||
backtesting_timerange, \
|
||||
assets_end_dates = (
|
||||
self.get_timerange_and_assets_end_dates_from_ready_models(self.full_path))
|
||||
|
||||
self.backtest_live_models_data = {
|
||||
"backtesting_timerange": backtesting_timerange,
|
||||
"assets_end_dates": assets_end_dates
|
||||
}
|
||||
return
|
||||
|
||||
def get_full_models_path(self, config: Config) -> Path:
|
||||
"""
|
||||
Returns default FreqAI model path
|
||||
@ -1395,88 +1355,6 @@ class FreqaiDataKitchen:
|
||||
config["user_data_dir"] / "models" / str(freqai_config.get("identifier"))
|
||||
)
|
||||
|
||||
def get_timerange_and_assets_end_dates_from_ready_models(
|
||||
self, models_path: Path) -> Tuple[TimeRange, Dict[str, Any]]:
|
||||
"""
|
||||
Returns timerange information based on a FreqAI model directory
|
||||
:param models_path: FreqAI model path
|
||||
|
||||
:return: a Tuple with (Timerange calculated from directory and
|
||||
a Dict with pair and model end training dates info)
|
||||
"""
|
||||
all_models_end_dates = []
|
||||
assets_end_dates: Dict[str, Any] = self.get_assets_timestamps_training_from_ready_models(
|
||||
models_path)
|
||||
for key in assets_end_dates:
|
||||
for model_end_date in assets_end_dates[key]:
|
||||
if model_end_date not in all_models_end_dates:
|
||||
all_models_end_dates.append(model_end_date)
|
||||
|
||||
if len(all_models_end_dates) == 0:
|
||||
raise OperationalException(
|
||||
'At least 1 saved model is required to '
|
||||
'run backtest with the freqai-backtest-live-models option'
|
||||
)
|
||||
|
||||
if len(all_models_end_dates) == 1:
|
||||
logger.warning(
|
||||
"Only 1 model was found. Backtesting will run with the "
|
||||
"timerange from the end of the training date to the current date"
|
||||
)
|
||||
|
||||
finish_timestamp = int(datetime.now(tz=timezone.utc).timestamp())
|
||||
if len(all_models_end_dates) > 1:
|
||||
# After last model end date, use the same period from previous model
|
||||
# to finish the backtest
|
||||
all_models_end_dates.sort(reverse=True)
|
||||
finish_timestamp = all_models_end_dates[0] + \
|
||||
(all_models_end_dates[0] - all_models_end_dates[1])
|
||||
|
||||
all_models_end_dates.append(finish_timestamp)
|
||||
all_models_end_dates.sort()
|
||||
start_date = (datetime(*datetime.fromtimestamp(min(all_models_end_dates),
|
||||
timezone.utc).timetuple()[:3], tzinfo=timezone.utc))
|
||||
end_date = (datetime(*datetime.fromtimestamp(max(all_models_end_dates),
|
||||
timezone.utc).timetuple()[:3], tzinfo=timezone.utc))
|
||||
|
||||
# add 1 day to string timerange to ensure BT module will load all dataframe data
|
||||
end_date = end_date + timedelta(days=1)
|
||||
backtesting_timerange = TimeRange(
|
||||
'date', 'date', int(start_date.timestamp()), int(end_date.timestamp())
|
||||
)
|
||||
return backtesting_timerange, assets_end_dates
|
||||
|
||||
def get_assets_timestamps_training_from_ready_models(
|
||||
self, models_path: Path) -> Dict[str, Any]:
|
||||
"""
|
||||
Scan the models path and returns all assets end training dates (timestamp)
|
||||
:param models_path: FreqAI model path
|
||||
|
||||
:return: a Dict with asset and model end training dates info
|
||||
"""
|
||||
assets_end_dates: Dict[str, Any] = {}
|
||||
if not models_path.is_dir():
|
||||
raise OperationalException(
|
||||
'Model folders not found. Saved models are required '
|
||||
'to run backtest with the freqai-backtest-live-models option'
|
||||
)
|
||||
for model_dir in models_path.iterdir():
|
||||
if str(model_dir.name).startswith("sub-train"):
|
||||
model_end_date = int(model_dir.name.split("_")[1])
|
||||
asset = model_dir.name.split("_")[0].replace("sub-train-", "")
|
||||
model_file_name = (
|
||||
f"cb_{str(model_dir.name).replace('sub-train-', '').lower()}"
|
||||
"_model.joblib"
|
||||
)
|
||||
|
||||
model_path_file = Path(model_dir / model_file_name)
|
||||
if model_path_file.is_file():
|
||||
if asset not in assets_end_dates:
|
||||
assets_end_dates[asset] = []
|
||||
assets_end_dates[asset].append(model_end_date)
|
||||
|
||||
return assets_end_dates
|
||||
|
||||
def remove_special_chars_from_feature_names(self, dataframe: pd.DataFrame) -> pd.DataFrame:
|
||||
"""
|
||||
Remove all special characters from feature strings (:)
|
||||
|
@ -69,6 +69,7 @@ class IFreqaiModel(ABC):
|
||||
self.save_backtest_models: bool = self.freqai_info.get("save_backtest_models", True)
|
||||
if self.save_backtest_models:
|
||||
logger.info('Backtesting module configured to save all models.')
|
||||
|
||||
self.dd = FreqaiDataDrawer(Path(self.full_path), self.config, self.follow_mode)
|
||||
# set current candle to arbitrary historical date
|
||||
self.current_candle: datetime = datetime.fromtimestamp(637887600, tz=timezone.utc)
|
||||
@ -100,8 +101,10 @@ class IFreqaiModel(ABC):
|
||||
self.get_corr_dataframes: bool = True
|
||||
self._threads: List[threading.Thread] = []
|
||||
self._stop_event = threading.Event()
|
||||
self.metadata: Dict[str, Any] = self.dd.load_global_metadata_from_disk()
|
||||
self.data_provider: Optional[DataProvider] = None
|
||||
self.max_system_threads = max(int(psutil.cpu_count() * 2 - 2), 1)
|
||||
self.can_short = True # overridden in start() with strategy.can_short
|
||||
|
||||
record_params(config, self.full_path)
|
||||
|
||||
@ -131,11 +134,13 @@ class IFreqaiModel(ABC):
|
||||
self.live = strategy.dp.runmode in (RunMode.DRY_RUN, RunMode.LIVE)
|
||||
self.dd.set_pair_dict_info(metadata)
|
||||
self.data_provider = strategy.dp
|
||||
self.can_short = strategy.can_short
|
||||
|
||||
if self.live:
|
||||
self.inference_timer('start')
|
||||
self.dk = FreqaiDataKitchen(self.config, self.live, metadata["pair"])
|
||||
dk = self.start_live(dataframe, metadata, strategy, self.dk)
|
||||
dataframe = dk.remove_features_from_df(dk.return_dataframe)
|
||||
|
||||
# For backtesting, each pair enters and then gets trained for each window along the
|
||||
# sliding window defined by "train_period_days" (training window) and "live_retrain_hours"
|
||||
@ -144,20 +149,24 @@ class IFreqaiModel(ABC):
|
||||
# the concatenated results for the full backtesting period back to the strategy.
|
||||
elif not self.follow_mode:
|
||||
self.dk = FreqaiDataKitchen(self.config, self.live, metadata["pair"])
|
||||
if self.dk.backtest_live_models:
|
||||
logger.info(
|
||||
f"Backtesting {len(self.dk.backtesting_timeranges)} timeranges (live models)")
|
||||
else:
|
||||
logger.info(f"Training {len(self.dk.training_timeranges)} timeranges")
|
||||
dataframe = self.dk.use_strategy_to_populate_indicators(
|
||||
strategy, prediction_dataframe=dataframe, pair=metadata["pair"]
|
||||
)
|
||||
if not self.config.get("freqai_backtest_live_models", False):
|
||||
logger.info(f"Training {len(self.dk.training_timeranges)} timeranges")
|
||||
dk = self.start_backtesting(dataframe, metadata, self.dk)
|
||||
|
||||
dataframe = dk.remove_features_from_df(dk.return_dataframe)
|
||||
else:
|
||||
logger.info(
|
||||
"Backtesting using historic predictions (live models)")
|
||||
dk = self.start_backtesting_from_historic_predictions(
|
||||
dataframe, metadata, self.dk)
|
||||
dataframe = dk.return_dataframe
|
||||
|
||||
self.clean_up()
|
||||
if self.live:
|
||||
self.inference_timer('stop', metadata["pair"])
|
||||
|
||||
return dataframe
|
||||
|
||||
def clean_up(self):
|
||||
@ -275,10 +284,10 @@ class IFreqaiModel(ABC):
|
||||
train_it += 1
|
||||
total_trains = len(dk.backtesting_timeranges)
|
||||
self.training_timerange = tr_train
|
||||
dataframe_train = dk.slice_dataframe(tr_train, dataframe)
|
||||
dataframe_backtest = dk.slice_dataframe(tr_backtest, dataframe)
|
||||
len_backtest_df = len(dataframe.loc[(dataframe["date"] >= tr_backtest.startdt) & (
|
||||
dataframe["date"] < tr_backtest.stopdt), :])
|
||||
|
||||
if not self.ensure_data_exists(dataframe_backtest, tr_backtest, pair):
|
||||
if not self.ensure_data_exists(len_backtest_df, tr_backtest, pair):
|
||||
continue
|
||||
|
||||
self.log_backtesting_progress(tr_train, pair, train_it, total_trains)
|
||||
@ -291,13 +300,15 @@ class IFreqaiModel(ABC):
|
||||
|
||||
dk.set_new_model_names(pair, timestamp_model_id)
|
||||
|
||||
if dk.check_if_backtest_prediction_is_valid(len(dataframe_backtest)):
|
||||
if dk.check_if_backtest_prediction_is_valid(len_backtest_df):
|
||||
self.dd.load_metadata(dk)
|
||||
dk.find_features(dataframe_train)
|
||||
dk.find_features(dataframe)
|
||||
self.check_if_feature_list_matches_strategy(dk)
|
||||
append_df = dk.get_backtesting_prediction()
|
||||
dk.append_predictions(append_df)
|
||||
else:
|
||||
dataframe_train = dk.slice_dataframe(tr_train, dataframe)
|
||||
dataframe_backtest = dk.slice_dataframe(tr_backtest, dataframe)
|
||||
if not self.model_exists(dk):
|
||||
dk.find_features(dataframe_train)
|
||||
dk.find_labels(dataframe_train)
|
||||
@ -316,10 +327,11 @@ class IFreqaiModel(ABC):
|
||||
self.model = self.dd.load_data(pair, dk)
|
||||
|
||||
pred_df, do_preds = self.predict(dataframe_backtest, dk)
|
||||
append_df = dk.get_predictions_to_append(pred_df, do_preds)
|
||||
append_df = dk.get_predictions_to_append(pred_df, do_preds, dataframe_backtest)
|
||||
dk.append_predictions(append_df)
|
||||
dk.save_backtesting_prediction(append_df)
|
||||
|
||||
self.backtesting_fit_live_predictions(dk)
|
||||
dk.fill_predictions(dataframe)
|
||||
|
||||
return dk
|
||||
@ -632,6 +644,8 @@ class IFreqaiModel(ABC):
|
||||
self.dd.historic_predictions[pair] = pred_df
|
||||
hist_preds_df = self.dd.historic_predictions[pair]
|
||||
|
||||
self.set_start_dry_live_date(strat_df)
|
||||
|
||||
for label in hist_preds_df.columns:
|
||||
if hist_preds_df[label].dtype == object:
|
||||
continue
|
||||
@ -672,7 +686,8 @@ class IFreqaiModel(ABC):
|
||||
for label in full_labels:
|
||||
if self.dd.historic_predictions[dk.pair][label].dtype == object:
|
||||
continue
|
||||
f = spy.stats.norm.fit(self.dd.historic_predictions[dk.pair][label].tail(num_candles))
|
||||
f = spy.stats.norm.fit(
|
||||
self.dd.historic_predictions[dk.pair][label].tail(num_candles))
|
||||
dk.data["labels_mean"][label], dk.data["labels_std"][label] = f[0], f[1]
|
||||
|
||||
return
|
||||
@ -793,16 +808,16 @@ class IFreqaiModel(ABC):
|
||||
self.pair_it = 1
|
||||
self.current_candle = self.dd.current_candle
|
||||
|
||||
def ensure_data_exists(self, dataframe_backtest: DataFrame,
|
||||
def ensure_data_exists(self, len_dataframe_backtest: int,
|
||||
tr_backtest: TimeRange, pair: str) -> bool:
|
||||
"""
|
||||
Check if the dataframe is empty, if not, report useful information to user.
|
||||
:param dataframe_backtest: the backtesting dataframe, maybe empty.
|
||||
:param len_dataframe_backtest: the len of backtesting dataframe
|
||||
:param tr_backtest: current backtesting timerange.
|
||||
:param pair: current pair
|
||||
:return: if the data exists or not
|
||||
"""
|
||||
if self.config.get("freqai_backtest_live_models", False) and len(dataframe_backtest) == 0:
|
||||
if self.config.get("freqai_backtest_live_models", False) and len_dataframe_backtest == 0:
|
||||
logger.info(f"No data found for pair {pair} from "
|
||||
f"from { tr_backtest.start_fmt} to {tr_backtest.stop_fmt}. "
|
||||
"Probably more than one training within the same candle period.")
|
||||
@ -826,6 +841,81 @@ class IFreqaiModel(ABC):
|
||||
f"to {tr_train.stop_fmt}, {train_it}/{total_trains} "
|
||||
"trains"
|
||||
)
|
||||
|
||||
def backtesting_fit_live_predictions(self, dk: FreqaiDataKitchen):
|
||||
"""
|
||||
Apply fit_live_predictions function in backtesting with a dummy historic_predictions
|
||||
The loop is required to simulate dry/live operation, as it is not possible to predict
|
||||
the type of logic implemented by the user.
|
||||
:param dk: datakitchen object
|
||||
"""
|
||||
fit_live_predictions_candles = self.freqai_info.get("fit_live_predictions_candles", 0)
|
||||
if fit_live_predictions_candles:
|
||||
logger.info("Applying fit_live_predictions in backtesting")
|
||||
label_columns = [col for col in dk.full_df.columns if (
|
||||
col.startswith("&") and
|
||||
not (col.startswith("&") and col.endswith("_mean")) and
|
||||
not (col.startswith("&") and col.endswith("_std")) and
|
||||
col not in self.dk.data["extra_returns_per_train"])
|
||||
]
|
||||
|
||||
for index in range(len(dk.full_df)):
|
||||
if index >= fit_live_predictions_candles:
|
||||
self.dd.historic_predictions[self.dk.pair] = (
|
||||
dk.full_df.iloc[index - fit_live_predictions_candles:index])
|
||||
self.fit_live_predictions(self.dk, self.dk.pair)
|
||||
for label in label_columns:
|
||||
if dk.full_df[label].dtype == object:
|
||||
continue
|
||||
if "labels_mean" in self.dk.data:
|
||||
dk.full_df.at[index, f"{label}_mean"] = (
|
||||
self.dk.data["labels_mean"][label])
|
||||
if "labels_std" in self.dk.data:
|
||||
dk.full_df.at[index, f"{label}_std"] = self.dk.data["labels_std"][label]
|
||||
|
||||
for extra_col in self.dk.data["extra_returns_per_train"]:
|
||||
dk.full_df.at[index, f"{extra_col}"] = (
|
||||
self.dk.data["extra_returns_per_train"][extra_col])
|
||||
|
||||
return
|
||||
|
||||
def update_metadata(self, metadata: Dict[str, Any]):
|
||||
"""
|
||||
Update global metadata and save the updated json file
|
||||
:param metadata: new global metadata dict
|
||||
"""
|
||||
self.dd.save_global_metadata_to_disk(metadata)
|
||||
self.metadata = metadata
|
||||
|
||||
def set_start_dry_live_date(self, live_dataframe: DataFrame):
|
||||
key_name = "start_dry_live_date"
|
||||
if key_name not in self.metadata:
|
||||
metadata = self.metadata
|
||||
metadata[key_name] = int(
|
||||
pd.to_datetime(live_dataframe.tail(1)["date"].values[0]).timestamp())
|
||||
self.update_metadata(metadata)
|
||||
|
||||
def start_backtesting_from_historic_predictions(
|
||||
self, dataframe: DataFrame, metadata: dict, dk: FreqaiDataKitchen
|
||||
) -> FreqaiDataKitchen:
|
||||
"""
|
||||
:param dataframe: DataFrame = strategy passed dataframe
|
||||
:param metadata: Dict = pair metadata
|
||||
:param dk: FreqaiDataKitchen = Data management/analysis tool associated to present pair only
|
||||
:return:
|
||||
FreqaiDataKitchen = Data management/analysis tool associated to present pair only
|
||||
"""
|
||||
pair = metadata["pair"]
|
||||
dk.return_dataframe = dataframe
|
||||
saved_dataframe = self.dd.historic_predictions[pair]
|
||||
columns_to_drop = list(set(saved_dataframe.columns).intersection(
|
||||
dk.return_dataframe.columns))
|
||||
dk.return_dataframe = dk.return_dataframe.drop(columns=list(columns_to_drop))
|
||||
dk.return_dataframe = pd.merge(
|
||||
dk.return_dataframe, saved_dataframe, how='left', left_on='date', right_on="date_pred")
|
||||
# dk.return_dataframe = dk.return_dataframe[saved_dataframe.columns].fillna(0)
|
||||
return dk
|
||||
|
||||
# Following methods which are overridden by user made prediction models.
|
||||
# See freqai/prediction_models/CatboostPredictionModel.py for an example.
|
||||
|
||||
|
@ -61,7 +61,7 @@ class ReinforcementLearner(BaseReinforcementLearningModel):
|
||||
model = self.MODELCLASS(self.policy_type, self.train_env, policy_kwargs=policy_kwargs,
|
||||
tensorboard_log=Path(
|
||||
dk.full_path / "tensorboard" / dk.pair.split('/')[0]),
|
||||
**self.freqai_info['model_training_parameters']
|
||||
**self.freqai_info.get('model_training_parameters', {})
|
||||
)
|
||||
else:
|
||||
logger.info('Continual training activated - starting training from previously '
|
||||
@ -71,7 +71,7 @@ class ReinforcementLearner(BaseReinforcementLearningModel):
|
||||
|
||||
model.learn(
|
||||
total_timesteps=int(total_timesteps),
|
||||
callback=self.eval_callback
|
||||
callback=[self.eval_callback, self.tensorboard_callback]
|
||||
)
|
||||
|
||||
if Path(dk.data_path / "best_model.zip").is_file():
|
||||
@ -100,13 +100,17 @@ class ReinforcementLearner(BaseReinforcementLearningModel):
|
||||
"""
|
||||
# first, penalize if the action is not valid
|
||||
if not self._is_valid(action):
|
||||
self.tensorboard_log("is_valid")
|
||||
return -2
|
||||
|
||||
pnl = self.get_unrealized_profit()
|
||||
factor = 100.
|
||||
|
||||
# reward agent for entering trades
|
||||
if (action in (Actions.Long_enter.value, Actions.Short_enter.value)
|
||||
if (action == Actions.Long_enter.value
|
||||
and self._position == Positions.Neutral):
|
||||
return 25
|
||||
if (action == Actions.Short_enter.value
|
||||
and self._position == Positions.Neutral):
|
||||
return 25
|
||||
# discourage agent from not entering trades
|
||||
|
@ -1,7 +1,6 @@
|
||||
import logging
|
||||
from typing import Any, Dict # , Tuple
|
||||
from typing import Any, Dict
|
||||
|
||||
# import numpy.typing as npt
|
||||
from pandas import DataFrame
|
||||
from stable_baselines3.common.callbacks import EvalCallback
|
||||
from stable_baselines3.common.vec_env import SubprocVecEnv
|
||||
@ -9,6 +8,7 @@ from stable_baselines3.common.vec_env import SubprocVecEnv
|
||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||
from freqtrade.freqai.prediction_models.ReinforcementLearner import ReinforcementLearner
|
||||
from freqtrade.freqai.RL.BaseReinforcementLearningModel import make_env
|
||||
from freqtrade.freqai.RL.TensorboardCallback import TensorboardCallback
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@ -34,18 +34,24 @@ class ReinforcementLearner_multiproc(ReinforcementLearner):
|
||||
train_df = data_dictionary["train_features"]
|
||||
test_df = data_dictionary["test_features"]
|
||||
|
||||
env_info = self.pack_env_dict()
|
||||
|
||||
env_id = "train_env"
|
||||
self.train_env = SubprocVecEnv([make_env(self.MyRLEnv, env_id, i, 1, train_df, prices_train,
|
||||
self.reward_params, self.CONV_WIDTH, monitor=True,
|
||||
config=self.config) for i
|
||||
self.train_env = SubprocVecEnv([make_env(self.MyRLEnv, env_id, i, 1,
|
||||
train_df, prices_train,
|
||||
monitor=True,
|
||||
env_info=env_info) for i
|
||||
in range(self.max_threads)])
|
||||
|
||||
eval_env_id = 'eval_env'
|
||||
self.eval_env = SubprocVecEnv([make_env(self.MyRLEnv, eval_env_id, i, 1,
|
||||
test_df, prices_test,
|
||||
self.reward_params, self.CONV_WIDTH, monitor=True,
|
||||
config=self.config) for i
|
||||
monitor=True,
|
||||
env_info=env_info) for i
|
||||
in range(self.max_threads)])
|
||||
self.eval_callback = EvalCallback(self.eval_env, deterministic=True,
|
||||
render=False, eval_freq=len(train_df),
|
||||
best_model_save_path=str(dk.data_path))
|
||||
|
||||
actions = self.train_env.env_method("get_actions")[0]
|
||||
self.tensorboard_callback = TensorboardCallback(verbose=1, actions=actions)
|
||||
|
@ -14,6 +14,7 @@ from freqtrade.data.history.history_utils import refresh_backtest_ohlcv_data
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.exchange import timeframe_to_seconds
|
||||
from freqtrade.exchange.exchange import market_is_active
|
||||
from freqtrade.freqai.data_drawer import FreqaiDataDrawer
|
||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||
from freqtrade.plugins.pairlist.pairlist_helpers import dynamic_expand_pairlist
|
||||
|
||||
@ -229,5 +230,6 @@ def get_timerange_backtest_live_models(config: Config) -> str:
|
||||
"""
|
||||
dk = FreqaiDataKitchen(config)
|
||||
models_path = dk.get_full_models_path(config)
|
||||
timerange, _ = dk.get_timerange_and_assets_end_dates_from_ready_models(models_path)
|
||||
dd = FreqaiDataDrawer(models_path, config)
|
||||
timerange = dd.get_timerange_from_live_historic_predictions()
|
||||
return timerange.timerange_str
|
||||
|
@ -155,6 +155,8 @@ class FreqtradeBot(LoggingMixin):
|
||||
self.cancel_all_open_orders()
|
||||
|
||||
self.check_for_open_trades()
|
||||
except Exception as e:
|
||||
logger.warning(f'Exception during cleanup: {e.__class__.__name__} {e}')
|
||||
|
||||
finally:
|
||||
self.strategy.ft_bot_cleanup()
|
||||
@ -162,8 +164,13 @@ class FreqtradeBot(LoggingMixin):
|
||||
self.rpc.cleanup()
|
||||
if self.emc:
|
||||
self.emc.shutdown()
|
||||
Trade.commit()
|
||||
self.exchange.close()
|
||||
try:
|
||||
Trade.commit()
|
||||
except Exception:
|
||||
# Exeptions here will be happening if the db disappeared.
|
||||
# At which point we can no longer commit anyway.
|
||||
pass
|
||||
|
||||
def startup(self) -> None:
|
||||
"""
|
||||
@ -905,6 +912,7 @@ class FreqtradeBot(LoggingMixin):
|
||||
stake_amount=stake_amount,
|
||||
min_stake_amount=min_stake_amount,
|
||||
max_stake_amount=max_stake_amount,
|
||||
trade_amount=trade.stake_amount if trade else None,
|
||||
)
|
||||
|
||||
return enter_limit_requested, stake_amount, leverage
|
||||
|
@ -7,6 +7,8 @@ import logging
|
||||
import sys
|
||||
from typing import Any, List
|
||||
|
||||
from freqtrade.util.gc_setup import gc_set_threshold
|
||||
|
||||
|
||||
# check min. python version
|
||||
if sys.version_info < (3, 8): # pragma: no cover
|
||||
@ -36,6 +38,7 @@ def main(sysargv: List[str] = None) -> None:
|
||||
# Call subcommand.
|
||||
if 'func' in args:
|
||||
logger.info(f'freqtrade {__version__}')
|
||||
gc_set_threshold()
|
||||
return_code = args['func'](args)
|
||||
else:
|
||||
# No subcommand was issued.
|
||||
|
@ -301,3 +301,21 @@ def remove_entry_exit_signals(dataframe: pd.DataFrame):
|
||||
dataframe[SignalTagType.EXIT_TAG.value] = None
|
||||
|
||||
return dataframe
|
||||
|
||||
|
||||
def append_candles_to_dataframe(left: pd.DataFrame, right: pd.DataFrame) -> pd.DataFrame:
|
||||
"""
|
||||
Append the `right` dataframe to the `left` dataframe
|
||||
|
||||
:param left: The full dataframe you want appended to
|
||||
:param right: The new dataframe containing the data you want appended
|
||||
:returns: The dataframe with the right data in it
|
||||
"""
|
||||
if left.iloc[-1]['date'] != right.iloc[-1]['date']:
|
||||
left = pd.concat([left, right])
|
||||
|
||||
# Only keep the last 1500 candles in memory
|
||||
left = left[-1500:] if len(left) > 1500 else left
|
||||
left.reset_index(drop=True, inplace=True)
|
||||
|
||||
return left
|
||||
|
@ -769,6 +769,7 @@ class Backtesting:
|
||||
stake_amount=stake_amount,
|
||||
min_stake_amount=min_stake_amount,
|
||||
max_stake_amount=max_stake_amount,
|
||||
trade_amount=trade.stake_amount if trade else None
|
||||
)
|
||||
|
||||
return propose_rate, stake_amount_val, leverage, min_stake_amount
|
||||
|
@ -109,11 +109,10 @@ def migrate_trades_and_orders_table(
|
||||
else:
|
||||
is_short = get_column_def(cols, 'is_short', '0')
|
||||
|
||||
# Margin Properties
|
||||
# Futures Properties
|
||||
interest_rate = get_column_def(cols, 'interest_rate', '0.0')
|
||||
|
||||
# Futures properties
|
||||
funding_fees = get_column_def(cols, 'funding_fees', '0.0')
|
||||
max_stake_amount = get_column_def(cols, 'max_stake_amount', 'stake_amount')
|
||||
|
||||
# If ticker-interval existed use that, else null.
|
||||
if has_column(cols, 'ticker_interval'):
|
||||
@ -162,7 +161,8 @@ def migrate_trades_and_orders_table(
|
||||
timeframe, open_trade_value, close_profit_abs,
|
||||
trading_mode, leverage, liquidation_price, is_short,
|
||||
interest_rate, funding_fees, realized_profit,
|
||||
amount_precision, price_precision, precision_mode, contract_size
|
||||
amount_precision, price_precision, precision_mode, contract_size,
|
||||
max_stake_amount
|
||||
)
|
||||
select id, lower(exchange), pair, {base_currency} base_currency,
|
||||
{stake_currency} stake_currency,
|
||||
@ -190,7 +190,8 @@ def migrate_trades_and_orders_table(
|
||||
{is_short} is_short, {interest_rate} interest_rate,
|
||||
{funding_fees} funding_fees, {realized_profit} realized_profit,
|
||||
{amount_precision} amount_precision, {price_precision} price_precision,
|
||||
{precision_mode} precision_mode, {contract_size} contract_size
|
||||
{precision_mode} precision_mode, {contract_size} contract_size,
|
||||
{max_stake_amount} max_stake_amount
|
||||
from {trade_back_name}
|
||||
"""))
|
||||
|
||||
@ -310,8 +311,8 @@ def check_migrate(engine, decl_base, previous_tables) -> None:
|
||||
# if ('orders' not in previous_tables
|
||||
# or not has_column(cols_orders, 'funding_fee')):
|
||||
migrating = False
|
||||
# if not has_column(cols_trades, 'contract_size'):
|
||||
if not has_column(cols_orders, 'funding_fee'):
|
||||
# if not has_column(cols_orders, 'funding_fee'):
|
||||
if not has_column(cols_trades, 'max_stake_amount'):
|
||||
migrating = True
|
||||
logger.info(f"Running database migration for trades - "
|
||||
f"backup: {table_back_name}, {order_table_bak_name}")
|
||||
|
@ -87,7 +87,7 @@ class PairLocks():
|
||||
Get the lock that expires the latest for the pair given.
|
||||
"""
|
||||
locks = PairLocks.get_pair_locks(pair, now, side=side)
|
||||
locks = sorted(locks, key=lambda l: l.lock_end_time, reverse=True)
|
||||
locks = sorted(locks, key=lambda lock: lock.lock_end_time, reverse=True)
|
||||
return locks[0] if locks else None
|
||||
|
||||
@staticmethod
|
||||
|
@ -293,6 +293,7 @@ class LocalTrade():
|
||||
close_profit: Optional[float] = None
|
||||
close_profit_abs: Optional[float] = None
|
||||
stake_amount: float = 0.0
|
||||
max_stake_amount: float = 0.0
|
||||
amount: float = 0.0
|
||||
amount_requested: Optional[float] = None
|
||||
open_date: datetime
|
||||
@ -397,12 +398,6 @@ class LocalTrade():
|
||||
def close_date_utc(self):
|
||||
return self.close_date.replace(tzinfo=timezone.utc)
|
||||
|
||||
@property
|
||||
def enter_side(self) -> str:
|
||||
""" DEPRECATED, please use entry_side instead"""
|
||||
# TODO: Please remove me after 2022.5
|
||||
return self.entry_side
|
||||
|
||||
@property
|
||||
def entry_side(self) -> str:
|
||||
if self.is_short:
|
||||
@ -475,8 +470,8 @@ class LocalTrade():
|
||||
'amount': round(self.amount, 8),
|
||||
'amount_requested': round(self.amount_requested, 8) if self.amount_requested else None,
|
||||
'stake_amount': round(self.stake_amount, 8),
|
||||
'max_stake_amount': round(self.max_stake_amount, 8) if self.max_stake_amount else None,
|
||||
'strategy': self.strategy,
|
||||
'buy_tag': self.enter_tag,
|
||||
'enter_tag': self.enter_tag,
|
||||
'timeframe': self.timeframe,
|
||||
|
||||
@ -513,7 +508,6 @@ class LocalTrade():
|
||||
'profit_pct': round(self.close_profit * 100, 2) if self.close_profit else None,
|
||||
'profit_abs': self.close_profit_abs,
|
||||
|
||||
'sell_reason': self.exit_reason, # Deprecated
|
||||
'exit_reason': self.exit_reason,
|
||||
'exit_order_status': self.exit_order_status,
|
||||
'stop_loss_abs': self.stop_loss,
|
||||
@ -882,6 +876,7 @@ class LocalTrade():
|
||||
ZERO = FtPrecise(0.0)
|
||||
current_amount = FtPrecise(0.0)
|
||||
current_stake = FtPrecise(0.0)
|
||||
max_stake_amount = FtPrecise(0.0)
|
||||
total_stake = 0.0 # Total stake after all buy orders (does not subtract!)
|
||||
avg_price = FtPrecise(0.0)
|
||||
close_profit = 0.0
|
||||
@ -923,7 +918,9 @@ class LocalTrade():
|
||||
exit_rate, amount=exit_amount, open_rate=avg_price)
|
||||
else:
|
||||
total_stake = total_stake + self._calc_open_trade_value(tmp_amount, price)
|
||||
max_stake_amount += (tmp_amount * price)
|
||||
self.funding_fees = funding_fees
|
||||
self.max_stake_amount = float(max_stake_amount)
|
||||
|
||||
if close_profit:
|
||||
self.close_profit = close_profit
|
||||
@ -1175,6 +1172,7 @@ class Trade(_DECL_BASE, LocalTrade):
|
||||
close_profit = Column(Float)
|
||||
close_profit_abs = Column(Float)
|
||||
stake_amount = Column(Float, nullable=False)
|
||||
max_stake_amount = Column(Float)
|
||||
amount = Column(Float)
|
||||
amount_requested = Column(Float)
|
||||
open_date = Column(DateTime, nullable=False, default=datetime.utcnow)
|
||||
|
206
freqtrade/plugins/pairlist/RemotePairList.py
Normal file
206
freqtrade/plugins/pairlist/RemotePairList.py
Normal file
@ -0,0 +1,206 @@
|
||||
"""
|
||||
Remote PairList provider
|
||||
|
||||
Provides pair list fetched from a remote source
|
||||
"""
|
||||
import json
|
||||
import logging
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, List, Tuple
|
||||
|
||||
import requests
|
||||
from cachetools import TTLCache
|
||||
|
||||
from freqtrade import __version__
|
||||
from freqtrade.constants import Config
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.exchange.types import Tickers
|
||||
from freqtrade.plugins.pairlist.IPairList import IPairList
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class RemotePairList(IPairList):
|
||||
|
||||
def __init__(self, exchange, pairlistmanager,
|
||||
config: Config, pairlistconfig: Dict[str, Any],
|
||||
pairlist_pos: int) -> None:
|
||||
super().__init__(exchange, pairlistmanager, config, pairlistconfig, pairlist_pos)
|
||||
|
||||
if 'number_assets' not in self._pairlistconfig:
|
||||
raise OperationalException(
|
||||
'`number_assets` not specified. Please check your configuration '
|
||||
'for "pairlist.config.number_assets"')
|
||||
|
||||
if 'pairlist_url' not in self._pairlistconfig:
|
||||
raise OperationalException(
|
||||
'`pairlist_url` not specified. Please check your configuration '
|
||||
'for "pairlist.config.pairlist_url"')
|
||||
|
||||
self._number_pairs = self._pairlistconfig['number_assets']
|
||||
self._refresh_period: int = self._pairlistconfig.get('refresh_period', 1800)
|
||||
self._keep_pairlist_on_failure = self._pairlistconfig.get('keep_pairlist_on_failure', True)
|
||||
self._pair_cache: TTLCache = TTLCache(maxsize=1, ttl=self._refresh_period)
|
||||
self._pairlist_url = self._pairlistconfig.get('pairlist_url', '')
|
||||
self._read_timeout = self._pairlistconfig.get('read_timeout', 60)
|
||||
self._bearer_token = self._pairlistconfig.get('bearer_token', '')
|
||||
self._init_done = False
|
||||
self._last_pairlist: List[Any] = list()
|
||||
|
||||
@property
|
||||
def needstickers(self) -> bool:
|
||||
"""
|
||||
Boolean property defining if tickers are necessary.
|
||||
If no Pairlist requires tickers, an empty Dict is passed
|
||||
as tickers argument to filter_pairlist
|
||||
"""
|
||||
return False
|
||||
|
||||
def short_desc(self) -> str:
|
||||
"""
|
||||
Short whitelist method description - used for startup-messages
|
||||
"""
|
||||
return f"{self.name} - {self._pairlistconfig['number_assets']} pairs from RemotePairlist."
|
||||
|
||||
def process_json(self, jsonparse) -> List[str]:
|
||||
|
||||
pairlist = jsonparse.get('pairs', [])
|
||||
remote_refresh_period = int(jsonparse.get('refresh_period', self._refresh_period))
|
||||
|
||||
if self._refresh_period < remote_refresh_period:
|
||||
self.log_once(f'Refresh Period has been increased from {self._refresh_period}'
|
||||
f' to minimum allowed: {remote_refresh_period} from Remote.', logger.info)
|
||||
|
||||
self._refresh_period = remote_refresh_period
|
||||
self._pair_cache = TTLCache(maxsize=1, ttl=remote_refresh_period)
|
||||
|
||||
self._init_done = True
|
||||
|
||||
return pairlist
|
||||
|
||||
def return_last_pairlist(self) -> List[str]:
|
||||
if self._keep_pairlist_on_failure:
|
||||
pairlist = self._last_pairlist
|
||||
self.log_once('Keeping last fetched pairlist', logger.info)
|
||||
else:
|
||||
pairlist = []
|
||||
|
||||
return pairlist
|
||||
|
||||
def fetch_pairlist(self) -> Tuple[List[str], float]:
|
||||
|
||||
headers = {
|
||||
'User-Agent': 'Freqtrade/' + __version__ + ' Remotepairlist'
|
||||
}
|
||||
|
||||
if self._bearer_token:
|
||||
headers['Authorization'] = f'Bearer {self._bearer_token}'
|
||||
|
||||
try:
|
||||
response = requests.get(self._pairlist_url, headers=headers,
|
||||
timeout=self._read_timeout)
|
||||
content_type = response.headers.get('content-type')
|
||||
time_elapsed = response.elapsed.total_seconds()
|
||||
|
||||
if "application/json" in str(content_type):
|
||||
jsonparse = response.json()
|
||||
|
||||
try:
|
||||
pairlist = self.process_json(jsonparse)
|
||||
except Exception as e:
|
||||
|
||||
if self._init_done:
|
||||
pairlist = self.return_last_pairlist()
|
||||
logger.warning(f'Error while processing JSON data: {type(e)}')
|
||||
else:
|
||||
raise OperationalException(f'Error while processing JSON data: {type(e)}')
|
||||
|
||||
else:
|
||||
if self._init_done:
|
||||
self.log_once(f'Error: RemotePairList is not of type JSON: '
|
||||
f' {self._pairlist_url}', logger.info)
|
||||
pairlist = self.return_last_pairlist()
|
||||
else:
|
||||
raise OperationalException('RemotePairList is not of type JSON, abort.')
|
||||
|
||||
except requests.exceptions.RequestException:
|
||||
self.log_once(f'Was not able to fetch pairlist from:'
|
||||
f' {self._pairlist_url}', logger.info)
|
||||
|
||||
pairlist = self.return_last_pairlist()
|
||||
|
||||
time_elapsed = 0
|
||||
|
||||
return pairlist, time_elapsed
|
||||
|
||||
def gen_pairlist(self, tickers: Tickers) -> List[str]:
|
||||
"""
|
||||
Generate the pairlist
|
||||
:param tickers: Tickers (from exchange.get_tickers). May be cached.
|
||||
:return: List of pairs
|
||||
"""
|
||||
|
||||
if self._init_done:
|
||||
pairlist = self._pair_cache.get('pairlist')
|
||||
else:
|
||||
pairlist = []
|
||||
|
||||
time_elapsed = 0.0
|
||||
|
||||
if pairlist:
|
||||
# Item found - no refresh necessary
|
||||
return pairlist.copy()
|
||||
else:
|
||||
if self._pairlist_url.startswith("file:///"):
|
||||
filename = self._pairlist_url.split("file:///", 1)[1]
|
||||
file_path = Path(filename)
|
||||
|
||||
if file_path.exists():
|
||||
with open(filename) as json_file:
|
||||
# Load the JSON data into a dictionary
|
||||
jsonparse = json.load(json_file)
|
||||
|
||||
try:
|
||||
pairlist = self.process_json(jsonparse)
|
||||
except Exception as e:
|
||||
if self._init_done:
|
||||
pairlist = self.return_last_pairlist()
|
||||
logger.warning(f'Error while processing JSON data: {type(e)}')
|
||||
else:
|
||||
raise OperationalException('Error while processing'
|
||||
f'JSON data: {type(e)}')
|
||||
else:
|
||||
raise ValueError(f"{self._pairlist_url} does not exist.")
|
||||
else:
|
||||
# Fetch Pairlist from Remote URL
|
||||
pairlist, time_elapsed = self.fetch_pairlist()
|
||||
|
||||
self.log_once(f"Fetched pairs: {pairlist}", logger.debug)
|
||||
|
||||
pairlist = self._whitelist_for_active_markets(pairlist)
|
||||
pairlist = pairlist[:self._number_pairs]
|
||||
|
||||
self._pair_cache['pairlist'] = pairlist.copy()
|
||||
|
||||
if time_elapsed != 0.0:
|
||||
self.log_once(f'Pairlist Fetched in {time_elapsed} seconds.', logger.info)
|
||||
else:
|
||||
self.log_once('Fetched Pairlist.', logger.info)
|
||||
|
||||
self._last_pairlist = list(pairlist)
|
||||
|
||||
return pairlist
|
||||
|
||||
def filter_pairlist(self, pairlist: List[str], tickers: Dict) -> List[str]:
|
||||
"""
|
||||
Filters and sorts pairlist and returns the whitelist again.
|
||||
Called on each bot iteration - please use internal caching if necessary
|
||||
:param pairlist: pairlist to filter or sort
|
||||
:param tickers: Tickers (from exchange.get_tickers). May be cached.
|
||||
:return: new whitelist
|
||||
"""
|
||||
rpl_pairlist = self.gen_pairlist(tickers)
|
||||
merged_list = pairlist + rpl_pairlist
|
||||
merged_list = sorted(set(merged_list), key=merged_list.index)
|
||||
return merged_list
|
@ -218,7 +218,7 @@ class VolumePairList(IPairList):
|
||||
else:
|
||||
filtered_tickers[i]['quoteVolume'] = 0
|
||||
else:
|
||||
# Tickers mode - filter based on incomming pairlist.
|
||||
# Tickers mode - filter based on incoming pairlist.
|
||||
filtered_tickers = [v for k, v in tickers.items() if k in pairlist]
|
||||
|
||||
if self._min_value > 0:
|
||||
|
@ -11,6 +11,7 @@ from freqtrade.configuration.config_validation import validate_config_consistenc
|
||||
from freqtrade.data.btanalysis import get_backtest_resultlist, load_and_merge_backtest_result
|
||||
from freqtrade.enums import BacktestState
|
||||
from freqtrade.exceptions import DependencyException
|
||||
from freqtrade.misc import deep_merge_dicts
|
||||
from freqtrade.rpc.api_server.api_schemas import (BacktestHistoryEntry, BacktestRequest,
|
||||
BacktestResponse)
|
||||
from freqtrade.rpc.api_server.deps import get_config, is_webserver_mode
|
||||
@ -37,10 +38,11 @@ async def api_start_backtest(bt_settings: BacktestRequest, background_tasks: Bac
|
||||
|
||||
btconfig = deepcopy(config)
|
||||
settings = dict(bt_settings)
|
||||
if settings.get('freqai', None) is not None:
|
||||
settings['freqai'] = dict(settings['freqai'])
|
||||
# Pydantic models will contain all keys, but non-provided ones are None
|
||||
for setting in settings.keys():
|
||||
if settings[setting] is not None:
|
||||
btconfig[setting] = settings[setting]
|
||||
|
||||
btconfig = deep_merge_dicts(settings, btconfig, allow_null_overrides=False)
|
||||
try:
|
||||
btconfig['stake_amount'] = float(btconfig['stake_amount'])
|
||||
except ValueError:
|
||||
|
@ -217,8 +217,8 @@ class TradeSchema(BaseModel):
|
||||
amount: float
|
||||
amount_requested: float
|
||||
stake_amount: float
|
||||
max_stake_amount: Optional[float]
|
||||
strategy: str
|
||||
buy_tag: Optional[str] # Deprecated
|
||||
enter_tag: Optional[str]
|
||||
timeframe: int
|
||||
fee_open: Optional[float]
|
||||
@ -243,7 +243,6 @@ class TradeSchema(BaseModel):
|
||||
profit_pct: Optional[float]
|
||||
profit_abs: Optional[float]
|
||||
profit_fiat: Optional[float]
|
||||
sell_reason: Optional[str] # Deprecated
|
||||
exit_reason: Optional[str]
|
||||
exit_order_status: Optional[str]
|
||||
stop_loss_abs: Optional[float]
|
||||
@ -372,6 +371,10 @@ class StrategyListResponse(BaseModel):
|
||||
strategies: List[str]
|
||||
|
||||
|
||||
class FreqAIModelListResponse(BaseModel):
|
||||
freqaimodels: List[str]
|
||||
|
||||
|
||||
class StrategyResponse(BaseModel):
|
||||
strategy: str
|
||||
code: str
|
||||
@ -410,6 +413,10 @@ class PairHistory(BaseModel):
|
||||
}
|
||||
|
||||
|
||||
class BacktestFreqAIInputs(BaseModel):
|
||||
identifier: str
|
||||
|
||||
|
||||
class BacktestRequest(BaseModel):
|
||||
strategy: str
|
||||
timeframe: Optional[str]
|
||||
@ -419,6 +426,9 @@ class BacktestRequest(BaseModel):
|
||||
stake_amount: Optional[str]
|
||||
enable_protections: bool
|
||||
dry_run_wallet: Optional[float]
|
||||
backtest_cache: Optional[str]
|
||||
freqaimodel: Optional[str]
|
||||
freqai: Optional[BacktestFreqAIInputs]
|
||||
|
||||
|
||||
class BacktestResponse(BaseModel):
|
||||
|
@ -13,12 +13,13 @@ from freqtrade.rpc import RPC
|
||||
from freqtrade.rpc.api_server.api_schemas import (AvailablePairs, Balances, BlacklistPayload,
|
||||
BlacklistResponse, Count, Daily,
|
||||
DeleteLockRequest, DeleteTrade, ForceEnterPayload,
|
||||
ForceEnterResponse, ForceExitPayload, Health,
|
||||
Locks, Logs, OpenTradeSchema, PairHistory,
|
||||
PerformanceEntry, Ping, PlotConfig, Profit,
|
||||
ResultMsg, ShowConfig, Stats, StatusMsg,
|
||||
StrategyListResponse, StrategyResponse, SysInfo,
|
||||
Version, WhitelistResponse)
|
||||
ForceEnterResponse, ForceExitPayload,
|
||||
FreqAIModelListResponse, Health, Locks, Logs,
|
||||
OpenTradeSchema, PairHistory, PerformanceEntry,
|
||||
Ping, PlotConfig, Profit, ResultMsg, ShowConfig,
|
||||
Stats, StatusMsg, StrategyListResponse,
|
||||
StrategyResponse, SysInfo, Version,
|
||||
WhitelistResponse)
|
||||
from freqtrade.rpc.api_server.deps import get_config, get_exchange, get_rpc, get_rpc_optional
|
||||
from freqtrade.rpc.rpc import RPCException
|
||||
|
||||
@ -37,7 +38,9 @@ logger = logging.getLogger(__name__)
|
||||
# 2.16: Additional daily metrics
|
||||
# 2.17: Forceentry - leverage, partial force_exit
|
||||
# 2.20: Add websocket endpoints
|
||||
API_VERSION = 2.20
|
||||
# 2.21: Add new_candle messagetype
|
||||
# 2.22: Add FreqAI to backtesting
|
||||
API_VERSION = 2.22
|
||||
|
||||
# Public API, requires no auth.
|
||||
router_public = APIRouter()
|
||||
@ -278,6 +281,16 @@ def get_strategy(strategy: str, config=Depends(get_config)):
|
||||
}
|
||||
|
||||
|
||||
@router.get('/freqaimodels', response_model=FreqAIModelListResponse, tags=['freqai'])
|
||||
def list_freqaimodels(config=Depends(get_config)):
|
||||
from freqtrade.resolvers.freqaimodel_resolver import FreqaiModelResolver
|
||||
strategies = FreqaiModelResolver.search_all_objects(
|
||||
config, False)
|
||||
strategies = sorted(strategies, key=lambda x: x['name'])
|
||||
|
||||
return {'freqaimodels': [x['name'] for x in strategies]}
|
||||
|
||||
|
||||
@router.get('/available_pairs', response_model=AvailablePairs, tags=['candle data'])
|
||||
def list_available_pairs(timeframe: Optional[str] = None, stake_currency: Optional[str] = None,
|
||||
candletype: Optional[CandleType] = None, config=Depends(get_config)):
|
||||
|
@ -91,9 +91,10 @@ async def _process_consumer_request(
|
||||
elif type == RPCRequestType.ANALYZED_DF:
|
||||
# Limit the amount of candles per dataframe to 'limit' or 1500
|
||||
limit = min(data.get('limit', 1500), 1500) if data else None
|
||||
pair = data.get('pair', None) if data else None
|
||||
|
||||
# For every pair in the generator, send a separate message
|
||||
for message in rpc._ws_request_analyzed_df(limit):
|
||||
for message in rpc._ws_request_analyzed_df(limit, pair):
|
||||
# Format response
|
||||
response = WSAnalyzedDFMessage(data=message)
|
||||
await channel.send(response.dict(exclude_none=True))
|
||||
|
@ -27,7 +27,8 @@ class WebSocketChannel:
|
||||
self,
|
||||
websocket: WebSocketType,
|
||||
channel_id: Optional[str] = None,
|
||||
serializer_cls: Type[WebSocketSerializer] = HybridJSONWebSocketSerializer
|
||||
serializer_cls: Type[WebSocketSerializer] = HybridJSONWebSocketSerializer,
|
||||
send_throttle: float = 0.01
|
||||
):
|
||||
self.channel_id = channel_id if channel_id else uuid4().hex[:8]
|
||||
self._websocket = WebSocketProxy(websocket)
|
||||
@ -41,6 +42,7 @@ class WebSocketChannel:
|
||||
self._send_times: Deque[float] = deque([], maxlen=10)
|
||||
# High limit defaults to 3 to start
|
||||
self._send_high_limit = 3
|
||||
self._send_throttle = send_throttle
|
||||
|
||||
# The subscribed message types
|
||||
self._subscriptions: List[str] = []
|
||||
@ -106,7 +108,8 @@ class WebSocketChannel:
|
||||
|
||||
# Explicitly give control back to event loop as
|
||||
# websockets.send does not
|
||||
await asyncio.sleep(0.01)
|
||||
# Also throttles how fast we send
|
||||
await asyncio.sleep(self._send_throttle)
|
||||
|
||||
async def recv(self):
|
||||
"""
|
||||
|
@ -47,7 +47,7 @@ class WSWhitelistRequest(WSRequestSchema):
|
||||
|
||||
class WSAnalyzedDFRequest(WSRequestSchema):
|
||||
type: RPCRequestType = RPCRequestType.ANALYZED_DF
|
||||
data: Dict[str, Any] = {"limit": 1500}
|
||||
data: Dict[str, Any] = {"limit": 1500, "pair": None}
|
||||
|
||||
|
||||
# ------------------------------ MESSAGE SCHEMAS ----------------------------
|
||||
|
@ -8,15 +8,17 @@ import asyncio
|
||||
import logging
|
||||
import socket
|
||||
from threading import Thread
|
||||
from typing import TYPE_CHECKING, Any, Callable, Dict, List, TypedDict
|
||||
from typing import TYPE_CHECKING, Any, Callable, Dict, List, TypedDict, Union
|
||||
|
||||
import websockets
|
||||
from pydantic import ValidationError
|
||||
|
||||
from freqtrade.constants import FULL_DATAFRAME_THRESHOLD
|
||||
from freqtrade.data.dataprovider import DataProvider
|
||||
from freqtrade.enums import RPCMessageType
|
||||
from freqtrade.misc import remove_entry_exit_signals
|
||||
from freqtrade.rpc.api_server.ws import WebSocketChannel
|
||||
from freqtrade.rpc.api_server.ws.channel import WebSocketChannel, create_channel
|
||||
from freqtrade.rpc.api_server.ws.message_stream import MessageStream
|
||||
from freqtrade.rpc.api_server.ws_schemas import (WSAnalyzedDFMessage, WSAnalyzedDFRequest,
|
||||
WSMessageSchema, WSRequestSchema,
|
||||
WSSubscribeRequest, WSWhitelistMessage,
|
||||
@ -38,6 +40,10 @@ class Producer(TypedDict):
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def schema_to_dict(schema: Union[WSMessageSchema, WSRequestSchema]):
|
||||
return schema.dict(exclude_none=True)
|
||||
|
||||
|
||||
class ExternalMessageConsumer:
|
||||
"""
|
||||
The main controller class for consuming external messages from
|
||||
@ -92,6 +98,8 @@ class ExternalMessageConsumer:
|
||||
RPCMessageType.ANALYZED_DF: self._consume_analyzed_df_message,
|
||||
}
|
||||
|
||||
self._channel_streams: Dict[str, MessageStream] = {}
|
||||
|
||||
self.start()
|
||||
|
||||
def start(self):
|
||||
@ -118,6 +126,8 @@ class ExternalMessageConsumer:
|
||||
logger.info("Stopping ExternalMessageConsumer")
|
||||
self._running = False
|
||||
|
||||
self._channel_streams = {}
|
||||
|
||||
if self._sub_tasks:
|
||||
# Cancel sub tasks
|
||||
for task in self._sub_tasks:
|
||||
@ -175,7 +185,6 @@ class ExternalMessageConsumer:
|
||||
:param producer: Dictionary containing producer info
|
||||
:param lock: An asyncio Lock
|
||||
"""
|
||||
channel = None
|
||||
while self._running:
|
||||
try:
|
||||
host, port = producer['host'], producer['port']
|
||||
@ -190,19 +199,21 @@ class ExternalMessageConsumer:
|
||||
max_size=self.message_size_limit,
|
||||
ping_interval=None
|
||||
) as ws:
|
||||
channel = WebSocketChannel(ws, channel_id=name)
|
||||
async with create_channel(
|
||||
ws,
|
||||
channel_id=name,
|
||||
send_throttle=0.5
|
||||
) as channel:
|
||||
|
||||
logger.info(f"Producer connection success - {channel}")
|
||||
# Create the message stream for this channel
|
||||
self._channel_streams[name] = MessageStream()
|
||||
|
||||
# Now request the initial data from this Producer
|
||||
for request in self._initial_requests:
|
||||
await channel.send(
|
||||
request.dict(exclude_none=True)
|
||||
# Run the channel tasks while connected
|
||||
await channel.run_channel_tasks(
|
||||
self._receive_messages(channel, producer, lock),
|
||||
self._send_requests(channel, self._channel_streams[name])
|
||||
)
|
||||
|
||||
# Now receive data, if none is within the time limit, ping
|
||||
await self._receive_messages(channel, producer, lock)
|
||||
|
||||
except (websockets.exceptions.InvalidURI, ValueError) as e:
|
||||
logger.error(f"{ws_url} is an invalid WebSocket URL - {e}")
|
||||
break
|
||||
@ -229,11 +240,19 @@ class ExternalMessageConsumer:
|
||||
# An unforseen error has occurred, log and continue
|
||||
logger.error("Unexpected error has occurred:")
|
||||
logger.exception(e)
|
||||
await asyncio.sleep(self.sleep_time)
|
||||
continue
|
||||
|
||||
finally:
|
||||
if channel:
|
||||
await channel.close()
|
||||
async def _send_requests(self, channel: WebSocketChannel, channel_stream: MessageStream):
|
||||
# Send the initial requests
|
||||
for init_request in self._initial_requests:
|
||||
await channel.send(schema_to_dict(init_request))
|
||||
|
||||
# Now send any subsequent requests published to
|
||||
# this channel's stream
|
||||
async for request, _ in channel_stream:
|
||||
logger.debug(f"Sending request to channel - {channel} - {request}")
|
||||
await channel.send(request)
|
||||
|
||||
async def _receive_messages(
|
||||
self,
|
||||
@ -270,19 +289,31 @@ class ExternalMessageConsumer:
|
||||
latency = (await asyncio.wait_for(pong, timeout=self.ping_timeout) * 1000)
|
||||
|
||||
logger.info(f"Connection to {channel} still alive, latency: {latency}ms")
|
||||
|
||||
continue
|
||||
except (websockets.exceptions.ConnectionClosed):
|
||||
# Just eat the error and continue reconnecting
|
||||
logger.warning(f"Disconnection in {channel} - retrying in {self.sleep_time}s")
|
||||
await asyncio.sleep(self.sleep_time)
|
||||
break
|
||||
|
||||
except Exception as e:
|
||||
# Just eat the error and continue reconnecting
|
||||
logger.warning(f"Ping error {channel} - {e} - retrying in {self.sleep_time}s")
|
||||
logger.debug(e, exc_info=e)
|
||||
await asyncio.sleep(self.sleep_time)
|
||||
raise
|
||||
|
||||
break
|
||||
def send_producer_request(
|
||||
self,
|
||||
producer_name: str,
|
||||
request: Union[WSRequestSchema, Dict[str, Any]]
|
||||
):
|
||||
"""
|
||||
Publish a message to the producer's message stream to be
|
||||
sent by the channel task.
|
||||
|
||||
:param producer_name: The name of the producer to publish the message to
|
||||
:param request: The request to send to the producer
|
||||
"""
|
||||
if isinstance(request, WSRequestSchema):
|
||||
request = schema_to_dict(request)
|
||||
|
||||
if channel_stream := self._channel_streams.get(producer_name):
|
||||
channel_stream.publish(request)
|
||||
|
||||
def handle_producer_message(self, producer: Producer, message: Dict[str, Any]):
|
||||
"""
|
||||
@ -336,16 +367,45 @@ class ExternalMessageConsumer:
|
||||
|
||||
pair, timeframe, candle_type = key
|
||||
|
||||
if df.empty:
|
||||
logger.debug(f"Received Empty Dataframe for {key}")
|
||||
return
|
||||
|
||||
# If set, remove the Entry and Exit signals from the Producer
|
||||
if self._emc_config.get('remove_entry_exit_signals', False):
|
||||
df = remove_entry_exit_signals(df)
|
||||
|
||||
# Add the dataframe to the dataprovider
|
||||
self._dp._add_external_df(pair, df,
|
||||
logger.debug(f"Received {len(df)} candle(s) for {key}")
|
||||
|
||||
did_append, n_missing = self._dp._add_external_df(
|
||||
pair,
|
||||
df,
|
||||
last_analyzed=la,
|
||||
timeframe=timeframe,
|
||||
candle_type=candle_type,
|
||||
producer_name=producer_name)
|
||||
producer_name=producer_name
|
||||
)
|
||||
|
||||
if not did_append:
|
||||
# We want an overlap in candles incase some data has changed
|
||||
n_missing += 1
|
||||
# Set to None for all candles if we missed a full df's worth of candles
|
||||
n_missing = n_missing if n_missing < FULL_DATAFRAME_THRESHOLD else 1500
|
||||
|
||||
logger.warning(f"Holes in data or no existing df, requesting {n_missing} candles "
|
||||
f"for {key} from `{producer_name}`")
|
||||
|
||||
self.send_producer_request(
|
||||
producer_name,
|
||||
WSAnalyzedDFRequest(
|
||||
data={
|
||||
"limit": n_missing,
|
||||
"pair": pair
|
||||
}
|
||||
)
|
||||
)
|
||||
return
|
||||
|
||||
logger.debug(
|
||||
f"Consumed message from `{producer_name}` of type `RPCMessageType.ANALYZED_DF`")
|
||||
f"Consumed message from `{producer_name}` "
|
||||
f"of type `RPCMessageType.ANALYZED_DF` for {key}")
|
||||
|
@ -167,6 +167,7 @@ class RPC:
|
||||
results = []
|
||||
for trade in trades:
|
||||
order: Optional[Order] = None
|
||||
current_profit_fiat: Optional[float] = None
|
||||
if trade.open_order_id:
|
||||
order = trade.select_order_by_order_id(trade.open_order_id)
|
||||
# calculate profit and send message to user
|
||||
@ -176,23 +177,26 @@ class RPC:
|
||||
trade.pair, side='exit', is_short=trade.is_short, refresh=False)
|
||||
except (ExchangeError, PricingError):
|
||||
current_rate = NAN
|
||||
else:
|
||||
current_rate = trade.close_rate
|
||||
if len(trade.select_filled_orders(trade.entry_side)) > 0:
|
||||
current_profit = trade.calc_profit_ratio(
|
||||
current_rate) if not isnan(current_rate) else NAN
|
||||
current_profit_abs = trade.calc_profit(
|
||||
current_rate) if not isnan(current_rate) else NAN
|
||||
current_profit_fiat: Optional[float] = None
|
||||
else:
|
||||
current_profit = current_profit_abs = current_profit_fiat = 0.0
|
||||
else:
|
||||
# Closed trade ...
|
||||
current_rate = trade.close_rate
|
||||
current_profit = trade.close_profit
|
||||
current_profit_abs = trade.close_profit_abs
|
||||
|
||||
# Calculate fiat profit
|
||||
if self._fiat_converter:
|
||||
if not isnan(current_profit_abs) and self._fiat_converter:
|
||||
current_profit_fiat = self._fiat_converter.convert_amount(
|
||||
current_profit_abs,
|
||||
self._freqtrade.config['stake_currency'],
|
||||
self._freqtrade.config['fiat_display_currency']
|
||||
)
|
||||
else:
|
||||
current_profit = current_profit_abs = current_profit_fiat = 0.0
|
||||
|
||||
# Calculate guaranteed profit (in case of trailing stop)
|
||||
stoploss_entry_dist = trade.calc_profit(trade.stop_loss)
|
||||
@ -740,6 +744,24 @@ class RPC:
|
||||
self._freqtrade.wallets.update()
|
||||
return {'result': f'Created sell order for trade {trade_id}.'}
|
||||
|
||||
def _force_entry_validations(self, pair: str, order_side: SignalDirection):
|
||||
if not self._freqtrade.config.get('force_entry_enable', False):
|
||||
raise RPCException('Force_entry not enabled.')
|
||||
|
||||
if self._freqtrade.state != State.RUNNING:
|
||||
raise RPCException('trader is not running')
|
||||
|
||||
if order_side == SignalDirection.SHORT and self._freqtrade.trading_mode == TradingMode.SPOT:
|
||||
raise RPCException("Can't go short on Spot markets.")
|
||||
|
||||
if pair not in self._freqtrade.exchange.get_markets(tradable_only=True):
|
||||
raise RPCException('Symbol does not exist or market is not active.')
|
||||
# Check if pair quote currency equals to the stake currency.
|
||||
stake_currency = self._freqtrade.config.get('stake_currency')
|
||||
if not self._freqtrade.exchange.get_pair_quote_currency(pair) == stake_currency:
|
||||
raise RPCException(
|
||||
f'Wrong pair selected. Only pairs with stake-currency {stake_currency} allowed.')
|
||||
|
||||
def _rpc_force_entry(self, pair: str, price: Optional[float], *,
|
||||
order_type: Optional[str] = None,
|
||||
order_side: SignalDirection = SignalDirection.LONG,
|
||||
@ -750,21 +772,8 @@ class RPC:
|
||||
Handler for forcebuy <asset> <price>
|
||||
Buys a pair trade at the given or current price
|
||||
"""
|
||||
self._force_entry_validations(pair, order_side)
|
||||
|
||||
if not self._freqtrade.config.get('force_entry_enable', False):
|
||||
raise RPCException('Force_entry not enabled.')
|
||||
|
||||
if self._freqtrade.state != State.RUNNING:
|
||||
raise RPCException('trader is not running')
|
||||
|
||||
if order_side == SignalDirection.SHORT and self._freqtrade.trading_mode == TradingMode.SPOT:
|
||||
raise RPCException("Can't go short on Spot markets.")
|
||||
|
||||
# Check if pair quote currency equals to the stake currency.
|
||||
stake_currency = self._freqtrade.config.get('stake_currency')
|
||||
if not self._freqtrade.exchange.get_pair_quote_currency(pair) == stake_currency:
|
||||
raise RPCException(
|
||||
f'Wrong pair selected. Only pairs with stake-currency {stake_currency} allowed.')
|
||||
# check if valid pair
|
||||
|
||||
# check if pair already has an open pair
|
||||
@ -1053,15 +1062,26 @@ class RPC:
|
||||
return self._convert_dataframe_to_dict(self._freqtrade.config['strategy'],
|
||||
pair, timeframe, _data, last_analyzed)
|
||||
|
||||
def __rpc_analysed_dataframe_raw(self, pair: str, timeframe: str,
|
||||
limit: Optional[int]) -> Tuple[DataFrame, datetime]:
|
||||
""" Get the dataframe and last analyze from the dataprovider """
|
||||
def __rpc_analysed_dataframe_raw(
|
||||
self,
|
||||
pair: str,
|
||||
timeframe: str,
|
||||
limit: Optional[int]
|
||||
) -> Tuple[DataFrame, datetime]:
|
||||
"""
|
||||
Get the dataframe and last analyze from the dataprovider
|
||||
|
||||
:param pair: The pair to get
|
||||
:param timeframe: The timeframe of data to get
|
||||
:param limit: The amount of candles in the dataframe
|
||||
"""
|
||||
_data, last_analyzed = self._freqtrade.dataprovider.get_analyzed_dataframe(
|
||||
pair, timeframe)
|
||||
_data = _data.copy()
|
||||
|
||||
if limit:
|
||||
_data = _data.iloc[-limit:]
|
||||
|
||||
return _data, last_analyzed
|
||||
|
||||
def _ws_all_analysed_dataframes(
|
||||
@ -1069,7 +1089,16 @@ class RPC:
|
||||
pairlist: List[str],
|
||||
limit: Optional[int]
|
||||
) -> Generator[Dict[str, Any], None, None]:
|
||||
""" Get the analysed dataframes of each pair in the pairlist """
|
||||
"""
|
||||
Get the analysed dataframes of each pair in the pairlist.
|
||||
If specified, only return the most recent `limit` candles for
|
||||
each dataframe.
|
||||
|
||||
:param pairlist: A list of pairs to get
|
||||
:param limit: If an integer, limits the size of dataframe
|
||||
If a list of string date times, only returns those candles
|
||||
:returns: A generator of dictionaries with the key, dataframe, and last analyzed timestamp
|
||||
"""
|
||||
timeframe = self._freqtrade.config['timeframe']
|
||||
candle_type = self._freqtrade.config.get('candle_type_def', CandleType.SPOT)
|
||||
|
||||
@ -1082,10 +1111,15 @@ class RPC:
|
||||
"la": last_analyzed
|
||||
}
|
||||
|
||||
def _ws_request_analyzed_df(self, limit: Optional[int]):
|
||||
def _ws_request_analyzed_df(
|
||||
self,
|
||||
limit: Optional[int] = None,
|
||||
pair: Optional[str] = None
|
||||
):
|
||||
""" Historical Analyzed Dataframes for WebSocket """
|
||||
whitelist = self._freqtrade.active_pair_whitelist
|
||||
return self._ws_all_analysed_dataframes(whitelist, limit)
|
||||
pairlist = [pair] if pair else self._freqtrade.active_pair_whitelist
|
||||
|
||||
return self._ws_all_analysed_dataframes(pairlist, limit)
|
||||
|
||||
def _ws_request_whitelist(self):
|
||||
""" Whitelist data for WebSocket """
|
||||
|
@ -6,7 +6,7 @@ from collections import deque
|
||||
from typing import Any, Dict, List
|
||||
|
||||
from freqtrade.constants import Config
|
||||
from freqtrade.enums import RPCMessageType
|
||||
from freqtrade.enums import NO_ECHO_MESSAGES, RPCMessageType
|
||||
from freqtrade.rpc import RPC, RPCHandler
|
||||
|
||||
|
||||
@ -67,7 +67,7 @@ class RPCManager:
|
||||
'status': 'stopping bot'
|
||||
}
|
||||
"""
|
||||
if msg.get('type') not in (RPCMessageType.ANALYZED_DF, RPCMessageType.WHITELIST):
|
||||
if msg.get('type') not in NO_ECHO_MESSAGES:
|
||||
logger.info('Sending rpc message: %s', msg)
|
||||
if 'pair' in msg:
|
||||
msg.update({
|
||||
|
@ -79,6 +79,8 @@ def authorized_only(command_handler: Callable[..., None]) -> Callable[..., Any]:
|
||||
)
|
||||
try:
|
||||
return command_handler(self, *args, **kwargs)
|
||||
except RPCException as e:
|
||||
self._send_msg(str(e))
|
||||
except BaseException:
|
||||
logger.exception('Exception occurred within Telegram module')
|
||||
|
||||
@ -538,8 +540,6 @@ class Telegram(RPCHandler):
|
||||
handler for `/status` and `/status <id>`.
|
||||
|
||||
"""
|
||||
try:
|
||||
|
||||
# Check if there's at least one numerical ID provided.
|
||||
# If so, try to get only these trades.
|
||||
trade_ids = []
|
||||
@ -602,9 +602,6 @@ class Telegram(RPCHandler):
|
||||
lines.extend(lines_detail if lines_detail else "")
|
||||
self.__send_status_msg(lines, r)
|
||||
|
||||
except RPCException as e:
|
||||
self._send_msg(str(e))
|
||||
|
||||
def __send_status_msg(self, lines: List[str], r: Dict[str, Any]) -> None:
|
||||
"""
|
||||
Send status message.
|
||||
@ -630,7 +627,6 @@ class Telegram(RPCHandler):
|
||||
:param update: message update
|
||||
:return: None
|
||||
"""
|
||||
try:
|
||||
fiat_currency = self._config.get('fiat_display_currency', '')
|
||||
statlist, head, fiat_profit_sum = self._rpc._rpc_status_table(
|
||||
self._config['stake_currency'], fiat_currency)
|
||||
@ -659,8 +655,6 @@ class Telegram(RPCHandler):
|
||||
self._send_msg(f"<pre>{message}</pre>", parse_mode=ParseMode.HTML,
|
||||
reload_able=True, callback_path="update_status_table",
|
||||
query=update.callback_query)
|
||||
except RPCException as e:
|
||||
self._send_msg(str(e))
|
||||
|
||||
@authorized_only
|
||||
def _timeunit_stats(self, update: Update, context: CallbackContext, unit: str) -> None:
|
||||
@ -686,7 +680,6 @@ class Telegram(RPCHandler):
|
||||
timescale = int(context.args[0]) if context.args else val.default
|
||||
except (TypeError, ValueError, IndexError):
|
||||
timescale = val.default
|
||||
try:
|
||||
stats = self._rpc._rpc_timeunit_profit(
|
||||
timescale,
|
||||
stake_cur,
|
||||
@ -713,8 +706,6 @@ class Telegram(RPCHandler):
|
||||
)
|
||||
self._send_msg(message, parse_mode=ParseMode.HTML, reload_able=True,
|
||||
callback_path=val.callback, query=update.callback_query)
|
||||
except RPCException as e:
|
||||
self._send_msg(str(e))
|
||||
|
||||
@authorized_only
|
||||
def _daily(self, update: Update, context: CallbackContext) -> None:
|
||||
@ -878,7 +869,6 @@ class Telegram(RPCHandler):
|
||||
@authorized_only
|
||||
def _balance(self, update: Update, context: CallbackContext) -> None:
|
||||
""" Handler for /balance """
|
||||
try:
|
||||
result = self._rpc._rpc_balance(self._config['stake_currency'],
|
||||
self._config.get('fiat_display_currency', ''))
|
||||
|
||||
@ -949,8 +939,6 @@ class Telegram(RPCHandler):
|
||||
f"{fiat_val}\n")
|
||||
self._send_msg(output, reload_able=True, callback_path="update_balance",
|
||||
query=update.callback_query)
|
||||
except RPCException as e:
|
||||
self._send_msg(str(e))
|
||||
|
||||
@authorized_only
|
||||
def _start(self, update: Update, context: CallbackContext) -> None:
|
||||
@ -1125,7 +1113,6 @@ class Telegram(RPCHandler):
|
||||
nrecent = int(context.args[0]) if context.args else 10
|
||||
except (TypeError, ValueError, IndexError):
|
||||
nrecent = 10
|
||||
try:
|
||||
trades = self._rpc._rpc_trade_history(
|
||||
nrecent
|
||||
)
|
||||
@ -1143,8 +1130,6 @@ class Telegram(RPCHandler):
|
||||
message = (f"<b>{min(trades['trades_count'], nrecent)} recent trades</b>:\n"
|
||||
+ (f"<pre>{trades_tab}</pre>" if trades['trades_count'] > 0 else ''))
|
||||
self._send_msg(message, parse_mode=ParseMode.HTML)
|
||||
except RPCException as e:
|
||||
self._send_msg(str(e))
|
||||
|
||||
@authorized_only
|
||||
def _delete_trade(self, update: Update, context: CallbackContext) -> None:
|
||||
@ -1155,7 +1140,6 @@ class Telegram(RPCHandler):
|
||||
:param update: message update
|
||||
:return: None
|
||||
"""
|
||||
try:
|
||||
if not context.args or len(context.args) == 0:
|
||||
raise RPCException("Trade-id not set.")
|
||||
trade_id = int(context.args[0])
|
||||
@ -1165,9 +1149,6 @@ class Telegram(RPCHandler):
|
||||
'Please make sure to take care of this asset on the exchange manually.'
|
||||
))
|
||||
|
||||
except RPCException as e:
|
||||
self._send_msg(str(e))
|
||||
|
||||
@authorized_only
|
||||
def _performance(self, update: Update, context: CallbackContext) -> None:
|
||||
"""
|
||||
@ -1177,7 +1158,6 @@ class Telegram(RPCHandler):
|
||||
:param update: message update
|
||||
:return: None
|
||||
"""
|
||||
try:
|
||||
trades = self._rpc._rpc_performance()
|
||||
output = "<b>Performance:</b>\n"
|
||||
for i, trade in enumerate(trades):
|
||||
@ -1196,8 +1176,6 @@ class Telegram(RPCHandler):
|
||||
self._send_msg(output, parse_mode=ParseMode.HTML,
|
||||
reload_able=True, callback_path="update_performance",
|
||||
query=update.callback_query)
|
||||
except RPCException as e:
|
||||
self._send_msg(str(e))
|
||||
|
||||
@authorized_only
|
||||
def _enter_tag_performance(self, update: Update, context: CallbackContext) -> None:
|
||||
@ -1208,7 +1186,6 @@ class Telegram(RPCHandler):
|
||||
:param update: message update
|
||||
:return: None
|
||||
"""
|
||||
try:
|
||||
pair = None
|
||||
if context.args and isinstance(context.args[0], str):
|
||||
pair = context.args[0]
|
||||
@ -1231,8 +1208,6 @@ class Telegram(RPCHandler):
|
||||
self._send_msg(output, parse_mode=ParseMode.HTML,
|
||||
reload_able=True, callback_path="update_enter_tag_performance",
|
||||
query=update.callback_query)
|
||||
except RPCException as e:
|
||||
self._send_msg(str(e))
|
||||
|
||||
@authorized_only
|
||||
def _exit_reason_performance(self, update: Update, context: CallbackContext) -> None:
|
||||
@ -1243,7 +1218,6 @@ class Telegram(RPCHandler):
|
||||
:param update: message update
|
||||
:return: None
|
||||
"""
|
||||
try:
|
||||
pair = None
|
||||
if context.args and isinstance(context.args[0], str):
|
||||
pair = context.args[0]
|
||||
@ -1266,8 +1240,6 @@ class Telegram(RPCHandler):
|
||||
self._send_msg(output, parse_mode=ParseMode.HTML,
|
||||
reload_able=True, callback_path="update_exit_reason_performance",
|
||||
query=update.callback_query)
|
||||
except RPCException as e:
|
||||
self._send_msg(str(e))
|
||||
|
||||
@authorized_only
|
||||
def _mix_tag_performance(self, update: Update, context: CallbackContext) -> None:
|
||||
@ -1278,7 +1250,6 @@ class Telegram(RPCHandler):
|
||||
:param update: message update
|
||||
:return: None
|
||||
"""
|
||||
try:
|
||||
pair = None
|
||||
if context.args and isinstance(context.args[0], str):
|
||||
pair = context.args[0]
|
||||
@ -1301,8 +1272,6 @@ class Telegram(RPCHandler):
|
||||
self._send_msg(output, parse_mode=ParseMode.HTML,
|
||||
reload_able=True, callback_path="update_mix_tag_performance",
|
||||
query=update.callback_query)
|
||||
except RPCException as e:
|
||||
self._send_msg(str(e))
|
||||
|
||||
@authorized_only
|
||||
def _count(self, update: Update, context: CallbackContext) -> None:
|
||||
@ -1313,7 +1282,6 @@ class Telegram(RPCHandler):
|
||||
:param update: message update
|
||||
:return: None
|
||||
"""
|
||||
try:
|
||||
counts = self._rpc._rpc_count()
|
||||
message = tabulate({k: [v] for k, v in counts.items()},
|
||||
headers=['current', 'max', 'total stake'],
|
||||
@ -1323,8 +1291,6 @@ class Telegram(RPCHandler):
|
||||
self._send_msg(message, parse_mode=ParseMode.HTML,
|
||||
reload_able=True, callback_path="update_count",
|
||||
query=update.callback_query)
|
||||
except RPCException as e:
|
||||
self._send_msg(str(e))
|
||||
|
||||
@authorized_only
|
||||
def _locks(self, update: Update, context: CallbackContext) -> None:
|
||||
@ -1372,7 +1338,6 @@ class Telegram(RPCHandler):
|
||||
Handler for /whitelist
|
||||
Shows the currently active whitelist
|
||||
"""
|
||||
try:
|
||||
whitelist = self._rpc._rpc_whitelist()
|
||||
|
||||
if context.args:
|
||||
@ -1386,8 +1351,6 @@ class Telegram(RPCHandler):
|
||||
|
||||
logger.debug(message)
|
||||
self._send_msg(message)
|
||||
except RPCException as e:
|
||||
self._send_msg(str(e))
|
||||
|
||||
@authorized_only
|
||||
def _blacklist(self, update: Update, context: CallbackContext) -> None:
|
||||
@ -1424,7 +1387,6 @@ class Telegram(RPCHandler):
|
||||
Handler for /logs
|
||||
Shows the latest logs
|
||||
"""
|
||||
try:
|
||||
try:
|
||||
limit = int(context.args[0]) if context.args else 10
|
||||
except (TypeError, ValueError, IndexError):
|
||||
@ -1447,8 +1409,6 @@ class Telegram(RPCHandler):
|
||||
|
||||
if msgs:
|
||||
self._send_msg(msgs, parse_mode=ParseMode.MARKDOWN_V2)
|
||||
except RPCException as e:
|
||||
self._send_msg(str(e))
|
||||
|
||||
@authorized_only
|
||||
def _edge(self, update: Update, context: CallbackContext) -> None:
|
||||
@ -1456,7 +1416,6 @@ class Telegram(RPCHandler):
|
||||
Handler for /edge
|
||||
Shows information related to Edge
|
||||
"""
|
||||
try:
|
||||
edge_pairs = self._rpc._rpc_edge()
|
||||
if not edge_pairs:
|
||||
message = '<b>Edge only validated following pairs:</b>'
|
||||
@ -1469,9 +1428,6 @@ class Telegram(RPCHandler):
|
||||
|
||||
self._send_msg(message, parse_mode=ParseMode.HTML)
|
||||
|
||||
except RPCException as e:
|
||||
self._send_msg(str(e))
|
||||
|
||||
@authorized_only
|
||||
def _help(self, update: Update, context: CallbackContext) -> None:
|
||||
"""
|
||||
@ -1551,12 +1507,9 @@ class Telegram(RPCHandler):
|
||||
Handler for /health
|
||||
Shows the last process timestamp
|
||||
"""
|
||||
try:
|
||||
health = self._rpc._health()
|
||||
message = f"Last process: `{health['last_process_loc']}`"
|
||||
self._send_msg(message)
|
||||
except RPCException as e:
|
||||
self._send_msg(str(e))
|
||||
|
||||
@authorized_only
|
||||
def _version(self, update: Update, context: CallbackContext) -> None:
|
||||
|
@ -68,6 +68,7 @@ class Webhook(RPCHandler):
|
||||
RPCMessageType.PROTECTION_TRIGGER_GLOBAL,
|
||||
RPCMessageType.WHITELIST,
|
||||
RPCMessageType.ANALYZED_DF,
|
||||
RPCMessageType.NEW_CANDLE,
|
||||
RPCMessageType.STRATEGY_MSG):
|
||||
# Don't fail for non-implemented types
|
||||
return None
|
||||
|
@ -739,10 +739,10 @@ class IStrategy(ABC, HyperStrategyMixin):
|
||||
"""
|
||||
pair = str(metadata.get('pair'))
|
||||
|
||||
new_candle = self._last_candle_seen_per_pair.get(pair, None) != dataframe.iloc[-1]['date']
|
||||
# Test if seen this pair and last candle before.
|
||||
# always run if process_only_new_candles is set to false
|
||||
if (not self.process_only_new_candles or
|
||||
self._last_candle_seen_per_pair.get(pair, None) != dataframe.iloc[-1]['date']):
|
||||
if not self.process_only_new_candles or new_candle:
|
||||
|
||||
# Defs that only make change on new candle data.
|
||||
dataframe = self.analyze_ticker(dataframe, metadata)
|
||||
@ -751,7 +751,7 @@ class IStrategy(ABC, HyperStrategyMixin):
|
||||
|
||||
candle_type = self.config.get('candle_type_def', CandleType.SPOT)
|
||||
self.dp._set_cached_df(pair, self.timeframe, dataframe, candle_type=candle_type)
|
||||
self.dp._emit_df((pair, self.timeframe, candle_type), dataframe)
|
||||
self.dp._emit_df((pair, self.timeframe, candle_type), dataframe, new_candle)
|
||||
|
||||
else:
|
||||
logger.debug("Skipping TA Analysis for already analyzed candle")
|
||||
|
@ -19,7 +19,7 @@ class FreqaiExampleHybridStrategy(IStrategy):
|
||||
|
||||
Launching this strategy would be:
|
||||
|
||||
freqtrade trade --strategy FreqaiExampleHyridStrategy --strategy-path freqtrade/templates
|
||||
freqtrade trade --strategy FreqaiExampleHybridStrategy --strategy-path freqtrade/templates
|
||||
--freqaimodel CatboostClassifier --config config_examples/config_freqai.example.json
|
||||
|
||||
or the user simply adds this to their config:
|
||||
@ -86,7 +86,7 @@ class FreqaiExampleHybridStrategy(IStrategy):
|
||||
process_only_new_candles = True
|
||||
stoploss = -0.05
|
||||
use_exit_signal = True
|
||||
startup_candle_count: int = 300
|
||||
startup_candle_count: int = 30
|
||||
can_short = True
|
||||
|
||||
# Hyperoptable parameters
|
||||
|
@ -7,14 +7,17 @@
|
||||
"# Strategy analysis example\n",
|
||||
"\n",
|
||||
"Debugging a strategy can be time-consuming. Freqtrade offers helper functions to visualize raw data.\n",
|
||||
"The following assumes you work with SampleStrategy, data for 5m timeframe from Binance and have downloaded them into the data directory in the default location."
|
||||
"The following assumes you work with SampleStrategy, data for 5m timeframe from Binance and have downloaded them into the data directory in the default location.\n",
|
||||
"Please follow the [documentation](https://www.freqtrade.io/en/stable/data-download/) for more details."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Setup"
|
||||
"## Setup\n",
|
||||
"\n",
|
||||
"### Change Working directory to repository root"
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -23,7 +26,38 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"from pathlib import Path\n",
|
||||
"\n",
|
||||
"# Change directory\n",
|
||||
"# Modify this cell to insure that the output shows the correct path.\n",
|
||||
"# Define all paths relative to the project root shown in the cell output\n",
|
||||
"project_root = \"somedir/freqtrade\"\n",
|
||||
"i=0\n",
|
||||
"try:\n",
|
||||
" os.chdirdir(project_root)\n",
|
||||
" assert Path('LICENSE').is_file()\n",
|
||||
"except:\n",
|
||||
" while i<4 and (not Path('LICENSE').is_file()):\n",
|
||||
" os.chdir(Path(Path.cwd(), '../'))\n",
|
||||
" i+=1\n",
|
||||
" project_root = Path.cwd()\n",
|
||||
"print(Path.cwd())"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Configure Freqtrade environment"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from freqtrade.configuration import Configuration\n",
|
||||
"\n",
|
||||
"# Customize these according to your needs.\n",
|
||||
@ -31,14 +65,14 @@
|
||||
"# Initialize empty configuration object\n",
|
||||
"config = Configuration.from_files([])\n",
|
||||
"# Optionally (recommended), use existing configuration file\n",
|
||||
"# config = Configuration.from_files([\"config.json\"])\n",
|
||||
"# config = Configuration.from_files([\"user_data/config.json\"])\n",
|
||||
"\n",
|
||||
"# Define some constants\n",
|
||||
"config[\"timeframe\"] = \"5m\"\n",
|
||||
"# Name of the strategy class\n",
|
||||
"config[\"strategy\"] = \"SampleStrategy\"\n",
|
||||
"# Location of the data\n",
|
||||
"data_location = config['datadir']\n",
|
||||
"data_location = config[\"datadir\"]\n",
|
||||
"# Pair to analyze - Only use one pair here\n",
|
||||
"pair = \"BTC/USDT\""
|
||||
]
|
||||
@ -56,12 +90,12 @@
|
||||
"candles = load_pair_history(datadir=data_location,\n",
|
||||
" timeframe=config[\"timeframe\"],\n",
|
||||
" pair=pair,\n",
|
||||
" data_format = \"hdf5\",\n",
|
||||
" data_format = \"json\", # Make sure to update this to your data\n",
|
||||
" candle_type=CandleType.SPOT,\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
"# Confirm success\n",
|
||||
"print(\"Loaded \" + str(len(candles)) + f\" rows of data for {pair} from {data_location}\")\n",
|
||||
"print(f\"Loaded {len(candles)} rows of data for {pair} from {data_location}\")\n",
|
||||
"candles.head()"
|
||||
]
|
||||
},
|
||||
@ -328,7 +362,7 @@
|
||||
"# Show graph inline\n",
|
||||
"# graph.show()\n",
|
||||
"\n",
|
||||
"# Render graph in a seperate window\n",
|
||||
"# Render graph in a separate window\n",
|
||||
"graph.show(renderer=\"browser\")\n"
|
||||
]
|
||||
},
|
||||
@ -365,7 +399,7 @@
|
||||
"metadata": {
|
||||
"file_extension": ".py",
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3.9.7 64-bit ('trade_397')",
|
||||
"display_name": "Python 3.9.7 64-bit",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
|
18
freqtrade/util/gc_setup.py
Normal file
18
freqtrade/util/gc_setup.py
Normal file
@ -0,0 +1,18 @@
|
||||
import gc
|
||||
import logging
|
||||
import platform
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def gc_set_threshold():
|
||||
"""
|
||||
Reduce number of GC runs to improve performance (explanation video)
|
||||
https://www.youtube.com/watch?v=p4Sn6UcFTOU
|
||||
|
||||
"""
|
||||
if platform.python_implementation() == "CPython":
|
||||
# allocs, g1, g2 = gc.get_threshold()
|
||||
gc.set_threshold(50_000, 500, 1000)
|
||||
logger.debug("Adjusting python allocations to reduce GC runs")
|
@ -291,12 +291,17 @@ class Wallets:
|
||||
return self._check_available_stake_amount(stake_amount, available_amount)
|
||||
|
||||
def validate_stake_amount(self, pair: str, stake_amount: Optional[float],
|
||||
min_stake_amount: Optional[float], max_stake_amount: float):
|
||||
min_stake_amount: Optional[float], max_stake_amount: float,
|
||||
trade_amount: Optional[float]):
|
||||
if not stake_amount:
|
||||
logger.debug(f"Stake amount is {stake_amount}, ignoring possible trade for {pair}.")
|
||||
return 0
|
||||
|
||||
max_stake_amount = min(max_stake_amount, self.get_available_stake_amount())
|
||||
if trade_amount:
|
||||
# if in a trade, then the resulting trade size cannot go beyond the max stake
|
||||
# Otherwise we could no longer exit.
|
||||
max_stake_amount = min(max_stake_amount, max_stake_amount - trade_amount)
|
||||
|
||||
if min_stake_amount is not None and min_stake_amount > max_stake_amount:
|
||||
if self._log:
|
||||
|
@ -41,6 +41,7 @@ nav:
|
||||
- Backtest analysis: advanced-backtesting.md
|
||||
- Advanced Topics:
|
||||
- Advanced Post-installation Tasks: advanced-setup.md
|
||||
- Trade Object: trade-object.md
|
||||
- Advanced Strategy: strategy-advanced.md
|
||||
- Advanced Hyperopt: advanced-hyperopt.md
|
||||
- Producer/Consumer mode: producer-consumer.md
|
||||
|
@ -7,27 +7,27 @@
|
||||
-r docs/requirements-docs.txt
|
||||
|
||||
coveralls==3.3.1
|
||||
flake8==5.0.4
|
||||
flake8==6.0.0
|
||||
flake8-tidy-imports==4.8.0
|
||||
mypy==0.991
|
||||
pre-commit==2.20.0
|
||||
pre-commit==2.21.0
|
||||
pytest==7.2.0
|
||||
pytest-asyncio==0.20.2
|
||||
pytest-asyncio==0.20.3
|
||||
pytest-cov==4.0.0
|
||||
pytest-mock==3.10.0
|
||||
pytest-random-order==1.0.4
|
||||
isort==5.10.1
|
||||
pytest-random-order==1.1.0
|
||||
isort==5.11.4
|
||||
# For datetime mocking
|
||||
time-machine==2.8.2
|
||||
# fastapi testing
|
||||
httpx==0.23.1
|
||||
|
||||
# Convert jupyter notebooks to markdown documents
|
||||
nbconvert==7.2.5
|
||||
nbconvert==7.2.7
|
||||
|
||||
# mypy types
|
||||
types-cachetools==5.2.1
|
||||
types-filelock==3.2.7
|
||||
types-requests==2.28.11.5
|
||||
types-requests==2.28.11.7
|
||||
types-tabulate==0.9.0.0
|
||||
types-python-dateutil==2.8.19.4
|
||||
types-python-dateutil==2.8.19.5
|
||||
|
@ -2,7 +2,8 @@
|
||||
-r requirements-freqai.txt
|
||||
|
||||
# Required for freqai-rl
|
||||
torch==1.12.1
|
||||
stable-baselines3==1.6.1
|
||||
torch==1.13.1
|
||||
stable-baselines3==1.6.2
|
||||
sb3-contrib==1.6.2
|
||||
# Gym is forced to this version by stable-baselines3.
|
||||
gym==0.21
|
||||
sb3-contrib==1.6.1
|
||||
|
@ -7,5 +7,5 @@ scikit-learn==1.1.3
|
||||
joblib==1.2.0
|
||||
catboost==1.1.1; platform_machine != 'aarch64'
|
||||
lightgbm==3.3.3
|
||||
xgboost==1.7.1
|
||||
xgboost==1.7.2
|
||||
tensorboard==2.11.0
|
||||
|
@ -5,5 +5,5 @@
|
||||
scipy==1.9.3
|
||||
scikit-learn==1.1.3
|
||||
scikit-optimize==0.9.0
|
||||
filelock==3.8.0
|
||||
filelock==3.8.2
|
||||
progressbar2==4.2.0
|
||||
|
@ -1,28 +1,28 @@
|
||||
numpy==1.23.5
|
||||
pandas==1.5.1
|
||||
numpy==1.24.1
|
||||
pandas==1.5.2
|
||||
pandas-ta==0.3.14b
|
||||
|
||||
ccxt==2.1.96
|
||||
ccxt==2.4.60
|
||||
# Pin cryptography for now due to rust build errors with piwheels
|
||||
cryptography==38.0.1; platform_machine == 'armv7l'
|
||||
cryptography==38.0.3; platform_machine != 'armv7l'
|
||||
cryptography==38.0.4; platform_machine != 'armv7l'
|
||||
aiohttp==3.8.3
|
||||
SQLAlchemy==1.4.44
|
||||
python-telegram-bot==13.14
|
||||
SQLAlchemy==1.4.45
|
||||
python-telegram-bot==13.15
|
||||
arrow==1.2.3
|
||||
cachetools==4.2.2
|
||||
requests==2.28.1
|
||||
urllib3==1.26.12
|
||||
jsonschema==4.17.0
|
||||
urllib3==1.26.13
|
||||
jsonschema==4.17.3
|
||||
TA-Lib==0.4.25
|
||||
technical==1.3.0
|
||||
tabulate==0.9.0
|
||||
pycoingecko==3.1.0
|
||||
jinja2==3.1.2
|
||||
tables==3.7.0
|
||||
blosc==1.10.6
|
||||
blosc==1.11.1
|
||||
joblib==1.2.0
|
||||
pyarrow==10.0.0; platform_machine != 'armv7l'
|
||||
pyarrow==10.0.1; platform_machine != 'armv7l'
|
||||
|
||||
# find first, C search in arrays
|
||||
py_find_1st==1.1.5
|
||||
@ -30,13 +30,13 @@ py_find_1st==1.1.5
|
||||
# Load ticker files 30% faster
|
||||
python-rapidjson==1.9
|
||||
# Properly format api responses
|
||||
orjson==3.8.2
|
||||
orjson==3.8.3
|
||||
|
||||
# Notify systemd
|
||||
sdnotify==0.3.2
|
||||
|
||||
# API Server
|
||||
fastapi==0.87.0
|
||||
fastapi==0.88.0
|
||||
pydantic==1.10.2
|
||||
uvicorn==0.20.0
|
||||
pyjwt==2.6.0
|
||||
@ -47,7 +47,7 @@ psutil==5.9.4
|
||||
colorama==0.4.6
|
||||
# Building config files interactively
|
||||
questionary==1.10.0
|
||||
prompt-toolkit==3.0.32
|
||||
prompt-toolkit==3.0.36
|
||||
# Extensions to datetime library
|
||||
python-dateutil==2.8.2
|
||||
|
||||
|
@ -1529,7 +1529,7 @@ def test_backtesting_show(mocker, testdatadir, capsys):
|
||||
args = [
|
||||
"backtesting-show",
|
||||
"--export-filename",
|
||||
f"{testdatadir / 'backtest_results/backtest-result_new.json'}",
|
||||
f"{testdatadir / 'backtest_results/backtest-result.json'}",
|
||||
"--show-pair-list"
|
||||
]
|
||||
pargs = get_args(args)
|
||||
|
@ -408,6 +408,11 @@ def create_mock_trades_usdt(fee, is_short: Optional[bool] = False, use_db: bool
|
||||
Trade.commit()
|
||||
|
||||
|
||||
@pytest.fixture(autouse=True)
|
||||
def patch_gc(mocker) -> None:
|
||||
mocker.patch("freqtrade.main.gc_set_threshold")
|
||||
|
||||
|
||||
@pytest.fixture(autouse=True)
|
||||
def patch_coingekko(mocker) -> None:
|
||||
"""
|
||||
|
@ -30,10 +30,10 @@ def test_get_latest_backtest_filename(testdatadir, mocker):
|
||||
|
||||
testdir_bt = testdatadir / "backtest_results"
|
||||
res = get_latest_backtest_filename(testdir_bt)
|
||||
assert res == 'backtest-result_new.json'
|
||||
assert res == 'backtest-result.json'
|
||||
|
||||
res = get_latest_backtest_filename(str(testdir_bt))
|
||||
assert res == 'backtest-result_new.json'
|
||||
assert res == 'backtest-result.json'
|
||||
|
||||
mocker.patch("freqtrade.data.btanalysis.json_load", return_value={})
|
||||
|
||||
@ -81,7 +81,7 @@ def test_load_backtest_data_old_format(testdatadir, mocker):
|
||||
|
||||
def test_load_backtest_data_new_format(testdatadir):
|
||||
|
||||
filename = testdatadir / "backtest_results/backtest-result_new.json"
|
||||
filename = testdatadir / "backtest_results/backtest-result.json"
|
||||
bt_data = load_backtest_data(filename)
|
||||
assert isinstance(bt_data, DataFrame)
|
||||
assert set(bt_data.columns) == set(BT_DATA_COLUMNS)
|
||||
@ -182,7 +182,7 @@ def test_extract_trades_of_period(testdatadir):
|
||||
|
||||
|
||||
def test_analyze_trade_parallelism(testdatadir):
|
||||
filename = testdatadir / "backtest_results/backtest-result_new.json"
|
||||
filename = testdatadir / "backtest_results/backtest-result.json"
|
||||
bt_data = load_backtest_data(filename)
|
||||
|
||||
res = analyze_trade_parallelism(bt_data, "5m")
|
||||
@ -256,7 +256,7 @@ def test_combine_dataframes_with_mean_no_data(testdatadir):
|
||||
|
||||
|
||||
def test_create_cum_profit(testdatadir):
|
||||
filename = testdatadir / "backtest_results/backtest-result_new.json"
|
||||
filename = testdatadir / "backtest_results/backtest-result.json"
|
||||
bt_data = load_backtest_data(filename)
|
||||
timerange = TimeRange.parse_timerange("20180110-20180112")
|
||||
|
||||
@ -268,11 +268,11 @@ def test_create_cum_profit(testdatadir):
|
||||
"cum_profits", timeframe="5m")
|
||||
assert "cum_profits" in cum_profits.columns
|
||||
assert cum_profits.iloc[0]['cum_profits'] == 0
|
||||
assert pytest.approx(cum_profits.iloc[-1]['cum_profits']) == 8.723007518796964e-06
|
||||
assert pytest.approx(cum_profits.iloc[-1]['cum_profits']) == 9.0225563e-05
|
||||
|
||||
|
||||
def test_create_cum_profit1(testdatadir):
|
||||
filename = testdatadir / "backtest_results/backtest-result_new.json"
|
||||
filename = testdatadir / "backtest_results/backtest-result.json"
|
||||
bt_data = load_backtest_data(filename)
|
||||
# Move close-time to "off" the candle, to make sure the logic still works
|
||||
bt_data['close_date'] = bt_data.loc[:, 'close_date'] + DateOffset(seconds=20)
|
||||
@ -286,7 +286,7 @@ def test_create_cum_profit1(testdatadir):
|
||||
"cum_profits", timeframe="5m")
|
||||
assert "cum_profits" in cum_profits.columns
|
||||
assert cum_profits.iloc[0]['cum_profits'] == 0
|
||||
assert pytest.approx(cum_profits.iloc[-1]['cum_profits']) == 8.723007518796964e-06
|
||||
assert pytest.approx(cum_profits.iloc[-1]['cum_profits']) == 9.0225563e-05
|
||||
|
||||
with pytest.raises(ValueError, match='Trade dataframe empty.'):
|
||||
create_cum_profit(df.set_index('date'), bt_data[bt_data["pair"] == 'NOTAPAIR'],
|
||||
@ -294,18 +294,18 @@ def test_create_cum_profit1(testdatadir):
|
||||
|
||||
|
||||
def test_calculate_max_drawdown(testdatadir):
|
||||
filename = testdatadir / "backtest_results/backtest-result_new.json"
|
||||
filename = testdatadir / "backtest_results/backtest-result.json"
|
||||
bt_data = load_backtest_data(filename)
|
||||
_, hdate, lowdate, hval, lval, drawdown = calculate_max_drawdown(
|
||||
bt_data, value_col="profit_abs")
|
||||
assert isinstance(drawdown, float)
|
||||
assert pytest.approx(drawdown) == 0.12071099
|
||||
assert pytest.approx(drawdown) == 0.29753914
|
||||
assert isinstance(hdate, Timestamp)
|
||||
assert isinstance(lowdate, Timestamp)
|
||||
assert isinstance(hval, float)
|
||||
assert isinstance(lval, float)
|
||||
assert hdate == Timestamp('2018-01-25 01:30:00', tz='UTC')
|
||||
assert lowdate == Timestamp('2018-01-25 03:50:00', tz='UTC')
|
||||
assert hdate == Timestamp('2018-01-16 19:30:00', tz='UTC')
|
||||
assert lowdate == Timestamp('2018-01-16 22:25:00', tz='UTC')
|
||||
|
||||
underwater = calculate_underwater(bt_data)
|
||||
assert isinstance(underwater, DataFrame)
|
||||
@ -318,14 +318,15 @@ def test_calculate_max_drawdown(testdatadir):
|
||||
|
||||
|
||||
def test_calculate_csum(testdatadir):
|
||||
filename = testdatadir / "backtest_results/backtest-result_new.json"
|
||||
filename = testdatadir / "backtest_results/backtest-result.json"
|
||||
bt_data = load_backtest_data(filename)
|
||||
csum_min, csum_max = calculate_csum(bt_data)
|
||||
|
||||
assert isinstance(csum_min, float)
|
||||
assert isinstance(csum_max, float)
|
||||
assert csum_min < 0.01
|
||||
assert csum_max > 0.02
|
||||
assert csum_min < csum_max
|
||||
assert csum_min < 0.0001
|
||||
assert csum_max > 0.0002
|
||||
csum_min1, csum_max1 = calculate_csum(bt_data, 5)
|
||||
|
||||
assert csum_min1 == csum_min + 5
|
||||
|
@ -2,13 +2,13 @@ from datetime import datetime, timezone
|
||||
from unittest.mock import MagicMock
|
||||
|
||||
import pytest
|
||||
from pandas import DataFrame
|
||||
from pandas import DataFrame, Timestamp
|
||||
|
||||
from freqtrade.data.dataprovider import DataProvider
|
||||
from freqtrade.enums import CandleType, RunMode
|
||||
from freqtrade.exceptions import ExchangeError, OperationalException
|
||||
from freqtrade.plugins.pairlistmanager import PairListManager
|
||||
from tests.conftest import get_patched_exchange
|
||||
from tests.conftest import generate_test_data, get_patched_exchange
|
||||
|
||||
|
||||
@pytest.mark.parametrize('candle_type', [
|
||||
@ -144,7 +144,7 @@ def test_available_pairs(mocker, default_conf, ohlcv_history):
|
||||
assert dp.available_pairs == [("XRP/BTC", timeframe), ("UNITTEST/BTC", timeframe), ]
|
||||
|
||||
|
||||
def test_producer_pairs(mocker, default_conf, ohlcv_history):
|
||||
def test_producer_pairs(default_conf):
|
||||
dataprovider = DataProvider(default_conf, None)
|
||||
|
||||
producer = "default"
|
||||
@ -161,9 +161,9 @@ def test_producer_pairs(mocker, default_conf, ohlcv_history):
|
||||
assert dataprovider.get_producer_pairs("bad") == []
|
||||
|
||||
|
||||
def test_get_producer_df(mocker, default_conf, ohlcv_history):
|
||||
def test_get_producer_df(default_conf):
|
||||
dataprovider = DataProvider(default_conf, None)
|
||||
|
||||
ohlcv_history = generate_test_data('5m', 150)
|
||||
pair = 'BTC/USDT'
|
||||
timeframe = default_conf['timeframe']
|
||||
candle_type = CandleType.SPOT
|
||||
@ -207,15 +207,21 @@ def test_emit_df(mocker, default_conf, ohlcv_history):
|
||||
assert send_mock.call_count == 0
|
||||
|
||||
# Rpc is added, we call emit, should call send_msg
|
||||
dataprovider._emit_df(pair, ohlcv_history)
|
||||
dataprovider._emit_df(pair, ohlcv_history, False)
|
||||
assert send_mock.call_count == 1
|
||||
|
||||
send_mock.reset_mock()
|
||||
dataprovider._emit_df(pair, ohlcv_history, True)
|
||||
assert send_mock.call_count == 2
|
||||
|
||||
send_mock.reset_mock()
|
||||
|
||||
# No rpc added, emit called, should not call send_msg
|
||||
dataprovider_no_rpc._emit_df(pair, ohlcv_history)
|
||||
assert send_mock.call_count == 1
|
||||
dataprovider_no_rpc._emit_df(pair, ohlcv_history, False)
|
||||
assert send_mock.call_count == 0
|
||||
|
||||
|
||||
def test_refresh(mocker, default_conf, ohlcv_history):
|
||||
def test_refresh(mocker, default_conf):
|
||||
refresh_mock = MagicMock()
|
||||
mocker.patch("freqtrade.exchange.Exchange.refresh_latest_ohlcv", refresh_mock)
|
||||
|
||||
@ -406,3 +412,80 @@ def test_dp_send_msg(default_conf):
|
||||
dp = DataProvider(default_conf, None)
|
||||
dp.send_msg(msg, always_send=True)
|
||||
assert msg not in dp._msg_queue
|
||||
|
||||
|
||||
def test_dp__add_external_df(default_conf_usdt):
|
||||
timeframe = '1h'
|
||||
default_conf_usdt["timeframe"] = timeframe
|
||||
dp = DataProvider(default_conf_usdt, None)
|
||||
df = generate_test_data(timeframe, 24, '2022-01-01 00:00:00+00:00')
|
||||
last_analyzed = datetime.now(timezone.utc)
|
||||
|
||||
res = dp._add_external_df('ETH/USDT', df, last_analyzed, timeframe, CandleType.SPOT)
|
||||
assert res[0] is False
|
||||
# Why 1000 ??
|
||||
assert res[1] == 1000
|
||||
|
||||
# Hard add dataframe
|
||||
dp._replace_external_df('ETH/USDT', df, last_analyzed, timeframe, CandleType.SPOT)
|
||||
# BTC is not stored yet
|
||||
res = dp._add_external_df('BTC/USDT', df, last_analyzed, timeframe, CandleType.SPOT)
|
||||
assert res[0] is False
|
||||
df_res, _ = dp.get_producer_df('ETH/USDT', timeframe, CandleType.SPOT)
|
||||
assert len(df_res) == 24
|
||||
|
||||
# Add the same dataframe again - dataframe size shall not change.
|
||||
res = dp._add_external_df('ETH/USDT', df, last_analyzed, timeframe, CandleType.SPOT)
|
||||
assert res[0] is True
|
||||
assert res[1] == 0
|
||||
df, _ = dp.get_producer_df('ETH/USDT', timeframe, CandleType.SPOT)
|
||||
assert len(df) == 24
|
||||
|
||||
# Add a new day.
|
||||
df2 = generate_test_data(timeframe, 24, '2022-01-02 00:00:00+00:00')
|
||||
|
||||
res = dp._add_external_df('ETH/USDT', df2, last_analyzed, timeframe, CandleType.SPOT)
|
||||
assert res[0] is True
|
||||
assert res[1] == 0
|
||||
df, _ = dp.get_producer_df('ETH/USDT', timeframe, CandleType.SPOT)
|
||||
assert len(df) == 48
|
||||
|
||||
# Add a dataframe with a 12 hour offset - so 12 candles are overlapping, and 12 valid.
|
||||
df3 = generate_test_data(timeframe, 24, '2022-01-02 12:00:00+00:00')
|
||||
|
||||
res = dp._add_external_df('ETH/USDT', df3, last_analyzed, timeframe, CandleType.SPOT)
|
||||
assert res[0] is True
|
||||
assert res[1] == 0
|
||||
df, _ = dp.get_producer_df('ETH/USDT', timeframe, CandleType.SPOT)
|
||||
# New length = 48 + 12 (since we have a 12 hour offset).
|
||||
assert len(df) == 60
|
||||
assert df.iloc[-1]['date'] == df3.iloc[-1]['date']
|
||||
assert df.iloc[-1]['date'] == Timestamp('2022-01-03 11:00:00+00:00')
|
||||
|
||||
# Generate 1 new candle
|
||||
df4 = generate_test_data(timeframe, 1, '2022-01-03 12:00:00+00:00')
|
||||
res = dp._add_external_df('ETH/USDT', df4, last_analyzed, timeframe, CandleType.SPOT)
|
||||
# assert res[0] is True
|
||||
# assert res[1] == 0
|
||||
df, _ = dp.get_producer_df('ETH/USDT', timeframe, CandleType.SPOT)
|
||||
# New length = 61 + 1
|
||||
assert len(df) == 61
|
||||
assert df.iloc[-2]['date'] == Timestamp('2022-01-03 11:00:00+00:00')
|
||||
assert df.iloc[-1]['date'] == Timestamp('2022-01-03 12:00:00+00:00')
|
||||
|
||||
# Gap in the data ...
|
||||
df4 = generate_test_data(timeframe, 1, '2022-01-05 00:00:00+00:00')
|
||||
res = dp._add_external_df('ETH/USDT', df4, last_analyzed, timeframe, CandleType.SPOT)
|
||||
assert res[0] is False
|
||||
# 36 hours - from 2022-01-03 12:00:00+00:00 to 2022-01-05 00:00:00+00:00
|
||||
assert res[1] == 36
|
||||
df, _ = dp.get_producer_df('ETH/USDT', timeframe, CandleType.SPOT)
|
||||
# New length = 61 + 1
|
||||
assert len(df) == 61
|
||||
|
||||
# Empty dataframe
|
||||
df4 = generate_test_data(timeframe, 0, '2022-01-05 00:00:00+00:00')
|
||||
res = dp._add_external_df('ETH/USDT', df4, last_analyzed, timeframe, CandleType.SPOT)
|
||||
assert res[0] is False
|
||||
# 36 hours - from 2022-01-03 12:00:00+00:00 to 2022-01-05 00:00:00+00:00
|
||||
assert res[1] == 0
|
||||
|
@ -189,3 +189,10 @@ def test_backtest_analysis_nomock(default_conf, mocker, caplog, testdatadir, tmp
|
||||
assert '0.5' in captured.out
|
||||
assert '1' in captured.out
|
||||
assert '2.5' in captured.out
|
||||
|
||||
# test date filtering
|
||||
args = get_args(base_args + ['--timerange', "20180129-20180130"])
|
||||
start_analysis_entries_exits(args)
|
||||
captured = capsys.readouterr()
|
||||
assert 'enter_tag_long_a' in captured.out
|
||||
assert 'enter_tag_long_b' not in captured.out
|
||||
|
@ -23,7 +23,7 @@ from tests.exchange.test_exchange import ccxt_exceptionhandlers
|
||||
def test_stoploss_order_binance(default_conf, mocker, limitratio, expected, side, trademode):
|
||||
api_mock = MagicMock()
|
||||
order_id = 'test_prod_buy_{}'.format(randint(0, 10 ** 6))
|
||||
order_type = 'stop_loss_limit' if trademode == TradingMode.SPOT else 'limit'
|
||||
order_type = 'stop_loss_limit' if trademode == TradingMode.SPOT else 'stop'
|
||||
|
||||
api_mock.create_order = MagicMock(return_value={
|
||||
'id': order_id,
|
||||
|
@ -28,15 +28,15 @@ EXCHANGES = {
|
||||
'leverage_tiers_public': False,
|
||||
'leverage_in_spot_market': False,
|
||||
},
|
||||
'binance': {
|
||||
'pair': 'BTC/USDT',
|
||||
'stake_currency': 'USDT',
|
||||
'hasQuoteVolume': True,
|
||||
'timeframe': '5m',
|
||||
'futures': True,
|
||||
'leverage_tiers_public': False,
|
||||
'leverage_in_spot_market': False,
|
||||
},
|
||||
# 'binance': {
|
||||
# 'pair': 'BTC/USDT',
|
||||
# 'stake_currency': 'USDT',
|
||||
# 'hasQuoteVolume': True,
|
||||
# 'timeframe': '5m',
|
||||
# 'futures': True,
|
||||
# 'leverage_tiers_public': False,
|
||||
# 'leverage_in_spot_market': False,
|
||||
# },
|
||||
'kraken': {
|
||||
'pair': 'BTC/USDT',
|
||||
'stake_currency': 'USDT',
|
||||
@ -224,6 +224,11 @@ class TestCCXTExchange():
|
||||
for val in [1, 2, 5, 25, 100]:
|
||||
l2 = exchange.fetch_l2_order_book(pair, val)
|
||||
if not l2_limit_range or val in l2_limit_range:
|
||||
if val > 50:
|
||||
# Orderbooks are not always this deep.
|
||||
assert val - 5 < len(l2['asks']) <= val
|
||||
assert val - 5 < len(l2['bids']) <= val
|
||||
else:
|
||||
assert len(l2['asks']) == val
|
||||
assert len(l2['bids']) == val
|
||||
else:
|
||||
|
@ -4014,9 +4014,6 @@ def test_validate_trading_mode_and_margin_mode(
|
||||
("binance", "spot", {}),
|
||||
("binance", "margin", {"options": {"defaultType": "margin"}}),
|
||||
("binance", "futures", {"options": {"defaultType": "future"}}),
|
||||
("bibox", "spot", {"has": {"fetchCurrencies": False}}),
|
||||
("bibox", "margin", {"has": {"fetchCurrencies": False}, "options": {"defaultType": "margin"}}),
|
||||
("bibox", "futures", {"has": {"fetchCurrencies": False}, "options": {"defaultType": "swap"}}),
|
||||
("bybit", "spot", {"options": {"defaultType": "spot"}}),
|
||||
("bybit", "futures", {"options": {"defaultType": "linear"}}),
|
||||
("gateio", "futures", {"options": {"defaultType": "swap"}}),
|
||||
|
@ -65,6 +65,8 @@ def test_freqai_backtest_live_models_model_not_found(freqai_conf, mocker, testda
|
||||
mocker.patch('freqtrade.optimize.backtesting.history.load_data')
|
||||
mocker.patch('freqtrade.optimize.backtesting.history.get_timerange', return_value=(now, now))
|
||||
freqai_conf["timerange"] = ""
|
||||
freqai_conf.get("freqai", {}).update({"backtest_using_historic_predictions": False})
|
||||
|
||||
patched_configuration_load_config_file(mocker, freqai_conf)
|
||||
|
||||
args = [
|
||||
@ -79,7 +81,7 @@ def test_freqai_backtest_live_models_model_not_found(freqai_conf, mocker, testda
|
||||
bt_config = setup_optimize_configuration(args, RunMode.BACKTEST)
|
||||
|
||||
with pytest.raises(OperationalException,
|
||||
match=r".* Saved models are required to run backtest .*"):
|
||||
match=r".* Historic predictions data is required to run backtest .*"):
|
||||
Backtesting(bt_config)
|
||||
|
||||
Backtesting.cleanup()
|
||||
|
@ -2,8 +2,11 @@
|
||||
import shutil
|
||||
from pathlib import Path
|
||||
|
||||
import pytest
|
||||
|
||||
from freqtrade.configuration import TimeRange
|
||||
from freqtrade.data.dataprovider import DataProvider
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||
from tests.conftest import get_patched_exchange
|
||||
from tests.freqai.conftest import get_patched_freqai_strategy
|
||||
@ -93,3 +96,37 @@ def test_use_strategy_to_populate_indicators(mocker, freqai_conf):
|
||||
|
||||
assert len(df.columns) == 33
|
||||
shutil.rmtree(Path(freqai.dk.full_path))
|
||||
|
||||
|
||||
def test_get_timerange_from_live_historic_predictions(mocker, freqai_conf):
|
||||
strategy = get_patched_freqai_strategy(mocker, freqai_conf)
|
||||
exchange = get_patched_exchange(mocker, freqai_conf)
|
||||
strategy.dp = DataProvider(freqai_conf, exchange)
|
||||
freqai = strategy.freqai
|
||||
freqai.live = True
|
||||
freqai.dk = FreqaiDataKitchen(freqai_conf)
|
||||
timerange = TimeRange.parse_timerange("20180126-20180130")
|
||||
freqai.dd.load_all_pair_histories(timerange, freqai.dk)
|
||||
sub_timerange = TimeRange.parse_timerange("20180128-20180130")
|
||||
_, base_df = freqai.dd.get_base_and_corr_dataframes(sub_timerange, "ADA/BTC", freqai.dk)
|
||||
base_df["5m"]["date_pred"] = base_df["5m"]["date"]
|
||||
freqai.dd.historic_predictions = {}
|
||||
freqai.dd.historic_predictions["ADA/USDT"] = base_df["5m"]
|
||||
freqai.dd.save_historic_predictions_to_disk()
|
||||
freqai.dd.save_global_metadata_to_disk({"start_dry_live_date": 1516406400})
|
||||
|
||||
timerange = freqai.dd.get_timerange_from_live_historic_predictions()
|
||||
assert timerange.startts == 1516406400
|
||||
assert timerange.stopts == 1517356500
|
||||
|
||||
|
||||
def test_get_timerange_from_backtesting_live_df_pred_not_found(mocker, freqai_conf):
|
||||
strategy = get_patched_freqai_strategy(mocker, freqai_conf)
|
||||
exchange = get_patched_exchange(mocker, freqai_conf)
|
||||
strategy.dp = DataProvider(freqai_conf, exchange)
|
||||
freqai = strategy.freqai
|
||||
with pytest.raises(
|
||||
OperationalException,
|
||||
match=r'Historic predictions not found.*'
|
||||
):
|
||||
freqai.dd.get_timerange_from_live_historic_predictions()
|
||||
|
@ -9,7 +9,6 @@ from freqtrade.configuration import TimeRange
|
||||
from freqtrade.data.dataprovider import DataProvider
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||
from freqtrade.freqai.utils import get_timerange_backtest_live_models
|
||||
from tests.conftest import get_patched_exchange, log_has_re
|
||||
from tests.freqai.conftest import (get_patched_data_kitchen, get_patched_freqai_strategy,
|
||||
make_data_dictionary, make_unfiltered_dataframe)
|
||||
@ -166,71 +165,6 @@ def test_make_train_test_datasets(mocker, freqai_conf):
|
||||
assert len(data_dictionary['train_features'].index) == 1916
|
||||
|
||||
|
||||
def test_get_pairs_timestamp_validation(mocker, freqai_conf):
|
||||
exchange = get_patched_exchange(mocker, freqai_conf)
|
||||
strategy = get_patched_freqai_strategy(mocker, freqai_conf)
|
||||
strategy.dp = DataProvider(freqai_conf, exchange)
|
||||
strategy.freqai_info = freqai_conf.get("freqai", {})
|
||||
freqai = strategy.freqai
|
||||
freqai.live = True
|
||||
freqai.dk = FreqaiDataKitchen(freqai_conf)
|
||||
freqai_conf['freqai'].update({"identifier": "invalid_id"})
|
||||
model_path = freqai.dk.get_full_models_path(freqai_conf)
|
||||
with pytest.raises(
|
||||
OperationalException,
|
||||
match=r'.*required to run backtest with the freqai-backtest-live-models.*'
|
||||
):
|
||||
freqai.dk.get_assets_timestamps_training_from_ready_models(model_path)
|
||||
|
||||
|
||||
@pytest.mark.parametrize('model', [
|
||||
'LightGBMRegressor'
|
||||
])
|
||||
def test_get_timerange_from_ready_models(mocker, freqai_conf, model):
|
||||
freqai_conf.update({"freqaimodel": model})
|
||||
freqai_conf.update({"timerange": "20180110-20180130"})
|
||||
freqai_conf.update({"strategy": "freqai_test_strat"})
|
||||
|
||||
strategy = get_patched_freqai_strategy(mocker, freqai_conf)
|
||||
exchange = get_patched_exchange(mocker, freqai_conf)
|
||||
strategy.dp = DataProvider(freqai_conf, exchange)
|
||||
strategy.freqai_info = freqai_conf.get("freqai", {})
|
||||
freqai = strategy.freqai
|
||||
freqai.live = True
|
||||
freqai.dk = FreqaiDataKitchen(freqai_conf)
|
||||
timerange = TimeRange.parse_timerange("20180101-20180130")
|
||||
freqai.dd.load_all_pair_histories(timerange, freqai.dk)
|
||||
|
||||
freqai.dd.pair_dict = MagicMock()
|
||||
|
||||
data_load_timerange = TimeRange.parse_timerange("20180101-20180130")
|
||||
|
||||
# 1516233600 (2018-01-18 00:00) - Start Training 1
|
||||
# 1516406400 (2018-01-20 00:00) - End Training 1 (Backtest slice 1)
|
||||
# 1516579200 (2018-01-22 00:00) - End Training 2 (Backtest slice 2)
|
||||
# 1516838400 (2018-01-25 00:00) - End Timerange
|
||||
|
||||
new_timerange = TimeRange("date", "date", 1516233600, 1516406400)
|
||||
freqai.extract_data_and_train_model(
|
||||
new_timerange, "ADA/BTC", strategy, freqai.dk, data_load_timerange)
|
||||
|
||||
new_timerange = TimeRange("date", "date", 1516406400, 1516579200)
|
||||
freqai.extract_data_and_train_model(
|
||||
new_timerange, "ADA/BTC", strategy, freqai.dk, data_load_timerange)
|
||||
|
||||
model_path = freqai.dk.get_full_models_path(freqai_conf)
|
||||
(backtesting_timerange,
|
||||
pairs_end_dates) = freqai.dk.get_timerange_and_assets_end_dates_from_ready_models(
|
||||
models_path=model_path)
|
||||
|
||||
assert len(pairs_end_dates["ADA"]) == 2
|
||||
assert backtesting_timerange.startts == 1516406400
|
||||
assert backtesting_timerange.stopts == 1516838400
|
||||
|
||||
backtesting_string_timerange = get_timerange_backtest_live_models(freqai_conf)
|
||||
assert backtesting_string_timerange == '20180120-20180125'
|
||||
|
||||
|
||||
@pytest.mark.parametrize('model', [
|
||||
'LightGBMRegressor'
|
||||
])
|
||||
|
@ -27,20 +27,23 @@ def is_mac() -> bool:
|
||||
return "Darwin" in machine
|
||||
|
||||
|
||||
@pytest.mark.parametrize('model, pca, dbscan, float32', [
|
||||
('LightGBMRegressor', True, False, True),
|
||||
('XGBoostRegressor', False, True, False),
|
||||
('XGBoostRFRegressor', False, False, False),
|
||||
('CatboostRegressor', False, False, False),
|
||||
('ReinforcementLearner', False, True, False),
|
||||
('ReinforcementLearner_multiproc', False, False, False),
|
||||
('ReinforcementLearner_test_4ac', False, False, False)
|
||||
@pytest.mark.parametrize('model, pca, dbscan, float32, can_short', [
|
||||
('LightGBMRegressor', True, False, True, True),
|
||||
('XGBoostRegressor', False, True, False, True),
|
||||
('XGBoostRFRegressor', False, False, False, True),
|
||||
('CatboostRegressor', False, False, False, True),
|
||||
('ReinforcementLearner', False, True, False, True),
|
||||
('ReinforcementLearner_multiproc', False, False, False, True),
|
||||
('ReinforcementLearner_test_3ac', False, False, False, False),
|
||||
('ReinforcementLearner_test_3ac', False, False, False, True),
|
||||
('ReinforcementLearner_test_4ac', False, False, False, True)
|
||||
])
|
||||
def test_extract_data_and_train_model_Standard(mocker, freqai_conf, model, pca, dbscan, float32):
|
||||
def test_extract_data_and_train_model_Standard(mocker, freqai_conf, model, pca,
|
||||
dbscan, float32, can_short):
|
||||
if is_arm() and model == 'CatboostRegressor':
|
||||
pytest.skip("CatBoost is not supported on ARM")
|
||||
|
||||
if is_mac() and 'Reinforcement' in model:
|
||||
if is_mac() and not is_arm() and 'Reinforcement' in model:
|
||||
pytest.skip("Reinforcement learning module not available on intel based Mac OS")
|
||||
|
||||
model_save_ext = 'joblib'
|
||||
@ -58,9 +61,6 @@ def test_extract_data_and_train_model_Standard(mocker, freqai_conf, model, pca,
|
||||
freqai_conf['freqai']['feature_parameters'].update({"use_SVM_to_remove_outliers": True})
|
||||
freqai_conf['freqai']['data_split_parameters'].update({'shuffle': True})
|
||||
|
||||
if 'test_4ac' in model:
|
||||
freqai_conf["freqaimodel_path"] = str(Path(__file__).parents[1] / "freqai" / "test_models")
|
||||
|
||||
if 'ReinforcementLearner' in model:
|
||||
model_save_ext = 'zip'
|
||||
freqai_conf = make_rl_config(freqai_conf)
|
||||
@ -68,7 +68,7 @@ def test_extract_data_and_train_model_Standard(mocker, freqai_conf, model, pca,
|
||||
freqai_conf['freqai']['feature_parameters'].update({"use_SVM_to_remove_outliers": True})
|
||||
freqai_conf['freqai']['data_split_parameters'].update({'shuffle': True})
|
||||
|
||||
if 'test_4ac' in model:
|
||||
if 'test_3ac' in model or 'test_4ac' in model:
|
||||
freqai_conf["freqaimodel_path"] = str(Path(__file__).parents[1] / "freqai" / "test_models")
|
||||
|
||||
strategy = get_patched_freqai_strategy(mocker, freqai_conf)
|
||||
@ -77,6 +77,7 @@ def test_extract_data_and_train_model_Standard(mocker, freqai_conf, model, pca,
|
||||
strategy.freqai_info = freqai_conf.get("freqai", {})
|
||||
freqai = strategy.freqai
|
||||
freqai.live = True
|
||||
freqai.can_short = can_short
|
||||
freqai.dk = FreqaiDataKitchen(freqai_conf)
|
||||
freqai.dk.set_paths('ADA/BTC', 10000)
|
||||
timerange = TimeRange.parse_timerange("20180110-20180130")
|
||||
@ -237,7 +238,6 @@ def test_start_backtesting(mocker, freqai_conf, model, num_files, strat, caplog)
|
||||
df = freqai.cache_corr_pairlist_dfs(df, freqai.dk)
|
||||
for i in range(5):
|
||||
df[f'%-constant_{i}'] = i
|
||||
# df.loc[:, f'%-constant_{i}'] = i
|
||||
|
||||
metadata = {"pair": "LTC/BTC"}
|
||||
freqai.start_backtesting(df, metadata, freqai.dk)
|
||||
@ -301,7 +301,9 @@ def test_start_backtesting_from_existing_folder(mocker, freqai_conf, caplog):
|
||||
|
||||
df = freqai.dk.use_strategy_to_populate_indicators(strategy, corr_df, base_df, "LTC/BTC")
|
||||
|
||||
metadata = {"pair": "ADA/BTC"}
|
||||
pair = "ADA/BTC"
|
||||
metadata = {"pair": pair}
|
||||
freqai.dk.pair = pair
|
||||
freqai.start_backtesting(df, metadata, freqai.dk)
|
||||
model_folders = [x for x in freqai.dd.full_path.iterdir() if x.is_dir()]
|
||||
|
||||
@ -324,6 +326,9 @@ def test_start_backtesting_from_existing_folder(mocker, freqai_conf, caplog):
|
||||
|
||||
df = freqai.dk.use_strategy_to_populate_indicators(strategy, corr_df, base_df, "LTC/BTC")
|
||||
|
||||
pair = "ADA/BTC"
|
||||
metadata = {"pair": pair}
|
||||
freqai.dk.pair = pair
|
||||
freqai.start_backtesting(df, metadata, freqai.dk)
|
||||
|
||||
assert log_has_re(
|
||||
@ -331,13 +336,43 @@ def test_start_backtesting_from_existing_folder(mocker, freqai_conf, caplog):
|
||||
caplog,
|
||||
)
|
||||
|
||||
pair = "ETH/BTC"
|
||||
metadata = {"pair": pair}
|
||||
freqai.dk.pair = pair
|
||||
freqai.start_backtesting(df, metadata, freqai.dk)
|
||||
|
||||
path = (freqai.dd.full_path / freqai.dk.backtest_predictions_folder)
|
||||
prediction_files = [x for x in path.iterdir() if x.is_file()]
|
||||
assert len(prediction_files) == 1
|
||||
assert len(prediction_files) == 2
|
||||
|
||||
shutil.rmtree(Path(freqai.dk.full_path))
|
||||
|
||||
|
||||
def test_backtesting_fit_live_predictions(mocker, freqai_conf, caplog):
|
||||
freqai_conf.get("freqai", {}).update({"fit_live_predictions_candles": 10})
|
||||
strategy = get_patched_freqai_strategy(mocker, freqai_conf)
|
||||
exchange = get_patched_exchange(mocker, freqai_conf)
|
||||
strategy.dp = DataProvider(freqai_conf, exchange)
|
||||
strategy.freqai_info = freqai_conf.get("freqai", {})
|
||||
freqai = strategy.freqai
|
||||
freqai.live = False
|
||||
freqai.dk = FreqaiDataKitchen(freqai_conf)
|
||||
timerange = TimeRange.parse_timerange("20180128-20180130")
|
||||
freqai.dd.load_all_pair_histories(timerange, freqai.dk)
|
||||
sub_timerange = TimeRange.parse_timerange("20180129-20180130")
|
||||
corr_df, base_df = freqai.dd.get_base_and_corr_dataframes(sub_timerange, "LTC/BTC", freqai.dk)
|
||||
df = freqai.dk.use_strategy_to_populate_indicators(strategy, corr_df, base_df, "LTC/BTC")
|
||||
freqai.dk.pair = "ADA/BTC"
|
||||
freqai.dk.full_df = df.fillna(0)
|
||||
freqai.dk.full_df
|
||||
assert "&-s_close_mean" not in freqai.dk.full_df.columns
|
||||
assert "&-s_close_std" not in freqai.dk.full_df.columns
|
||||
freqai.backtesting_fit_live_predictions(freqai.dk)
|
||||
assert "&-s_close_mean" in freqai.dk.full_df.columns
|
||||
assert "&-s_close_std" in freqai.dk.full_df.columns
|
||||
shutil.rmtree(Path(freqai.dk.full_path))
|
||||
|
||||
|
||||
def test_follow_mode(mocker, freqai_conf):
|
||||
freqai_conf.update({"timerange": "20180110-20180130"})
|
||||
|
||||
|
65
tests/freqai/test_models/ReinforcementLearner_test_3ac.py
Normal file
65
tests/freqai/test_models/ReinforcementLearner_test_3ac.py
Normal file
@ -0,0 +1,65 @@
|
||||
import logging
|
||||
|
||||
import numpy as np
|
||||
|
||||
from freqtrade.freqai.prediction_models.ReinforcementLearner import ReinforcementLearner
|
||||
from freqtrade.freqai.RL.Base3ActionRLEnv import Actions, Base3ActionRLEnv, Positions
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class ReinforcementLearner_test_3ac(ReinforcementLearner):
|
||||
"""
|
||||
User created Reinforcement Learning Model prediction model.
|
||||
"""
|
||||
|
||||
class MyRLEnv(Base3ActionRLEnv):
|
||||
"""
|
||||
User can override any function in BaseRLEnv and gym.Env. Here the user
|
||||
sets a custom reward based on profit and trade duration.
|
||||
"""
|
||||
|
||||
def calculate_reward(self, action: int) -> float:
|
||||
|
||||
# first, penalize if the action is not valid
|
||||
if not self._is_valid(action):
|
||||
return -2
|
||||
|
||||
pnl = self.get_unrealized_profit()
|
||||
rew = np.sign(pnl) * (pnl + 1)
|
||||
factor = 100.
|
||||
|
||||
# reward agent for entering trades
|
||||
if (action in (Actions.Buy.value, Actions.Sell.value)
|
||||
and self._position == Positions.Neutral):
|
||||
return 25
|
||||
# discourage agent from not entering trades
|
||||
if action == Actions.Neutral.value and self._position == Positions.Neutral:
|
||||
return -1
|
||||
|
||||
max_trade_duration = self.rl_config.get('max_trade_duration_candles', 300)
|
||||
trade_duration = self._current_tick - self._last_trade_tick # type: ignore
|
||||
|
||||
if trade_duration <= max_trade_duration:
|
||||
factor *= 1.5
|
||||
elif trade_duration > max_trade_duration:
|
||||
factor *= 0.5
|
||||
|
||||
# discourage sitting in position
|
||||
if self._position in (Positions.Short, Positions.Long) and (
|
||||
action == Actions.Neutral.value
|
||||
or (action == Actions.Sell.value and self._position == Positions.Short)
|
||||
or (action == Actions.Buy.value and self._position == Positions.Long)
|
||||
):
|
||||
return -1 * trade_duration / max_trade_duration
|
||||
|
||||
# close position
|
||||
if (action == Actions.Buy.value and self._position == Positions.Short) or (
|
||||
action == Actions.Sell.value and self._position == Positions.Long
|
||||
):
|
||||
if pnl > self.profit_aim * self.rr:
|
||||
factor *= self.rl_config["model_reward_parameters"].get("win_reward_factor", 2)
|
||||
return float(rew * factor)
|
||||
|
||||
return 0.
|
@ -710,6 +710,7 @@ def test_backtest_one(default_conf, fee, mocker, testdatadir) -> None:
|
||||
expected = pd.DataFrame(
|
||||
{'pair': [pair, pair],
|
||||
'stake_amount': [0.001, 0.001],
|
||||
'max_stake_amount': [0.001, 0.001],
|
||||
'amount': [0.00957442, 0.0097064],
|
||||
'open_date': pd.to_datetime([Arrow(2018, 1, 29, 18, 40, 0).datetime,
|
||||
Arrow(2018, 1, 30, 3, 30, 0).datetime], utc=True
|
||||
|
@ -50,6 +50,7 @@ def test_backtest_position_adjustment(default_conf, fee, mocker, testdatadir) ->
|
||||
expected = pd.DataFrame(
|
||||
{'pair': [pair, pair],
|
||||
'stake_amount': [500.0, 100.0],
|
||||
'max_stake_amount': [500.0, 100],
|
||||
'amount': [4806.87657523, 970.63960782],
|
||||
'open_date': pd.to_datetime([Arrow(2018, 1, 29, 18, 40, 0).datetime,
|
||||
Arrow(2018, 1, 30, 3, 30, 0).datetime], utc=True
|
||||
|
@ -308,7 +308,7 @@ def test_generate_pair_metrics():
|
||||
|
||||
def test_generate_daily_stats(testdatadir):
|
||||
|
||||
filename = testdatadir / "backtest_results/backtest-result_new.json"
|
||||
filename = testdatadir / "backtest_results/backtest-result.json"
|
||||
bt_data = load_backtest_data(filename)
|
||||
res = generate_daily_stats(bt_data)
|
||||
assert isinstance(res, dict)
|
||||
@ -328,7 +328,7 @@ def test_generate_daily_stats(testdatadir):
|
||||
|
||||
|
||||
def test_generate_trading_stats(testdatadir):
|
||||
filename = testdatadir / "backtest_results/backtest-result_new.json"
|
||||
filename = testdatadir / "backtest_results/backtest-result.json"
|
||||
bt_data = load_backtest_data(filename)
|
||||
res = generate_trading_stats(bt_data)
|
||||
assert isinstance(res, dict)
|
||||
@ -444,7 +444,7 @@ def test_generate_edge_table():
|
||||
|
||||
|
||||
def test_generate_periodic_breakdown_stats(testdatadir):
|
||||
filename = testdatadir / "backtest_results/backtest-result_new.json"
|
||||
filename = testdatadir / "backtest_results/backtest-result.json"
|
||||
bt_data = load_backtest_data(filename).to_dict(orient='records')
|
||||
|
||||
res = generate_periodic_breakdown_stats(bt_data, 'day')
|
||||
@ -472,7 +472,7 @@ def test__get_resample_from_period():
|
||||
|
||||
|
||||
def test_show_sorted_pairlist(testdatadir, default_conf, capsys):
|
||||
filename = testdatadir / "backtest_results/backtest-result_new.json"
|
||||
filename = testdatadir / "backtest_results/backtest-result.json"
|
||||
bt_data = load_backtest_stats(filename)
|
||||
default_conf['backtest_show_pair_list'] = True
|
||||
|
||||
|
412
tests/persistence/test_migrations.py
Normal file
412
tests/persistence/test_migrations.py
Normal file
@ -0,0 +1,412 @@
|
||||
# pragma pylint: disable=missing-docstring, C0103
|
||||
import logging
|
||||
from pathlib import Path
|
||||
from unittest.mock import MagicMock
|
||||
|
||||
import pytest
|
||||
from sqlalchemy import create_engine, text
|
||||
|
||||
from freqtrade.constants import DEFAULT_DB_PROD_URL
|
||||
from freqtrade.enums import TradingMode
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.persistence import Trade, init_db
|
||||
from freqtrade.persistence.migrations import get_last_sequence_ids, set_sequence_ids
|
||||
from freqtrade.persistence.models import PairLock
|
||||
from tests.conftest import log_has
|
||||
|
||||
|
||||
spot, margin, futures = TradingMode.SPOT, TradingMode.MARGIN, TradingMode.FUTURES
|
||||
|
||||
|
||||
def test_init_create_session(default_conf):
|
||||
# Check if init create a session
|
||||
init_db(default_conf['db_url'])
|
||||
assert hasattr(Trade, '_session')
|
||||
assert 'scoped_session' in type(Trade._session).__name__
|
||||
|
||||
|
||||
def test_init_custom_db_url(default_conf, tmpdir):
|
||||
# Update path to a value other than default, but still in-memory
|
||||
filename = f"{tmpdir}/freqtrade2_test.sqlite"
|
||||
assert not Path(filename).is_file()
|
||||
|
||||
default_conf.update({'db_url': f'sqlite:///{filename}'})
|
||||
|
||||
init_db(default_conf['db_url'])
|
||||
assert Path(filename).is_file()
|
||||
r = Trade._session.execute(text("PRAGMA journal_mode"))
|
||||
assert r.first() == ('wal',)
|
||||
|
||||
|
||||
def test_init_invalid_db_url():
|
||||
# Update path to a value other than default, but still in-memory
|
||||
with pytest.raises(OperationalException, match=r'.*no valid database URL*'):
|
||||
init_db('unknown:///some.url')
|
||||
|
||||
with pytest.raises(OperationalException, match=r'Bad db-url.*For in-memory database, pl.*'):
|
||||
init_db('sqlite:///')
|
||||
|
||||
|
||||
def test_init_prod_db(default_conf, mocker):
|
||||
default_conf.update({'dry_run': False})
|
||||
default_conf.update({'db_url': DEFAULT_DB_PROD_URL})
|
||||
|
||||
create_engine_mock = mocker.patch('freqtrade.persistence.models.create_engine', MagicMock())
|
||||
|
||||
init_db(default_conf['db_url'])
|
||||
assert create_engine_mock.call_count == 1
|
||||
assert create_engine_mock.mock_calls[0][1][0] == 'sqlite:///tradesv3.sqlite'
|
||||
|
||||
|
||||
def test_init_dryrun_db(default_conf, tmpdir):
|
||||
filename = f"{tmpdir}/freqtrade2_prod.sqlite"
|
||||
assert not Path(filename).is_file()
|
||||
default_conf.update({
|
||||
'dry_run': True,
|
||||
'db_url': f'sqlite:///{filename}'
|
||||
})
|
||||
|
||||
init_db(default_conf['db_url'])
|
||||
assert Path(filename).is_file()
|
||||
|
||||
|
||||
def test_migrate_new(mocker, default_conf, fee, caplog):
|
||||
"""
|
||||
Test Database migration (starting with new pairformat)
|
||||
"""
|
||||
caplog.set_level(logging.DEBUG)
|
||||
amount = 103.223
|
||||
# Always create all columns apart from the last!
|
||||
create_table_old = """CREATE TABLE IF NOT EXISTS "trades" (
|
||||
id INTEGER NOT NULL,
|
||||
exchange VARCHAR NOT NULL,
|
||||
pair VARCHAR NOT NULL,
|
||||
is_open BOOLEAN NOT NULL,
|
||||
fee FLOAT NOT NULL,
|
||||
open_rate FLOAT,
|
||||
close_rate FLOAT,
|
||||
close_profit FLOAT,
|
||||
stake_amount FLOAT NOT NULL,
|
||||
amount FLOAT,
|
||||
open_date DATETIME NOT NULL,
|
||||
close_date DATETIME,
|
||||
open_order_id VARCHAR,
|
||||
stop_loss FLOAT,
|
||||
initial_stop_loss FLOAT,
|
||||
max_rate FLOAT,
|
||||
sell_reason VARCHAR,
|
||||
strategy VARCHAR,
|
||||
ticker_interval INTEGER,
|
||||
stoploss_order_id VARCHAR,
|
||||
PRIMARY KEY (id),
|
||||
CHECK (is_open IN (0, 1))
|
||||
);"""
|
||||
create_table_order = """CREATE TABLE orders (
|
||||
id INTEGER NOT NULL,
|
||||
ft_trade_id INTEGER,
|
||||
ft_order_side VARCHAR(25) NOT NULL,
|
||||
ft_pair VARCHAR(25) NOT NULL,
|
||||
ft_is_open BOOLEAN NOT NULL,
|
||||
order_id VARCHAR(255) NOT NULL,
|
||||
status VARCHAR(255),
|
||||
symbol VARCHAR(25),
|
||||
order_type VARCHAR(50),
|
||||
side VARCHAR(25),
|
||||
price FLOAT,
|
||||
amount FLOAT,
|
||||
filled FLOAT,
|
||||
remaining FLOAT,
|
||||
cost FLOAT,
|
||||
order_date DATETIME,
|
||||
order_filled_date DATETIME,
|
||||
order_update_date DATETIME,
|
||||
PRIMARY KEY (id)
|
||||
);"""
|
||||
insert_table_old = """INSERT INTO trades (exchange, pair, is_open, fee,
|
||||
open_rate, stake_amount, amount, open_date,
|
||||
stop_loss, initial_stop_loss, max_rate, ticker_interval,
|
||||
open_order_id, stoploss_order_id)
|
||||
VALUES ('binance', 'ETC/BTC', 1, {fee},
|
||||
0.00258580, {stake}, {amount},
|
||||
'2019-11-28 12:44:24.000000',
|
||||
0.0, 0.0, 0.0, '5m',
|
||||
'buy_order', 'dry_stop_order_id222')
|
||||
""".format(fee=fee.return_value,
|
||||
stake=default_conf.get("stake_amount"),
|
||||
amount=amount
|
||||
)
|
||||
insert_orders = f"""
|
||||
insert into orders (
|
||||
ft_trade_id,
|
||||
ft_order_side,
|
||||
ft_pair,
|
||||
ft_is_open,
|
||||
order_id,
|
||||
status,
|
||||
symbol,
|
||||
order_type,
|
||||
side,
|
||||
price,
|
||||
amount,
|
||||
filled,
|
||||
remaining,
|
||||
cost)
|
||||
values (
|
||||
1,
|
||||
'buy',
|
||||
'ETC/BTC',
|
||||
0,
|
||||
'dry_buy_order',
|
||||
'closed',
|
||||
'ETC/BTC',
|
||||
'limit',
|
||||
'buy',
|
||||
0.00258580,
|
||||
{amount},
|
||||
{amount},
|
||||
0,
|
||||
{amount * 0.00258580}
|
||||
),
|
||||
(
|
||||
1,
|
||||
'buy',
|
||||
'ETC/BTC',
|
||||
1,
|
||||
'dry_buy_order22',
|
||||
'canceled',
|
||||
'ETC/BTC',
|
||||
'limit',
|
||||
'buy',
|
||||
0.00258580,
|
||||
{amount},
|
||||
{amount},
|
||||
0,
|
||||
{amount * 0.00258580}
|
||||
),
|
||||
(
|
||||
1,
|
||||
'stoploss',
|
||||
'ETC/BTC',
|
||||
1,
|
||||
'dry_stop_order_id11X',
|
||||
'canceled',
|
||||
'ETC/BTC',
|
||||
'limit',
|
||||
'sell',
|
||||
0.00258580,
|
||||
{amount},
|
||||
{amount},
|
||||
0,
|
||||
{amount * 0.00258580}
|
||||
),
|
||||
(
|
||||
1,
|
||||
'stoploss',
|
||||
'ETC/BTC',
|
||||
1,
|
||||
'dry_stop_order_id222',
|
||||
'open',
|
||||
'ETC/BTC',
|
||||
'limit',
|
||||
'sell',
|
||||
0.00258580,
|
||||
{amount},
|
||||
{amount},
|
||||
0,
|
||||
{amount * 0.00258580}
|
||||
)
|
||||
"""
|
||||
engine = create_engine('sqlite://')
|
||||
mocker.patch('freqtrade.persistence.models.create_engine', lambda *args, **kwargs: engine)
|
||||
|
||||
# Create table using the old format
|
||||
with engine.begin() as connection:
|
||||
connection.execute(text(create_table_old))
|
||||
connection.execute(text(create_table_order))
|
||||
connection.execute(text("create index ix_trades_is_open on trades(is_open)"))
|
||||
connection.execute(text("create index ix_trades_pair on trades(pair)"))
|
||||
connection.execute(text(insert_table_old))
|
||||
connection.execute(text(insert_orders))
|
||||
|
||||
# fake previous backup
|
||||
connection.execute(text("create table trades_bak as select * from trades"))
|
||||
|
||||
connection.execute(text("create table trades_bak1 as select * from trades"))
|
||||
# Run init to test migration
|
||||
init_db(default_conf['db_url'])
|
||||
|
||||
assert len(Trade.query.filter(Trade.id == 1).all()) == 1
|
||||
trade = Trade.query.filter(Trade.id == 1).first()
|
||||
assert trade.fee_open == fee.return_value
|
||||
assert trade.fee_close == fee.return_value
|
||||
assert trade.open_rate_requested is None
|
||||
assert trade.close_rate_requested is None
|
||||
assert trade.is_open == 1
|
||||
assert trade.amount == amount
|
||||
assert trade.amount_requested == amount
|
||||
assert trade.stake_amount == default_conf.get("stake_amount")
|
||||
assert trade.pair == "ETC/BTC"
|
||||
assert trade.exchange == "binance"
|
||||
assert trade.max_rate == 0.0
|
||||
assert trade.min_rate is None
|
||||
assert trade.stop_loss == 0.0
|
||||
assert trade.initial_stop_loss == 0.0
|
||||
assert trade.exit_reason is None
|
||||
assert trade.strategy is None
|
||||
assert trade.timeframe == '5m'
|
||||
assert trade.stoploss_order_id == 'dry_stop_order_id222'
|
||||
assert trade.stoploss_last_update is None
|
||||
assert log_has("trying trades_bak1", caplog)
|
||||
assert log_has("trying trades_bak2", caplog)
|
||||
assert log_has("Running database migration for trades - backup: trades_bak2, orders_bak0",
|
||||
caplog)
|
||||
assert log_has("Database migration finished.", caplog)
|
||||
assert pytest.approx(trade.open_trade_value) == trade._calc_open_trade_value(
|
||||
trade.amount, trade.open_rate)
|
||||
assert trade.close_profit_abs is None
|
||||
assert trade.stake_amount == trade.max_stake_amount
|
||||
|
||||
orders = trade.orders
|
||||
assert len(orders) == 4
|
||||
assert orders[0].order_id == 'dry_buy_order'
|
||||
assert orders[0].ft_order_side == 'buy'
|
||||
|
||||
assert orders[-1].order_id == 'dry_stop_order_id222'
|
||||
assert orders[-1].ft_order_side == 'stoploss'
|
||||
assert orders[-1].ft_is_open is True
|
||||
|
||||
assert orders[1].order_id == 'dry_buy_order22'
|
||||
assert orders[1].ft_order_side == 'buy'
|
||||
assert orders[1].ft_is_open is False
|
||||
|
||||
assert orders[2].order_id == 'dry_stop_order_id11X'
|
||||
assert orders[2].ft_order_side == 'stoploss'
|
||||
assert orders[2].ft_is_open is False
|
||||
|
||||
|
||||
def test_migrate_too_old(mocker, default_conf, fee, caplog):
|
||||
"""
|
||||
Test Database migration (starting with new pairformat)
|
||||
"""
|
||||
caplog.set_level(logging.DEBUG)
|
||||
amount = 103.223
|
||||
create_table_old = """CREATE TABLE IF NOT EXISTS "trades" (
|
||||
id INTEGER NOT NULL,
|
||||
exchange VARCHAR NOT NULL,
|
||||
pair VARCHAR NOT NULL,
|
||||
is_open BOOLEAN NOT NULL,
|
||||
fee_open FLOAT NOT NULL,
|
||||
fee_close FLOAT NOT NULL,
|
||||
open_rate FLOAT,
|
||||
close_rate FLOAT,
|
||||
close_profit FLOAT,
|
||||
stake_amount FLOAT NOT NULL,
|
||||
amount FLOAT,
|
||||
open_date DATETIME NOT NULL,
|
||||
close_date DATETIME,
|
||||
open_order_id VARCHAR,
|
||||
PRIMARY KEY (id),
|
||||
CHECK (is_open IN (0, 1))
|
||||
);"""
|
||||
|
||||
insert_table_old = """INSERT INTO trades (exchange, pair, is_open, fee_open, fee_close,
|
||||
open_rate, stake_amount, amount, open_date)
|
||||
VALUES ('binance', 'ETC/BTC', 1, {fee}, {fee},
|
||||
0.00258580, {stake}, {amount},
|
||||
'2019-11-28 12:44:24.000000')
|
||||
""".format(fee=fee.return_value,
|
||||
stake=default_conf.get("stake_amount"),
|
||||
amount=amount
|
||||
)
|
||||
engine = create_engine('sqlite://')
|
||||
mocker.patch('freqtrade.persistence.models.create_engine', lambda *args, **kwargs: engine)
|
||||
|
||||
# Create table using the old format
|
||||
with engine.begin() as connection:
|
||||
connection.execute(text(create_table_old))
|
||||
connection.execute(text(insert_table_old))
|
||||
|
||||
# Run init to test migration
|
||||
with pytest.raises(OperationalException, match=r'Your database seems to be very old'):
|
||||
init_db(default_conf['db_url'])
|
||||
|
||||
|
||||
def test_migrate_get_last_sequence_ids():
|
||||
engine = MagicMock()
|
||||
engine.begin = MagicMock()
|
||||
engine.name = 'postgresql'
|
||||
get_last_sequence_ids(engine, 'trades_bak', 'orders_bak')
|
||||
|
||||
assert engine.begin.call_count == 2
|
||||
engine.reset_mock()
|
||||
engine.begin.reset_mock()
|
||||
|
||||
engine.name = 'somethingelse'
|
||||
get_last_sequence_ids(engine, 'trades_bak', 'orders_bak')
|
||||
|
||||
assert engine.begin.call_count == 0
|
||||
|
||||
|
||||
def test_migrate_set_sequence_ids():
|
||||
engine = MagicMock()
|
||||
engine.begin = MagicMock()
|
||||
engine.name = 'postgresql'
|
||||
set_sequence_ids(engine, 22, 55, 5)
|
||||
|
||||
assert engine.begin.call_count == 1
|
||||
engine.reset_mock()
|
||||
engine.begin.reset_mock()
|
||||
|
||||
engine.name = 'somethingelse'
|
||||
set_sequence_ids(engine, 22, 55, 6)
|
||||
|
||||
assert engine.begin.call_count == 0
|
||||
|
||||
|
||||
def test_migrate_pairlocks(mocker, default_conf, fee, caplog):
|
||||
"""
|
||||
Test Database migration (starting with new pairformat)
|
||||
"""
|
||||
caplog.set_level(logging.DEBUG)
|
||||
# Always create all columns apart from the last!
|
||||
create_table_old = """CREATE TABLE pairlocks (
|
||||
id INTEGER NOT NULL,
|
||||
pair VARCHAR(25) NOT NULL,
|
||||
reason VARCHAR(255),
|
||||
lock_time DATETIME NOT NULL,
|
||||
lock_end_time DATETIME NOT NULL,
|
||||
active BOOLEAN NOT NULL,
|
||||
PRIMARY KEY (id)
|
||||
)
|
||||
"""
|
||||
create_index1 = "CREATE INDEX ix_pairlocks_pair ON pairlocks (pair)"
|
||||
create_index2 = "CREATE INDEX ix_pairlocks_lock_end_time ON pairlocks (lock_end_time)"
|
||||
create_index3 = "CREATE INDEX ix_pairlocks_active ON pairlocks (active)"
|
||||
insert_table_old = """INSERT INTO pairlocks (
|
||||
id, pair, reason, lock_time, lock_end_time, active)
|
||||
VALUES (1, 'ETH/BTC', 'Auto lock', '2021-07-12 18:41:03', '2021-07-11 18:45:00', 1)
|
||||
"""
|
||||
insert_table_old2 = """INSERT INTO pairlocks (
|
||||
id, pair, reason, lock_time, lock_end_time, active)
|
||||
VALUES (2, '*', 'Lock all', '2021-07-12 18:41:03', '2021-07-12 19:00:00', 1)
|
||||
"""
|
||||
engine = create_engine('sqlite://')
|
||||
mocker.patch('freqtrade.persistence.models.create_engine', lambda *args, **kwargs: engine)
|
||||
# Create table using the old format
|
||||
with engine.begin() as connection:
|
||||
connection.execute(text(create_table_old))
|
||||
|
||||
connection.execute(text(insert_table_old))
|
||||
connection.execute(text(insert_table_old2))
|
||||
connection.execute(text(create_index1))
|
||||
connection.execute(text(create_index2))
|
||||
connection.execute(text(create_index3))
|
||||
|
||||
init_db(default_conf['db_url'])
|
||||
|
||||
assert len(PairLock.query.all()) == 2
|
||||
assert len(PairLock.query.filter(PairLock.pair == '*').all()) == 1
|
||||
pairlocks = PairLock.query.filter(PairLock.pair == 'ETH/BTC').all()
|
||||
assert len(pairlocks) == 1
|
||||
pairlocks[0].pair == 'ETH/BTC'
|
||||
pairlocks[0].side == '*'
|
@ -1,78 +1,20 @@
|
||||
# pragma pylint: disable=missing-docstring, C0103
|
||||
import logging
|
||||
from datetime import datetime, timedelta, timezone
|
||||
from pathlib import Path
|
||||
from types import FunctionType
|
||||
from unittest.mock import MagicMock
|
||||
|
||||
import arrow
|
||||
import pytest
|
||||
from sqlalchemy import create_engine, text
|
||||
|
||||
from freqtrade.constants import DATETIME_PRINT_FORMAT, DEFAULT_DB_PROD_URL
|
||||
from freqtrade.constants import DATETIME_PRINT_FORMAT
|
||||
from freqtrade.enums import TradingMode
|
||||
from freqtrade.exceptions import DependencyException, OperationalException
|
||||
from freqtrade.exceptions import DependencyException
|
||||
from freqtrade.persistence import LocalTrade, Order, Trade, init_db
|
||||
from freqtrade.persistence.migrations import get_last_sequence_ids, set_sequence_ids
|
||||
from freqtrade.persistence.models import PairLock
|
||||
from tests.conftest import create_mock_trades, create_mock_trades_with_leverage, log_has, log_has_re
|
||||
|
||||
|
||||
spot, margin, futures = TradingMode.SPOT, TradingMode.MARGIN, TradingMode.FUTURES
|
||||
|
||||
|
||||
def test_init_create_session(default_conf):
|
||||
# Check if init create a session
|
||||
init_db(default_conf['db_url'])
|
||||
assert hasattr(Trade, '_session')
|
||||
assert 'scoped_session' in type(Trade._session).__name__
|
||||
|
||||
|
||||
def test_init_custom_db_url(default_conf, tmpdir):
|
||||
# Update path to a value other than default, but still in-memory
|
||||
filename = f"{tmpdir}/freqtrade2_test.sqlite"
|
||||
assert not Path(filename).is_file()
|
||||
|
||||
default_conf.update({'db_url': f'sqlite:///{filename}'})
|
||||
|
||||
init_db(default_conf['db_url'])
|
||||
assert Path(filename).is_file()
|
||||
r = Trade._session.execute(text("PRAGMA journal_mode"))
|
||||
assert r.first() == ('wal',)
|
||||
|
||||
|
||||
def test_init_invalid_db_url():
|
||||
# Update path to a value other than default, but still in-memory
|
||||
with pytest.raises(OperationalException, match=r'.*no valid database URL*'):
|
||||
init_db('unknown:///some.url')
|
||||
|
||||
with pytest.raises(OperationalException, match=r'Bad db-url.*For in-memory database, pl.*'):
|
||||
init_db('sqlite:///')
|
||||
|
||||
|
||||
def test_init_prod_db(default_conf, mocker):
|
||||
default_conf.update({'dry_run': False})
|
||||
default_conf.update({'db_url': DEFAULT_DB_PROD_URL})
|
||||
|
||||
create_engine_mock = mocker.patch('freqtrade.persistence.models.create_engine', MagicMock())
|
||||
|
||||
init_db(default_conf['db_url'])
|
||||
assert create_engine_mock.call_count == 1
|
||||
assert create_engine_mock.mock_calls[0][1][0] == 'sqlite:///tradesv3.sqlite'
|
||||
|
||||
|
||||
def test_init_dryrun_db(default_conf, tmpdir):
|
||||
filename = f"{tmpdir}/freqtrade2_prod.sqlite"
|
||||
assert not Path(filename).is_file()
|
||||
default_conf.update({
|
||||
'dry_run': True,
|
||||
'db_url': f'sqlite:///{filename}'
|
||||
})
|
||||
|
||||
init_db(default_conf['db_url'])
|
||||
assert Path(filename).is_file()
|
||||
|
||||
|
||||
@pytest.mark.parametrize('is_short', [False, True])
|
||||
@pytest.mark.usefixtures("init_persistence")
|
||||
def test_enter_exit_side(fee, is_short):
|
||||
@ -316,8 +258,7 @@ def test_interest(fee, exchange, is_short, lev, minutes, rate, interest,
|
||||
(True, 3.0, 30.0, margin),
|
||||
])
|
||||
@pytest.mark.usefixtures("init_persistence")
|
||||
def test_borrowed(limit_buy_order_usdt, limit_sell_order_usdt, fee,
|
||||
caplog, is_short, lev, borrowed, trading_mode):
|
||||
def test_borrowed(fee, is_short, lev, borrowed, trading_mode):
|
||||
"""
|
||||
10 minute limit trade on Binance/Kraken at 1x, 3x leverage
|
||||
fee: 0.25% quote
|
||||
@ -1204,347 +1145,6 @@ def test_calc_profit(
|
||||
trade.open_rate)) == round(profit_ratio, 8)
|
||||
|
||||
|
||||
def test_migrate_new(mocker, default_conf, fee, caplog):
|
||||
"""
|
||||
Test Database migration (starting with new pairformat)
|
||||
"""
|
||||
caplog.set_level(logging.DEBUG)
|
||||
amount = 103.223
|
||||
# Always create all columns apart from the last!
|
||||
create_table_old = """CREATE TABLE IF NOT EXISTS "trades" (
|
||||
id INTEGER NOT NULL,
|
||||
exchange VARCHAR NOT NULL,
|
||||
pair VARCHAR NOT NULL,
|
||||
is_open BOOLEAN NOT NULL,
|
||||
fee FLOAT NOT NULL,
|
||||
open_rate FLOAT,
|
||||
close_rate FLOAT,
|
||||
close_profit FLOAT,
|
||||
stake_amount FLOAT NOT NULL,
|
||||
amount FLOAT,
|
||||
open_date DATETIME NOT NULL,
|
||||
close_date DATETIME,
|
||||
open_order_id VARCHAR,
|
||||
stop_loss FLOAT,
|
||||
initial_stop_loss FLOAT,
|
||||
max_rate FLOAT,
|
||||
sell_reason VARCHAR,
|
||||
strategy VARCHAR,
|
||||
ticker_interval INTEGER,
|
||||
stoploss_order_id VARCHAR,
|
||||
PRIMARY KEY (id),
|
||||
CHECK (is_open IN (0, 1))
|
||||
);"""
|
||||
create_table_order = """CREATE TABLE orders (
|
||||
id INTEGER NOT NULL,
|
||||
ft_trade_id INTEGER,
|
||||
ft_order_side VARCHAR(25) NOT NULL,
|
||||
ft_pair VARCHAR(25) NOT NULL,
|
||||
ft_is_open BOOLEAN NOT NULL,
|
||||
order_id VARCHAR(255) NOT NULL,
|
||||
status VARCHAR(255),
|
||||
symbol VARCHAR(25),
|
||||
order_type VARCHAR(50),
|
||||
side VARCHAR(25),
|
||||
price FLOAT,
|
||||
amount FLOAT,
|
||||
filled FLOAT,
|
||||
remaining FLOAT,
|
||||
cost FLOAT,
|
||||
order_date DATETIME,
|
||||
order_filled_date DATETIME,
|
||||
order_update_date DATETIME,
|
||||
PRIMARY KEY (id)
|
||||
);"""
|
||||
insert_table_old = """INSERT INTO trades (exchange, pair, is_open, fee,
|
||||
open_rate, stake_amount, amount, open_date,
|
||||
stop_loss, initial_stop_loss, max_rate, ticker_interval,
|
||||
open_order_id, stoploss_order_id)
|
||||
VALUES ('binance', 'ETC/BTC', 1, {fee},
|
||||
0.00258580, {stake}, {amount},
|
||||
'2019-11-28 12:44:24.000000',
|
||||
0.0, 0.0, 0.0, '5m',
|
||||
'buy_order', 'dry_stop_order_id222')
|
||||
""".format(fee=fee.return_value,
|
||||
stake=default_conf.get("stake_amount"),
|
||||
amount=amount
|
||||
)
|
||||
insert_orders = f"""
|
||||
insert into orders (
|
||||
ft_trade_id,
|
||||
ft_order_side,
|
||||
ft_pair,
|
||||
ft_is_open,
|
||||
order_id,
|
||||
status,
|
||||
symbol,
|
||||
order_type,
|
||||
side,
|
||||
price,
|
||||
amount,
|
||||
filled,
|
||||
remaining,
|
||||
cost)
|
||||
values (
|
||||
1,
|
||||
'buy',
|
||||
'ETC/BTC',
|
||||
0,
|
||||
'dry_buy_order',
|
||||
'closed',
|
||||
'ETC/BTC',
|
||||
'limit',
|
||||
'buy',
|
||||
0.00258580,
|
||||
{amount},
|
||||
{amount},
|
||||
0,
|
||||
{amount * 0.00258580}
|
||||
),
|
||||
(
|
||||
1,
|
||||
'buy',
|
||||
'ETC/BTC',
|
||||
1,
|
||||
'dry_buy_order22',
|
||||
'canceled',
|
||||
'ETC/BTC',
|
||||
'limit',
|
||||
'buy',
|
||||
0.00258580,
|
||||
{amount},
|
||||
{amount},
|
||||
0,
|
||||
{amount * 0.00258580}
|
||||
),
|
||||
(
|
||||
1,
|
||||
'stoploss',
|
||||
'ETC/BTC',
|
||||
1,
|
||||
'dry_stop_order_id11X',
|
||||
'canceled',
|
||||
'ETC/BTC',
|
||||
'limit',
|
||||
'sell',
|
||||
0.00258580,
|
||||
{amount},
|
||||
{amount},
|
||||
0,
|
||||
{amount * 0.00258580}
|
||||
),
|
||||
(
|
||||
1,
|
||||
'stoploss',
|
||||
'ETC/BTC',
|
||||
1,
|
||||
'dry_stop_order_id222',
|
||||
'open',
|
||||
'ETC/BTC',
|
||||
'limit',
|
||||
'sell',
|
||||
0.00258580,
|
||||
{amount},
|
||||
{amount},
|
||||
0,
|
||||
{amount * 0.00258580}
|
||||
)
|
||||
"""
|
||||
engine = create_engine('sqlite://')
|
||||
mocker.patch('freqtrade.persistence.models.create_engine', lambda *args, **kwargs: engine)
|
||||
|
||||
# Create table using the old format
|
||||
with engine.begin() as connection:
|
||||
connection.execute(text(create_table_old))
|
||||
connection.execute(text(create_table_order))
|
||||
connection.execute(text("create index ix_trades_is_open on trades(is_open)"))
|
||||
connection.execute(text("create index ix_trades_pair on trades(pair)"))
|
||||
connection.execute(text(insert_table_old))
|
||||
connection.execute(text(insert_orders))
|
||||
|
||||
# fake previous backup
|
||||
connection.execute(text("create table trades_bak as select * from trades"))
|
||||
|
||||
connection.execute(text("create table trades_bak1 as select * from trades"))
|
||||
# Run init to test migration
|
||||
init_db(default_conf['db_url'])
|
||||
|
||||
assert len(Trade.query.filter(Trade.id == 1).all()) == 1
|
||||
trade = Trade.query.filter(Trade.id == 1).first()
|
||||
assert trade.fee_open == fee.return_value
|
||||
assert trade.fee_close == fee.return_value
|
||||
assert trade.open_rate_requested is None
|
||||
assert trade.close_rate_requested is None
|
||||
assert trade.is_open == 1
|
||||
assert trade.amount == amount
|
||||
assert trade.amount_requested == amount
|
||||
assert trade.stake_amount == default_conf.get("stake_amount")
|
||||
assert trade.pair == "ETC/BTC"
|
||||
assert trade.exchange == "binance"
|
||||
assert trade.max_rate == 0.0
|
||||
assert trade.min_rate is None
|
||||
assert trade.stop_loss == 0.0
|
||||
assert trade.initial_stop_loss == 0.0
|
||||
assert trade.exit_reason is None
|
||||
assert trade.strategy is None
|
||||
assert trade.timeframe == '5m'
|
||||
assert trade.stoploss_order_id == 'dry_stop_order_id222'
|
||||
assert trade.stoploss_last_update is None
|
||||
assert log_has("trying trades_bak1", caplog)
|
||||
assert log_has("trying trades_bak2", caplog)
|
||||
assert log_has("Running database migration for trades - backup: trades_bak2, orders_bak0",
|
||||
caplog)
|
||||
assert log_has("Database migration finished.", caplog)
|
||||
assert pytest.approx(trade.open_trade_value) == trade._calc_open_trade_value(
|
||||
trade.amount, trade.open_rate)
|
||||
assert trade.close_profit_abs is None
|
||||
|
||||
orders = trade.orders
|
||||
assert len(orders) == 4
|
||||
assert orders[0].order_id == 'dry_buy_order'
|
||||
assert orders[0].ft_order_side == 'buy'
|
||||
|
||||
assert orders[-1].order_id == 'dry_stop_order_id222'
|
||||
assert orders[-1].ft_order_side == 'stoploss'
|
||||
assert orders[-1].ft_is_open is True
|
||||
|
||||
assert orders[1].order_id == 'dry_buy_order22'
|
||||
assert orders[1].ft_order_side == 'buy'
|
||||
assert orders[1].ft_is_open is False
|
||||
|
||||
assert orders[2].order_id == 'dry_stop_order_id11X'
|
||||
assert orders[2].ft_order_side == 'stoploss'
|
||||
assert orders[2].ft_is_open is False
|
||||
|
||||
|
||||
def test_migrate_too_old(mocker, default_conf, fee, caplog):
|
||||
"""
|
||||
Test Database migration (starting with new pairformat)
|
||||
"""
|
||||
caplog.set_level(logging.DEBUG)
|
||||
amount = 103.223
|
||||
create_table_old = """CREATE TABLE IF NOT EXISTS "trades" (
|
||||
id INTEGER NOT NULL,
|
||||
exchange VARCHAR NOT NULL,
|
||||
pair VARCHAR NOT NULL,
|
||||
is_open BOOLEAN NOT NULL,
|
||||
fee_open FLOAT NOT NULL,
|
||||
fee_close FLOAT NOT NULL,
|
||||
open_rate FLOAT,
|
||||
close_rate FLOAT,
|
||||
close_profit FLOAT,
|
||||
stake_amount FLOAT NOT NULL,
|
||||
amount FLOAT,
|
||||
open_date DATETIME NOT NULL,
|
||||
close_date DATETIME,
|
||||
open_order_id VARCHAR,
|
||||
PRIMARY KEY (id),
|
||||
CHECK (is_open IN (0, 1))
|
||||
);"""
|
||||
|
||||
insert_table_old = """INSERT INTO trades (exchange, pair, is_open, fee_open, fee_close,
|
||||
open_rate, stake_amount, amount, open_date)
|
||||
VALUES ('binance', 'ETC/BTC', 1, {fee}, {fee},
|
||||
0.00258580, {stake}, {amount},
|
||||
'2019-11-28 12:44:24.000000')
|
||||
""".format(fee=fee.return_value,
|
||||
stake=default_conf.get("stake_amount"),
|
||||
amount=amount
|
||||
)
|
||||
engine = create_engine('sqlite://')
|
||||
mocker.patch('freqtrade.persistence.models.create_engine', lambda *args, **kwargs: engine)
|
||||
|
||||
# Create table using the old format
|
||||
with engine.begin() as connection:
|
||||
connection.execute(text(create_table_old))
|
||||
connection.execute(text(insert_table_old))
|
||||
|
||||
# Run init to test migration
|
||||
with pytest.raises(OperationalException, match=r'Your database seems to be very old'):
|
||||
init_db(default_conf['db_url'])
|
||||
|
||||
|
||||
def test_migrate_get_last_sequence_ids():
|
||||
engine = MagicMock()
|
||||
engine.begin = MagicMock()
|
||||
engine.name = 'postgresql'
|
||||
get_last_sequence_ids(engine, 'trades_bak', 'orders_bak')
|
||||
|
||||
assert engine.begin.call_count == 2
|
||||
engine.reset_mock()
|
||||
engine.begin.reset_mock()
|
||||
|
||||
engine.name = 'somethingelse'
|
||||
get_last_sequence_ids(engine, 'trades_bak', 'orders_bak')
|
||||
|
||||
assert engine.begin.call_count == 0
|
||||
|
||||
|
||||
def test_migrate_set_sequence_ids():
|
||||
engine = MagicMock()
|
||||
engine.begin = MagicMock()
|
||||
engine.name = 'postgresql'
|
||||
set_sequence_ids(engine, 22, 55, 5)
|
||||
|
||||
assert engine.begin.call_count == 1
|
||||
engine.reset_mock()
|
||||
engine.begin.reset_mock()
|
||||
|
||||
engine.name = 'somethingelse'
|
||||
set_sequence_ids(engine, 22, 55, 6)
|
||||
|
||||
assert engine.begin.call_count == 0
|
||||
|
||||
|
||||
def test_migrate_pairlocks(mocker, default_conf, fee, caplog):
|
||||
"""
|
||||
Test Database migration (starting with new pairformat)
|
||||
"""
|
||||
caplog.set_level(logging.DEBUG)
|
||||
# Always create all columns apart from the last!
|
||||
create_table_old = """CREATE TABLE pairlocks (
|
||||
id INTEGER NOT NULL,
|
||||
pair VARCHAR(25) NOT NULL,
|
||||
reason VARCHAR(255),
|
||||
lock_time DATETIME NOT NULL,
|
||||
lock_end_time DATETIME NOT NULL,
|
||||
active BOOLEAN NOT NULL,
|
||||
PRIMARY KEY (id)
|
||||
)
|
||||
"""
|
||||
create_index1 = "CREATE INDEX ix_pairlocks_pair ON pairlocks (pair)"
|
||||
create_index2 = "CREATE INDEX ix_pairlocks_lock_end_time ON pairlocks (lock_end_time)"
|
||||
create_index3 = "CREATE INDEX ix_pairlocks_active ON pairlocks (active)"
|
||||
insert_table_old = """INSERT INTO pairlocks (
|
||||
id, pair, reason, lock_time, lock_end_time, active)
|
||||
VALUES (1, 'ETH/BTC', 'Auto lock', '2021-07-12 18:41:03', '2021-07-11 18:45:00', 1)
|
||||
"""
|
||||
insert_table_old2 = """INSERT INTO pairlocks (
|
||||
id, pair, reason, lock_time, lock_end_time, active)
|
||||
VALUES (2, '*', 'Lock all', '2021-07-12 18:41:03', '2021-07-12 19:00:00', 1)
|
||||
"""
|
||||
engine = create_engine('sqlite://')
|
||||
mocker.patch('freqtrade.persistence.models.create_engine', lambda *args, **kwargs: engine)
|
||||
# Create table using the old format
|
||||
with engine.begin() as connection:
|
||||
connection.execute(text(create_table_old))
|
||||
|
||||
connection.execute(text(insert_table_old))
|
||||
connection.execute(text(insert_table_old2))
|
||||
connection.execute(text(create_index1))
|
||||
connection.execute(text(create_index2))
|
||||
connection.execute(text(create_index3))
|
||||
|
||||
init_db(default_conf['db_url'])
|
||||
|
||||
assert len(PairLock.query.all()) == 2
|
||||
assert len(PairLock.query.filter(PairLock.pair == '*').all()) == 1
|
||||
pairlocks = PairLock.query.filter(PairLock.pair == 'ETH/BTC').all()
|
||||
assert len(pairlocks) == 1
|
||||
pairlocks[0].pair == 'ETH/BTC'
|
||||
pairlocks[0].side == '*'
|
||||
|
||||
|
||||
def test_adjust_stop_loss(fee):
|
||||
trade = Trade(
|
||||
pair='ADA/USDT',
|
||||
@ -1758,6 +1358,7 @@ def test_to_json(fee):
|
||||
'amount': 123.0,
|
||||
'amount_requested': 123.0,
|
||||
'stake_amount': 0.001,
|
||||
'max_stake_amount': None,
|
||||
'trade_duration': None,
|
||||
'trade_duration_s': None,
|
||||
'realized_profit': 0.0,
|
||||
@ -1767,7 +1368,6 @@ def test_to_json(fee):
|
||||
'profit_ratio': None,
|
||||
'profit_pct': None,
|
||||
'profit_abs': None,
|
||||
'sell_reason': None,
|
||||
'exit_reason': None,
|
||||
'exit_order_status': None,
|
||||
'stop_loss_abs': None,
|
||||
@ -1782,7 +1382,6 @@ def test_to_json(fee):
|
||||
'min_rate': None,
|
||||
'max_rate': None,
|
||||
'strategy': None,
|
||||
'buy_tag': None,
|
||||
'enter_tag': None,
|
||||
'timeframe': None,
|
||||
'exchange': 'binance',
|
||||
@ -1826,6 +1425,7 @@ def test_to_json(fee):
|
||||
'amount': 100.0,
|
||||
'amount_requested': 101.0,
|
||||
'stake_amount': 0.001,
|
||||
'max_stake_amount': None,
|
||||
'trade_duration': 60,
|
||||
'trade_duration_s': 3600,
|
||||
'stop_loss_abs': None,
|
||||
@ -1857,11 +1457,9 @@ def test_to_json(fee):
|
||||
'open_order_id': None,
|
||||
'open_rate_requested': None,
|
||||
'open_trade_value': 12.33075,
|
||||
'sell_reason': None,
|
||||
'exit_reason': None,
|
||||
'exit_order_status': None,
|
||||
'strategy': None,
|
||||
'buy_tag': 'buys_signal_001',
|
||||
'enter_tag': 'buys_signal_001',
|
||||
'timeframe': None,
|
||||
'exchange': 'binance',
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user