Merge branch 'develop' into pr/stash86/7810

This commit is contained in:
Matthias 2022-12-28 14:04:54 +01:00
commit 02eb00fa33
114 changed files with 3252 additions and 1692 deletions

View File

@ -20,7 +20,7 @@ Please do not use bug reports to request new features.
* Operating system: ____ * Operating system: ____
* Python Version: _____ (`python -V`) * Python Version: _____ (`python -V`)
* CCXT version: _____ (`pip freeze | grep ccxt`) * CCXT version: _____ (`pip freeze | grep ccxt`)
* Freqtrade Version: ____ (`freqtrade -V` or `docker-compose run --rm freqtrade -V` for Freqtrade running in docker) * Freqtrade Version: ____ (`freqtrade -V` or `docker compose run --rm freqtrade -V` for Freqtrade running in docker)
Note: All issues other than enhancement requests will be closed without further comment if the above template is deleted or not filled out. Note: All issues other than enhancement requests will be closed without further comment if the above template is deleted or not filled out.

View File

@ -18,7 +18,7 @@ Have you search for this feature before requesting it? It's highly likely that a
* Operating system: ____ * Operating system: ____
* Python Version: _____ (`python -V`) * Python Version: _____ (`python -V`)
* CCXT version: _____ (`pip freeze | grep ccxt`) * CCXT version: _____ (`pip freeze | grep ccxt`)
* Freqtrade Version: ____ (`freqtrade -V` or `docker-compose run --rm freqtrade -V` for Freqtrade running in docker) * Freqtrade Version: ____ (`freqtrade -V` or `docker compose run --rm freqtrade -V` for Freqtrade running in docker)
## Describe the enhancement ## Describe the enhancement

View File

@ -18,7 +18,7 @@ Please do not use the question template to report bugs or to request new feature
* Operating system: ____ * Operating system: ____
* Python Version: _____ (`python -V`) * Python Version: _____ (`python -V`)
* CCXT version: _____ (`pip freeze | grep ccxt`) * CCXT version: _____ (`pip freeze | grep ccxt`)
* Freqtrade Version: ____ (`freqtrade -V` or `docker-compose run --rm freqtrade -V` for Freqtrade running in docker) * Freqtrade Version: ____ (`freqtrade -V` or `docker compose run --rm freqtrade -V` for Freqtrade running in docker)
## Your question ## Your question

View File

@ -66,12 +66,6 @@ jobs:
- name: Tests - name: Tests
run: | run: |
pytest --random-order --cov=freqtrade --cov-config=.coveragerc pytest --random-order --cov=freqtrade --cov-config=.coveragerc
if: matrix.python-version != '3.9' || matrix.os != 'ubuntu-22.04'
- name: Tests incl. ccxt compatibility tests
run: |
pytest --random-order --cov=freqtrade --cov-config=.coveragerc --longrun
if: matrix.python-version == '3.9' && matrix.os == 'ubuntu-22.04'
- name: Coveralls - name: Coveralls
if: (runner.os == 'Linux' && matrix.python-version == '3.10' && matrix.os == 'ubuntu-22.04') if: (runner.os == 'Linux' && matrix.python-version == '3.10' && matrix.os == 'ubuntu-22.04')
@ -94,7 +88,7 @@ jobs:
run: | run: |
cp config_examples/config_bittrex.example.json config.json cp config_examples/config_bittrex.example.json config.json
freqtrade create-userdir --userdir user_data freqtrade create-userdir --userdir user_data
freqtrade hyperopt --datadir tests/testdata -e 5 --strategy SampleStrategy --hyperopt-loss SharpeHyperOptLossDaily --print-all freqtrade hyperopt --datadir tests/testdata -e 6 --strategy SampleStrategy --hyperopt-loss SharpeHyperOptLossDaily --print-all
- name: Flake8 - name: Flake8
run: | run: |
@ -154,6 +148,19 @@ jobs:
if: runner.os == 'macOS' if: runner.os == 'macOS'
run: | run: |
brew update brew update
# homebrew fails to update python due to unlinking failures
# https://github.com/actions/runner-images/issues/6817
rm /usr/local/bin/2to3 || true
rm /usr/local/bin/2to3-3.11 || true
rm /usr/local/bin/idle3 || true
rm /usr/local/bin/idle3.11 || true
rm /usr/local/bin/pydoc3 || true
rm /usr/local/bin/pydoc3.11 || true
rm /usr/local/bin/python3 || true
rm /usr/local/bin/python3.11 || true
rm /usr/local/bin/python3-config || true
rm /usr/local/bin/python3.11-config || true
brew install hdf5 c-blosc brew install hdf5 c-blosc
python -m pip install --upgrade pip wheel python -m pip install --upgrade pip wheel
export LD_LIBRARY_PATH=${HOME}/dependencies/lib:$LD_LIBRARY_PATH export LD_LIBRARY_PATH=${HOME}/dependencies/lib:$LD_LIBRARY_PATH
@ -310,9 +317,64 @@ jobs:
details: Freqtrade doc test failed! details: Freqtrade doc test failed!
webhookUrl: ${{ secrets.DISCORD_WEBHOOK }} webhookUrl: ${{ secrets.DISCORD_WEBHOOK }}
build_linux_online:
# Run pytest with "live" checks
runs-on: ubuntu-22.04
# permissions:
steps:
- uses: actions/checkout@v3
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: "3.9"
- name: Cache_dependencies
uses: actions/cache@v3
id: cache
with:
path: ~/dependencies/
key: ${{ runner.os }}-dependencies
- name: pip cache (linux)
uses: actions/cache@v3
if: runner.os == 'Linux'
with:
path: ~/.cache/pip
key: test-${{ matrix.os }}-${{ matrix.python-version }}-pip
- name: TA binary *nix
if: steps.cache.outputs.cache-hit != 'true'
run: |
cd build_helpers && ./install_ta-lib.sh ${HOME}/dependencies/; cd ..
- name: Installation - *nix
if: runner.os == 'Linux'
run: |
python -m pip install --upgrade pip wheel
export LD_LIBRARY_PATH=${HOME}/dependencies/lib:$LD_LIBRARY_PATH
export TA_LIBRARY_PATH=${HOME}/dependencies/lib
export TA_INCLUDE_PATH=${HOME}/dependencies/include
pip install -r requirements-dev.txt
pip install -e .
- name: Tests incl. ccxt compatibility tests
run: |
pytest --random-order --cov=freqtrade --cov-config=.coveragerc --longrun
# Notify only once - when CI completes (and after deploy) in case it's successfull # Notify only once - when CI completes (and after deploy) in case it's successfull
notify-complete: notify-complete:
needs: [ build_linux, build_macos, build_windows, docs_check, mypy_version_check, pre-commit ] needs: [
build_linux,
build_macos,
build_windows,
docs_check,
mypy_version_check,
pre-commit,
build_linux_online
]
runs-on: ubuntu-22.04 runs-on: ubuntu-22.04
# Discord notification can't handle schedule events # Discord notification can't handle schedule events
if: (github.event_name != 'schedule') if: (github.event_name != 'schedule')
@ -361,7 +423,7 @@ jobs:
python setup.py sdist bdist_wheel python setup.py sdist bdist_wheel
- name: Publish to PyPI (Test) - name: Publish to PyPI (Test)
uses: pypa/gh-action-pypi-publish@v1.5.1 uses: pypa/gh-action-pypi-publish@v1.6.4
if: (github.event_name == 'release') if: (github.event_name == 'release')
with: with:
user: __token__ user: __token__
@ -369,7 +431,7 @@ jobs:
repository_url: https://test.pypi.org/legacy/ repository_url: https://test.pypi.org/legacy/
- name: Publish to PyPI - name: Publish to PyPI
uses: pypa/gh-action-pypi-publish@v1.5.1 uses: pypa/gh-action-pypi-publish@v1.6.4
if: (github.event_name == 'release') if: (github.event_name == 'release')
with: with:
user: __token__ user: __token__

View File

@ -15,9 +15,9 @@ repos:
additional_dependencies: additional_dependencies:
- types-cachetools==5.2.1 - types-cachetools==5.2.1
- types-filelock==3.2.7 - types-filelock==3.2.7
- types-requests==2.28.11.5 - types-requests==2.28.11.7
- types-tabulate==0.9.0.0 - types-tabulate==0.9.0.0
- types-python-dateutil==2.8.19.4 - types-python-dateutil==2.8.19.5
# stages: [push] # stages: [push]
- repo: https://github.com/pycqa/isort - repo: https://github.com/pycqa/isort

View File

@ -79,9 +79,7 @@
"test_size": 0.33, "test_size": 0.33,
"random_state": 1 "random_state": 1
}, },
"model_training_parameters": { "model_training_parameters": {}
"n_estimators": 1000
}
}, },
"bot_name": "", "bot_name": "",
"force_entry_enable": true, "force_entry_enable": true,

View File

@ -100,3 +100,17 @@ freqtrade backtesting-analysis -c <config.json> --analysis-groups 0 2 --enter-re
The indicators have to be present in your strategy's main DataFrame (either for your main The indicators have to be present in your strategy's main DataFrame (either for your main
timeframe or for informative timeframes) otherwise they will simply be ignored in the script timeframe or for informative timeframes) otherwise they will simply be ignored in the script
output. output.
### Filtering the trade output by date
To show only trades between dates within your backtested timerange, supply the usual `timerange` option in `YYYYMMDD-[YYYYMMDD]` format:
```
--timerange : Timerange to filter output trades, start date inclusive, end date exclusive. e.g. 20220101-20221231
```
For example, if your backtest timerange was `20220101-20221231` but you only want to output trades in January:
```bash
freqtrade backtesting-analysis -c <config.json> --timerange 20220101-20220201
```

View File

@ -5,7 +5,7 @@ You can analyze the results of backtests and trading history easily using Jupyte
## Quick start with docker ## Quick start with docker
Freqtrade provides a docker-compose file which starts up a jupyter lab server. Freqtrade provides a docker-compose file which starts up a jupyter lab server.
You can run this server using the following command: `docker-compose -f docker/docker-compose-jupyter.yml up` You can run this server using the following command: `docker compose -f docker/docker-compose-jupyter.yml up`
This will create a dockercontainer running jupyter lab, which will be accessible using `https://127.0.0.1:8888/lab`. This will create a dockercontainer running jupyter lab, which will be accessible using `https://127.0.0.1:8888/lab`.
Please use the link that's printed in the console after startup for simplified login. Please use the link that's printed in the console after startup for simplified login.
@ -83,7 +83,7 @@ from pathlib import Path
project_root = "somedir/freqtrade" project_root = "somedir/freqtrade"
i=0 i=0
try: try:
os.chdirdir(project_root) os.chdir(project_root)
assert Path('LICENSE').is_file() assert Path('LICENSE').is_file()
except: except:
while i<4 and (not Path('LICENSE').is_file()): while i<4 and (not Path('LICENSE').is_file()):

View File

@ -4,20 +4,22 @@ This page explains how to run the bot with Docker. It is not meant to work out o
## Install Docker ## Install Docker
Start by downloading and installing Docker CE for your platform: Start by downloading and installing Docker / Docker Desktop for your platform:
* [Mac](https://docs.docker.com/docker-for-mac/install/) * [Mac](https://docs.docker.com/docker-for-mac/install/)
* [Windows](https://docs.docker.com/docker-for-windows/install/) * [Windows](https://docs.docker.com/docker-for-windows/install/)
* [Linux](https://docs.docker.com/install/) * [Linux](https://docs.docker.com/install/)
To simplify running freqtrade, [`docker-compose`](https://docs.docker.com/compose/install/) should be installed and available to follow the below [docker quick start guide](#docker-quick-start). !!! Info "Docker compose install"
Freqtrade documentation assumes the use of Docker desktop (or the docker compose plugin).
While the docker-compose standalone installation still works, it will require changing all `docker compose` commands from `docker compose` to `docker-compose` to work (e.g. `docker compose up -d` will become `docker-compose up -d`).
## Freqtrade with docker-compose ## Freqtrade with docker
Freqtrade provides an official Docker image on [Dockerhub](https://hub.docker.com/r/freqtradeorg/freqtrade/), as well as a [docker-compose file](https://github.com/freqtrade/freqtrade/blob/stable/docker-compose.yml) ready for usage. Freqtrade provides an official Docker image on [Dockerhub](https://hub.docker.com/r/freqtradeorg/freqtrade/), as well as a [docker compose file](https://github.com/freqtrade/freqtrade/blob/stable/docker-compose.yml) ready for usage.
!!! Note !!! Note
- The following section assumes that `docker` and `docker-compose` are installed and available to the logged in user. - The following section assumes that `docker` is installed and available to the logged in user.
- All below commands use relative directories and will have to be executed from the directory containing the `docker-compose.yml` file. - All below commands use relative directories and will have to be executed from the directory containing the `docker-compose.yml` file.
### Docker quick start ### Docker quick start
@ -31,13 +33,13 @@ cd ft_userdata/
curl https://raw.githubusercontent.com/freqtrade/freqtrade/stable/docker-compose.yml -o docker-compose.yml curl https://raw.githubusercontent.com/freqtrade/freqtrade/stable/docker-compose.yml -o docker-compose.yml
# Pull the freqtrade image # Pull the freqtrade image
docker-compose pull docker compose pull
# Create user directory structure # Create user directory structure
docker-compose run --rm freqtrade create-userdir --userdir user_data docker compose run --rm freqtrade create-userdir --userdir user_data
# Create configuration - Requires answering interactive questions # Create configuration - Requires answering interactive questions
docker-compose run --rm freqtrade new-config --config user_data/config.json docker compose run --rm freqtrade new-config --config user_data/config.json
``` ```
The above snippet creates a new directory called `ft_userdata`, downloads the latest compose file and pulls the freqtrade image. The above snippet creates a new directory called `ft_userdata`, downloads the latest compose file and pulls the freqtrade image.
@ -64,7 +66,7 @@ The `SampleStrategy` is run by default.
Once this is done, you're ready to launch the bot in trading mode (Dry-run or Live-trading, depending on your answer to the corresponding question you made above). Once this is done, you're ready to launch the bot in trading mode (Dry-run or Live-trading, depending on your answer to the corresponding question you made above).
``` bash ``` bash
docker-compose up -d docker compose up -d
``` ```
!!! Warning "Default configuration" !!! Warning "Default configuration"
@ -84,27 +86,27 @@ You can now access the UI by typing localhost:8080 in your browser.
#### Monitoring the bot #### Monitoring the bot
You can check for running instances with `docker-compose ps`. You can check for running instances with `docker compose ps`.
This should list the service `freqtrade` as `running`. If that's not the case, best check the logs (see next point). This should list the service `freqtrade` as `running`. If that's not the case, best check the logs (see next point).
#### Docker-compose logs #### Docker compose logs
Logs will be written to: `user_data/logs/freqtrade.log`. Logs will be written to: `user_data/logs/freqtrade.log`.
You can also check the latest log with the command `docker-compose logs -f`. You can also check the latest log with the command `docker compose logs -f`.
#### Database #### Database
The database will be located at: `user_data/tradesv3.sqlite` The database will be located at: `user_data/tradesv3.sqlite`
#### Updating freqtrade with docker-compose #### Updating freqtrade with docker
Updating freqtrade when using `docker-compose` is as simple as running the following 2 commands: Updating freqtrade when using `docker` is as simple as running the following 2 commands:
``` bash ``` bash
# Download the latest image # Download the latest image
docker-compose pull docker compose pull
# Restart the image # Restart the image
docker-compose up -d docker compose up -d
``` ```
This will first pull the latest image, and will then restart the container with the just pulled version. This will first pull the latest image, and will then restart the container with the just pulled version.
@ -116,43 +118,43 @@ This will first pull the latest image, and will then restart the container with
Advanced users may edit the docker-compose file further to include all possible options or arguments. Advanced users may edit the docker-compose file further to include all possible options or arguments.
All freqtrade arguments will be available by running `docker-compose run --rm freqtrade <command> <optional arguments>`. All freqtrade arguments will be available by running `docker compose run --rm freqtrade <command> <optional arguments>`.
!!! Warning "`docker-compose` for trade commands" !!! Warning "`docker compose` for trade commands"
Trade commands (`freqtrade trade <...>`) should not be ran via `docker-compose run` - but should use `docker-compose up -d` instead. Trade commands (`freqtrade trade <...>`) should not be ran via `docker compose run` - but should use `docker compose up -d` instead.
This makes sure that the container is properly started (including port forwardings) and will make sure that the container will restart after a system reboot. This makes sure that the container is properly started (including port forwardings) and will make sure that the container will restart after a system reboot.
If you intend to use freqUI, please also ensure to adjust the [configuration accordingly](rest-api.md#configuration-with-docker), otherwise the UI will not be available. If you intend to use freqUI, please also ensure to adjust the [configuration accordingly](rest-api.md#configuration-with-docker), otherwise the UI will not be available.
!!! Note "`docker-compose run --rm`" !!! Note "`docker compose run --rm`"
Including `--rm` will remove the container after completion, and is highly recommended for all modes except trading mode (running with `freqtrade trade` command). Including `--rm` will remove the container after completion, and is highly recommended for all modes except trading mode (running with `freqtrade trade` command).
??? Note "Using docker without docker-compose" ??? Note "Using docker without docker"
"`docker-compose run --rm`" will require a compose file to be provided. "`docker compose run --rm`" will require a compose file to be provided.
Some freqtrade commands that don't require authentication such as `list-pairs` can be run with "`docker run --rm`" instead. Some freqtrade commands that don't require authentication such as `list-pairs` can be run with "`docker run --rm`" instead.
For example `docker run --rm freqtradeorg/freqtrade:stable list-pairs --exchange binance --quote BTC --print-json`. For example `docker run --rm freqtradeorg/freqtrade:stable list-pairs --exchange binance --quote BTC --print-json`.
This can be useful for fetching exchange information to add to your `config.json` without affecting your running containers. This can be useful for fetching exchange information to add to your `config.json` without affecting your running containers.
#### Example: Download data with docker-compose #### Example: Download data with docker
Download backtesting data for 5 days for the pair ETH/BTC and 1h timeframe from Binance. The data will be stored in the directory `user_data/data/` on the host. Download backtesting data for 5 days for the pair ETH/BTC and 1h timeframe from Binance. The data will be stored in the directory `user_data/data/` on the host.
``` bash ``` bash
docker-compose run --rm freqtrade download-data --pairs ETH/BTC --exchange binance --days 5 -t 1h docker compose run --rm freqtrade download-data --pairs ETH/BTC --exchange binance --days 5 -t 1h
``` ```
Head over to the [Data Downloading Documentation](data-download.md) for more details on downloading data. Head over to the [Data Downloading Documentation](data-download.md) for more details on downloading data.
#### Example: Backtest with docker-compose #### Example: Backtest with docker
Run backtesting in docker-containers for SampleStrategy and specified timerange of historical data, on 5m timeframe: Run backtesting in docker-containers for SampleStrategy and specified timerange of historical data, on 5m timeframe:
``` bash ``` bash
docker-compose run --rm freqtrade backtesting --config user_data/config.json --strategy SampleStrategy --timerange 20190801-20191001 -i 5m docker compose run --rm freqtrade backtesting --config user_data/config.json --strategy SampleStrategy --timerange 20190801-20191001 -i 5m
``` ```
Head over to the [Backtesting Documentation](backtesting.md) to learn more. Head over to the [Backtesting Documentation](backtesting.md) to learn more.
### Additional dependencies with docker-compose ### Additional dependencies with docker
If your strategy requires dependencies not included in the default image - it will be necessary to build the image on your host. If your strategy requires dependencies not included in the default image - it will be necessary to build the image on your host.
For this, please create a Dockerfile containing installation steps for the additional dependencies (have a look at [docker/Dockerfile.custom](https://github.com/freqtrade/freqtrade/blob/develop/docker/Dockerfile.custom) for an example). For this, please create a Dockerfile containing installation steps for the additional dependencies (have a look at [docker/Dockerfile.custom](https://github.com/freqtrade/freqtrade/blob/develop/docker/Dockerfile.custom) for an example).
@ -166,15 +168,15 @@ You'll then also need to modify the `docker-compose.yml` file and uncomment the
dockerfile: "./Dockerfile.<yourextension>" dockerfile: "./Dockerfile.<yourextension>"
``` ```
You can then run `docker-compose build --pull` to build the docker image, and run it using the commands described above. You can then run `docker compose build --pull` to build the docker image, and run it using the commands described above.
### Plotting with docker-compose ### Plotting with docker
Commands `freqtrade plot-profit` and `freqtrade plot-dataframe` ([Documentation](plotting.md)) are available by changing the image to `*_plot` in your docker-compose.yml file. Commands `freqtrade plot-profit` and `freqtrade plot-dataframe` ([Documentation](plotting.md)) are available by changing the image to `*_plot` in your docker-compose.yml file.
You can then use these commands as follows: You can then use these commands as follows:
``` bash ``` bash
docker-compose run --rm freqtrade plot-dataframe --strategy AwesomeStrategy -p BTC/ETH --timerange=20180801-20180805 docker compose run --rm freqtrade plot-dataframe --strategy AwesomeStrategy -p BTC/ETH --timerange=20180801-20180805
``` ```
The output will be stored in the `user_data/plot` directory, and can be opened with any modern browser. The output will be stored in the `user_data/plot` directory, and can be opened with any modern browser.
@ -185,7 +187,7 @@ Freqtrade provides a docker-compose file which starts up a jupyter lab server.
You can run this server using the following command: You can run this server using the following command:
``` bash ``` bash
docker-compose -f docker/docker-compose-jupyter.yml up docker compose -f docker/docker-compose-jupyter.yml up
``` ```
This will create a docker-container running jupyter lab, which will be accessible using `https://127.0.0.1:8888/lab`. This will create a docker-container running jupyter lab, which will be accessible using `https://127.0.0.1:8888/lab`.
@ -194,7 +196,7 @@ Please use the link that's printed in the console after startup for simplified l
Since part of this image is built on your machine, it is recommended to rebuild the image from time to time to keep freqtrade (and dependencies) up-to-date. Since part of this image is built on your machine, it is recommended to rebuild the image from time to time to keep freqtrade (and dependencies) up-to-date.
``` bash ``` bash
docker-compose -f docker/docker-compose-jupyter.yml build --no-cache docker compose -f docker/docker-compose-jupyter.yml build --no-cache
``` ```
## Troubleshooting ## Troubleshooting

View File

@ -54,6 +54,9 @@ This configuration enables kraken, as well as rate-limiting to avoid bans from t
## Binance ## Binance
!!! Warning "Server location and geo-ip restrictions"
Please be aware that binance restrict api access regarding the server country. The currents and non exhaustive countries blocked are United States, Malaysia (Singapour), Ontario (Canada). Please go to [binance terms > b. Eligibility](https://www.binance.com/en/terms) to find up to date list.
Binance supports [time_in_force](configuration.md#understand-order_time_in_force). Binance supports [time_in_force](configuration.md#understand-order_time_in_force).
!!! Tip "Stoploss on Exchange" !!! Tip "Stoploss on Exchange"

View File

@ -26,10 +26,7 @@ FreqAI is configured through the typical [Freqtrade config file](configuration.m
}, },
"data_split_parameters" : { "data_split_parameters" : {
"test_size": 0.25 "test_size": 0.25
}, }
"model_training_parameters" : {
"n_estimators": 100
},
} }
``` ```

View File

@ -15,7 +15,7 @@ Mandatory parameters are marked as **Required** and have to be set in one of the
| `identifier` | **Required.** <br> A unique ID for the current model. If models are saved to disk, the `identifier` allows for reloading specific pre-trained models/data. <br> **Datatype:** String. | `identifier` | **Required.** <br> A unique ID for the current model. If models are saved to disk, the `identifier` allows for reloading specific pre-trained models/data. <br> **Datatype:** String.
| `live_retrain_hours` | Frequency of retraining during dry/live runs. <br> **Datatype:** Float > 0. <br> Default: `0` (models retrain as often as possible). | `live_retrain_hours` | Frequency of retraining during dry/live runs. <br> **Datatype:** Float > 0. <br> Default: `0` (models retrain as often as possible).
| `expiration_hours` | Avoid making predictions if a model is more than `expiration_hours` old. <br> **Datatype:** Positive integer. <br> Default: `0` (models never expire). | `expiration_hours` | Avoid making predictions if a model is more than `expiration_hours` old. <br> **Datatype:** Positive integer. <br> Default: `0` (models never expire).
| `purge_old_models` | Delete obsolete models. <br> **Datatype:** Boolean. <br> Default: `False` (all historic models remain on disk). | `purge_old_models` | Delete all unused models during live runs (not relevant to backtesting). If set to false (not default), dry/live runs will accumulate all unused models to disk. If <br> **Datatype:** Boolean. <br> Default: `True`.
| `save_backtest_models` | Save models to disk when running backtesting. Backtesting operates most efficiently by saving the prediction data and reusing them directly for subsequent runs (when you wish to tune entry/exit parameters). Saving backtesting models to disk also allows to use the same model files for starting a dry/live instance with the same model `identifier`. <br> **Datatype:** Boolean. <br> Default: `False` (no models are saved). | `save_backtest_models` | Save models to disk when running backtesting. Backtesting operates most efficiently by saving the prediction data and reusing them directly for subsequent runs (when you wish to tune entry/exit parameters). Saving backtesting models to disk also allows to use the same model files for starting a dry/live instance with the same model `identifier`. <br> **Datatype:** Boolean. <br> Default: `False` (no models are saved).
| `fit_live_predictions_candles` | Number of historical candles to use for computing target (label) statistics from prediction data, instead of from the training dataset (more information can be found [here](freqai-configuration.md#creating-a-dynamic-target-threshold)). <br> **Datatype:** Positive integer. | `fit_live_predictions_candles` | Number of historical candles to use for computing target (label) statistics from prediction data, instead of from the training dataset (more information can be found [here](freqai-configuration.md#creating-a-dynamic-target-threshold)). <br> **Datatype:** Positive integer.
| `follow_mode` | Use a `follower` that will look for models associated with a specific `identifier` and load those for inferencing. A `follower` will **not** train new models. <br> **Datatype:** Boolean. <br> Default: `False`. | `follow_mode` | Use a `follower` that will look for models associated with a specific `identifier` and load those for inferencing. A `follower` will **not** train new models. <br> **Datatype:** Boolean. <br> Default: `False`.
@ -37,7 +37,7 @@ Mandatory parameters are marked as **Required** and have to be set in one of the
| `indicator_max_period_candles` | **No longer used (#7325)**. Replaced by `startup_candle_count` which is set in the [strategy](freqai-configuration.md#building-a-freqai-strategy). `startup_candle_count` is timeframe independent and defines the maximum *period* used in `populate_any_indicators()` for indicator creation. FreqAI uses this parameter together with the maximum timeframe in `include_time_frames` to calculate how many data points to download such that the first data point does not include a NaN. <br> **Datatype:** Positive integer. | `indicator_max_period_candles` | **No longer used (#7325)**. Replaced by `startup_candle_count` which is set in the [strategy](freqai-configuration.md#building-a-freqai-strategy). `startup_candle_count` is timeframe independent and defines the maximum *period* used in `populate_any_indicators()` for indicator creation. FreqAI uses this parameter together with the maximum timeframe in `include_time_frames` to calculate how many data points to download such that the first data point does not include a NaN. <br> **Datatype:** Positive integer.
| `indicator_periods_candles` | Time periods to calculate indicators for. The indicators are added to the base indicator dataset. <br> **Datatype:** List of positive integers. | `indicator_periods_candles` | Time periods to calculate indicators for. The indicators are added to the base indicator dataset. <br> **Datatype:** List of positive integers.
| `principal_component_analysis` | Automatically reduce the dimensionality of the data set using Principal Component Analysis. See details about how it works [here](#reducing-data-dimensionality-with-principal-component-analysis) <br> **Datatype:** Boolean. <br> Default: `False`. | `principal_component_analysis` | Automatically reduce the dimensionality of the data set using Principal Component Analysis. See details about how it works [here](#reducing-data-dimensionality-with-principal-component-analysis) <br> **Datatype:** Boolean. <br> Default: `False`.
| `plot_feature_importances` | Create a feature importance plot for each model for the top/bottom `plot_feature_importances` number of features. <br> **Datatype:** Integer. <br> Default: `0`. | `plot_feature_importances` | Create a feature importance plot for each model for the top/bottom `plot_feature_importances` number of features. Plot is stored in `user_data/models/<identifier>/sub-train-<COIN>_<timestamp>.html`. <br> **Datatype:** Integer. <br> Default: `0`.
| `DI_threshold` | Activates the use of the Dissimilarity Index for outlier detection when set to > 0. See details about how it works [here](freqai-feature-engineering.md#identifying-outliers-with-the-dissimilarity-index-di). <br> **Datatype:** Positive float (typically < 1). | `DI_threshold` | Activates the use of the Dissimilarity Index for outlier detection when set to > 0. See details about how it works [here](freqai-feature-engineering.md#identifying-outliers-with-the-dissimilarity-index-di). <br> **Datatype:** Positive float (typically < 1).
| `use_SVM_to_remove_outliers` | Train a support vector machine to detect and remove outliers from the training dataset, as well as from incoming data points. See details about how it works [here](freqai-feature-engineering.md#identifying-outliers-using-a-support-vector-machine-svm). <br> **Datatype:** Boolean. | `use_SVM_to_remove_outliers` | Train a support vector machine to detect and remove outliers from the training dataset, as well as from incoming data points. See details about how it works [here](freqai-feature-engineering.md#identifying-outliers-using-a-support-vector-machine-svm). <br> **Datatype:** Boolean.
| `svm_params` | All parameters available in Sklearn's `SGDOneClassSVM()`. See details about some select parameters [here](freqai-feature-engineering.md#identifying-outliers-using-a-support-vector-machine-svm). <br> **Datatype:** Dictionary. | `svm_params` | All parameters available in Sklearn's `SGDOneClassSVM()`. See details about some select parameters [here](freqai-feature-engineering.md#identifying-outliers-using-a-support-vector-machine-svm). <br> **Datatype:** Dictionary.
@ -82,6 +82,7 @@ Mandatory parameters are marked as **Required** and have to be set in one of the
| `model_reward_parameters` | Parameters used inside the customizable `calculate_reward()` function in `ReinforcementLearner.py` <br> **Datatype:** int. | `model_reward_parameters` | Parameters used inside the customizable `calculate_reward()` function in `ReinforcementLearner.py` <br> **Datatype:** int.
| `add_state_info` | Tell FreqAI to include state information in the feature set for training and inferencing. The current state variables include trade duration, current profit, trade position. This is only available in dry/live runs, and is automatically switched to false for backtesting. <br> **Datatype:** bool. <br> Default: `False`. | `add_state_info` | Tell FreqAI to include state information in the feature set for training and inferencing. The current state variables include trade duration, current profit, trade position. This is only available in dry/live runs, and is automatically switched to false for backtesting. <br> **Datatype:** bool. <br> Default: `False`.
| `net_arch` | Network architecture which is well described in [`stable_baselines3` doc](https://stable-baselines3.readthedocs.io/en/master/guide/custom_policy.html#examples). In summary: `[<shared layers>, dict(vf=[<non-shared value network layers>], pi=[<non-shared policy network layers>])]`. By default this is set to `[128, 128]`, which defines 2 shared hidden layers with 128 units each. | `net_arch` | Network architecture which is well described in [`stable_baselines3` doc](https://stable-baselines3.readthedocs.io/en/master/guide/custom_policy.html#examples). In summary: `[<shared layers>, dict(vf=[<non-shared value network layers>], pi=[<non-shared policy network layers>])]`. By default this is set to `[128, 128]`, which defines 2 shared hidden layers with 128 units each.
| `randomize_starting_position` | Randomize the starting point of each episode to avoid overfitting. <br> **Datatype:** bool. <br> Default: `False`.
### Additional parameters ### Additional parameters

View File

@ -8,7 +8,7 @@
### What is RL and why does FreqAI need it? ### What is RL and why does FreqAI need it?
Reinforcement learning involves two important components, the *agent* and the training *environment*. During agent training, the agent moves through historical data candle by candle, always making 1 of a set of actions: Long entry, long exit, short entry, short exit, neutral). During this training process, the environment tracks the performance of these actions and rewards the agent according to a custom user made `calculate_reward()` (here we offer a default reward for users to build on if they wish [details here](#creating-the-reward)). The reward is used to train weights in a neural network. Reinforcement learning involves two important components, the *agent* and the training *environment*. During agent training, the agent moves through historical data candle by candle, always making 1 of a set of actions: Long entry, long exit, short entry, short exit, neutral). During this training process, the environment tracks the performance of these actions and rewards the agent according to a custom user made `calculate_reward()` (here we offer a default reward for users to build on if they wish [details here](#creating-a-custom-reward-function)). The reward is used to train weights in a neural network.
A second important component of the FreqAI RL implementation is the use of *state* information. State information is fed into the network at each step, including current profit, current position, and current trade duration. These are used to train the agent in the training environment, and to reinforce the agent in dry/live (this functionality is not available in backtesting). *FreqAI + Freqtrade is a perfect match for this reinforcing mechanism since this information is readily available in live deployments.* A second important component of the FreqAI RL implementation is the use of *state* information. State information is fed into the network at each step, including current profit, current position, and current trade duration. These are used to train the agent in the training environment, and to reinforce the agent in dry/live (this functionality is not available in backtesting). *FreqAI + Freqtrade is a perfect match for this reinforcing mechanism since this information is readily available in live deployments.*
@ -16,15 +16,15 @@ Reinforcement learning is a natural progression for FreqAI, since it adds a new
### The RL interface ### The RL interface
With the current framework, we aim to expose the training environment via the common "prediction model" file, which is a user inherited `BaseReinforcementLearner` object (e.g. `freqai/prediction_models/ReinforcementLearner`). Inside this user class, the RL environment is available and customized via `MyRLEnv` as [shown below](#creating-the-reward). With the current framework, we aim to expose the training environment via the common "prediction model" file, which is a user inherited `BaseReinforcementLearner` object (e.g. `freqai/prediction_models/ReinforcementLearner`). Inside this user class, the RL environment is available and customized via `MyRLEnv` as [shown below](#creating-a-custom-reward-function).
We envision the majority of users focusing their effort on creative design of the `calculate_reward()` function [details here](#creating-the-reward), while leaving the rest of the environment untouched. Other users may not touch the environment at all, and they will only play with the configuration settings and the powerful feature engineering that already exists in FreqAI. Meanwhile, we enable advanced users to create their own model classes entirely. We envision the majority of users focusing their effort on creative design of the `calculate_reward()` function [details here](#creating-a-custom-reward-function), while leaving the rest of the environment untouched. Other users may not touch the environment at all, and they will only play with the configuration settings and the powerful feature engineering that already exists in FreqAI. Meanwhile, we enable advanced users to create their own model classes entirely.
The framework is built on stable_baselines3 (torch) and OpenAI gym for the base environment class. But generally speaking, the model class is well isolated. Thus, the addition of competing libraries can be easily integrated into the existing framework. For the environment, it is inheriting from `gym.env` which means that it is necessary to write an entirely new environment in order to switch to a different library. The framework is built on stable_baselines3 (torch) and OpenAI gym for the base environment class. But generally speaking, the model class is well isolated. Thus, the addition of competing libraries can be easily integrated into the existing framework. For the environment, it is inheriting from `gym.env` which means that it is necessary to write an entirely new environment in order to switch to a different library.
### Important considerations ### Important considerations
As explained above, the agent is "trained" in an artificial trading "environment". In our case, that environment may seem quite similar to a real Freqtrade backtesting environment, but it is *NOT*. In fact, the RL trading environment is much more simplified. It does not incorporate any of the complicated strategy logic, such as callbacks such as `custom_exit`, `custom_stoploss`, leverage controls, etc. The RL environment is instead a very "raw" representation of the true market, where the agent has free-will to learn the policy (read: stoploss, take profit, ect) which is enforced by the `calculate_reward()`. Thus, it is important to consider that the agent training environment is not identical to the real world. As explained above, the agent is "trained" in an artificial trading "environment". In our case, that environment may seem quite similar to a real Freqtrade backtesting environment, but it is *NOT*. In fact, the RL training environment is much more simplified. It does not incorporate any of the complicated strategy logic, such as callbacks like `custom_exit`, `custom_stoploss`, leverage controls, etc. The RL environment is instead a very "raw" representation of the true market, where the agent has free-will to learn the policy (read: stoploss, take profit, etc.) which is enforced by the `calculate_reward()`. Thus, it is important to consider that the agent training environment is not identical to the real world.
## Running Reinforcement Learning ## Running Reinforcement Learning
@ -95,7 +95,7 @@ Most of the function remains the same as for typical Regressors, however, the fu
informative[f"%-{pair}raw_low"] = informative["low"] informative[f"%-{pair}raw_low"] = informative["low"]
``` ```
Finally, there is no explicit "label" to make - instead the you need to assign the `&-action` column which will contain the agent's actions when accessed in `populate_entry/exit_trends()`. In the present example, the neutral action to 0. This value should align with the environment used. FreqAI provides two environments, both use 0 as the neutral action. Finally, there is no explicit "label" to make - instead it is necessary to assign the `&-action` column which will contain the agent's actions when accessed in `populate_entry/exit_trends()`. In the present example, the neutral action to 0. This value should align with the environment used. FreqAI provides two environments, both use 0 as the neutral action.
After users realize there are no labels to set, they will soon understand that the agent is making its "own" entry and exit decisions. This makes strategy construction rather simple. The entry and exit signals come from the agent in the form of an integer - which are used directly to decide entries and exits in the strategy: After users realize there are no labels to set, they will soon understand that the agent is making its "own" entry and exit decisions. This makes strategy construction rather simple. The entry and exit signals come from the agent in the form of an integer - which are used directly to decide entries and exits in the strategy:
@ -166,7 +166,8 @@ As you begin to modify the strategy and the prediction model, you will quickly r
```python ```python
from freqtrade.freqai.prediction_models.ReinforcementLearner import ReinforcementLearner from freqtrade.freqai.prediction_models.ReinforcementLearner import ReinforcementLearner
from freqtrade.freqai.RL.Base5ActionRLEnv import Base5ActionRLEnv from freqtrade.freqai.RL.Base5ActionRLEnv import Actions, Base5ActionRLEnv, Positions
class MyCoolRLModel(ReinforcementLearner): class MyCoolRLModel(ReinforcementLearner):
""" """
@ -242,18 +243,44 @@ cd freqtrade
tensorboard --logdir user_data/models/unique-id tensorboard --logdir user_data/models/unique-id
``` ```
where `unique-id` is the `identifier` set in the `freqai` configuration file. This command must be run in a separate shell to view the output in their browser at 127.0.0.1:6060 (6060 is the default port used by Tensorboard). where `unique-id` is the `identifier` set in the `freqai` configuration file. This command must be run in a separate shell to view the output in their browser at 127.0.0.1:6006 (6006 is the default port used by Tensorboard).
![tensorboard](assets/tensorboard.jpg) ![tensorboard](assets/tensorboard.jpg)
### Custom logging
FreqAI also provides a built in episodic summary logger called `self.tensorboard_log` for adding custom information to the Tensorboard log. By default, this function is already called once per step inside the environment to record the agent actions. All values accumulated for all steps in a single episode are reported at the conclusion of each episode, followed by a full reset of all metrics to 0 in preparation for the subsequent episode.
`self.tensorboard_log` can also be used anywhere inside the environment, for example, it can be added to the `calculate_reward` function to collect more detailed information about how often various parts of the reward were called:
```py
class MyRLEnv(Base5ActionRLEnv):
"""
User made custom environment. This class inherits from BaseEnvironment and gym.env.
Users can override any functions from those parent classes. Here is an example
of a user customized `calculate_reward()` function.
"""
def calculate_reward(self, action: int) -> float:
if not self._is_valid(action):
self.tensorboard_log("is_valid")
return -2
```
!!! Note
The `self.tensorboard_log()` function is designed for tracking incremented objects only i.e. events, actions inside the training environment. If the event of interest is a float, the float can be passed as the second argument e.g. `self.tensorboard_log("float_metric1", 0.23)` would add 0.23 to `float_metric`. In this case you can also disable incrementing using `inc=False` parameter.
### Choosing a base environment ### Choosing a base environment
FreqAI provides two base environments, `Base4ActionEnvironment` and `Base5ActionEnvironment`. As the names imply, the environments are customized for agents that can select from 4 or 5 actions. In the `Base4ActionEnvironment`, the agent can enter long, enter short, hold neutral, or exit position. Meanwhile, in the `Base5ActionEnvironment`, the agent has the same actions as Base4, but instead of a single exit action, it separates exit long and exit short. The main changes stemming from the environment selection include: FreqAI provides three base environments, `Base3ActionRLEnvironment`, `Base4ActionEnvironment` and `Base5ActionEnvironment`. As the names imply, the environments are customized for agents that can select from 3, 4 or 5 actions. The `Base3ActionEnvironment` is the simplest, the agent can select from hold, long, or short. This environment can also be used for long-only bots (it automatically follows the `can_short` flag from the strategy), where long is the enter condition and short is the exit condition. Meanwhile, in the `Base4ActionEnvironment`, the agent can enter long, enter short, hold neutral, or exit position. Finally, in the `Base5ActionEnvironment`, the agent has the same actions as Base4, but instead of a single exit action, it separates exit long and exit short. The main changes stemming from the environment selection include:
* the actions available in the `calculate_reward` * the actions available in the `calculate_reward`
* the actions consumed by the user strategy * the actions consumed by the user strategy
Both of the FreqAI provided environments inherit from an action/position agnostic environment object called the `BaseEnvironment`, which contains all shared logic. The architecture is designed to be easily customized. The simplest customization is the `calculate_reward()` (see details [here](#creating-the-reward)). However, the customizations can be further extended into any of the functions inside the environment. You can do this by simply overriding those functions inside your `MyRLEnv` in the prediction model file. Or for more advanced customizations, it is encouraged to create an entirely new environment inherited from `BaseEnvironment`. All of the FreqAI provided environments inherit from an action/position agnostic environment object called the `BaseEnvironment`, which contains all shared logic. The architecture is designed to be easily customized. The simplest customization is the `calculate_reward()` (see details [here](#creating-a-custom-reward-function)). However, the customizations can be further extended into any of the functions inside the environment. You can do this by simply overriding those functions inside your `MyRLEnv` in the prediction model file. Or for more advanced customizations, it is encouraged to create an entirely new environment inherited from `BaseEnvironment`.
!!! Note !!! Note
FreqAI does not provide by default, a long-only training environment. However, creating one should be as simple as copy-pasting one of the built in environments and removing the `short` actions (and all associated references to those). Only the `Base3ActionRLEnv` can do long-only training/trading (set the user strategy attribute `can_short = False`).

View File

@ -79,16 +79,11 @@ To change your **features**, you **must** set a new `identifier` in the config t
To save the models generated during a particular backtest so that you can start a live deployment from one of them instead of training a new model, you must set `save_backtest_models` to `True` in the config. To save the models generated during a particular backtest so that you can start a live deployment from one of them instead of training a new model, you must set `save_backtest_models` to `True` in the config.
### Backtest live models ### Backtest live collected predictions
FreqAI allow you to reuse ready models through the backtest parameter `--freqai-backtest-live-models`. This can be useful when you want to reuse models generated in dry/run for comparison or other study. For that, you must set `"purge_old_models"` to `True` in the config. FreqAI allow you to reuse live historic predictions through the backtest parameter `--freqai-backtest-live-models`. This can be useful when you want to reuse predictions generated in dry/run for comparison or other study.
The `--timerange` parameter must not be informed, as it will be automatically calculated through the training end dates of the models. The `--timerange` parameter must not be informed, as it will be automatically calculated through the data in the historic predictions file.
Each model has an identifier derived from the training end date. If you have only 1 model trained, FreqAI will backtest from the training end date until the current date. If you have more than 1 model, each model will perform the backtesting according to the training end date until the training end date of the next model and so on. For the last model, the period of the previous model will be used for the execution.
!!! Note
Currently, there is no checking for expired models, even if the `expired_hours` parameter is set.
### Downloading data to cover the full backtest period ### Downloading data to cover the full backtest period

View File

@ -72,11 +72,25 @@ pip install -r requirements-freqai.txt
If you are using docker, a dedicated tag with FreqAI dependencies is available as `:freqai`. As such - you can replace the image line in your docker-compose file with `image: freqtradeorg/freqtrade:develop_freqai`. This image contains the regular FreqAI dependencies. Similar to native installs, Catboost will not be available on ARM based devices. If you are using docker, a dedicated tag with FreqAI dependencies is available as `:freqai`. As such - you can replace the image line in your docker-compose file with `image: freqtradeorg/freqtrade:develop_freqai`. This image contains the regular FreqAI dependencies. Similar to native installs, Catboost will not be available on ARM based devices.
### FreqAI position in open-source machine learning landscape ### FreqAI position in open-source machine learning landscape
Forecasting chaotic time-series based systems, such as equity/cryptocurrency markets, requires a broad set of tools geared toward testing a wide range of hypotheses. Fortunately, a recent maturation of robust machine learning libraries (e.g. `scikit-learn`) has opened up a wide range of research possibilities. Scientists from a diverse range of fields can now easily prototype their studies on an abundance of established machine learning algorithms. Similarly, these user-friendly libraries enable "citzen scientists" to use their basic Python skills for data-exploration. However, leveraging these machine learning libraries on historical and live chaotic data sources can be logistically difficult and expensive. Additionally, robust data-collection, storage, and handling presents a disparate challenge. [`FreqAI`](#freqai) aims to provide a generalized and extensible open-sourced framework geared toward live deployments of adaptive modeling for market forecasting. The `FreqAI` framework is effectively a sandbox for the rich world of open-source machine learning libraries. Inside the `FreqAI` sandbox, users find they can combine a wide variety of third-party libraries to test creative hypotheses on a free live 24/7 chaotic data source - cryptocurrency exchange data. Forecasting chaotic time-series based systems, such as equity/cryptocurrency markets, requires a broad set of tools geared toward testing a wide range of hypotheses. Fortunately, a recent maturation of robust machine learning libraries (e.g. `scikit-learn`) has opened up a wide range of research possibilities. Scientists from a diverse range of fields can now easily prototype their studies on an abundance of established machine learning algorithms. Similarly, these user-friendly libraries enable "citzen scientists" to use their basic Python skills for data-exploration. However, leveraging these machine learning libraries on historical and live chaotic data sources can be logistically difficult and expensive. Additionally, robust data-collection, storage, and handling presents a disparate challenge. [`FreqAI`](#freqai) aims to provide a generalized and extensible open-sourced framework geared toward live deployments of adaptive modeling for market forecasting. The `FreqAI` framework is effectively a sandbox for the rich world of open-source machine learning libraries. Inside the `FreqAI` sandbox, users find they can combine a wide variety of third-party libraries to test creative hypotheses on a free live 24/7 chaotic data source - cryptocurrency exchange data.
### Citing FreqAI
FreqAI is [published in the Journal of Open Source Software](https://joss.theoj.org/papers/10.21105/joss.04864). If you find FreqAI useful in your research, please use the following citation:
```bibtex
@article{Caulk2022,
doi = {10.21105/joss.04864},
url = {https://doi.org/10.21105/joss.04864},
year = {2022}, publisher = {The Open Journal},
volume = {7}, number = {80}, pages = {4864},
author = {Robert A. Caulk and Elin Törnquist and Matthias Voppichler and Andrew R. Lawless and Ryan McMullan and Wagner Costa Santos and Timothy C. Pogue and Johan van der Vlugt and Stefan P. Gehring and Pascal Schmidt},
title = {FreqAI: generalizing adaptive modeling for chaotic time-series market forecasts},
journal = {Journal of Open Source Software} }
```
## Common pitfalls ## Common pitfalls
FreqAI cannot be combined with dynamic `VolumePairlists` (or any pairlist filter that adds and removes pairs dynamically). FreqAI cannot be combined with dynamic `VolumePairlists` (or any pairlist filter that adds and removes pairs dynamically).
@ -99,6 +113,8 @@ Code review and software architecture brainstorming:
Software development: Software development:
Wagner Costa @wagnercosta Wagner Costa @wagnercosta
Emre Suzen @aemr3
Timothy Pogue @wizrds
Beta testing and bug reporting: Beta testing and bug reporting:
Stefan Gehring @bloodhunter4rc, @longyu, Andrew Lawless @paranoidandy, Pascal Schmidt @smidelis, Ryan McMullan @smarmau, Juha Nykänen @suikula, Johan van der Vlugt @jooopiert, Richárd Józsa @richardjosza, Timothy Pogue @wizrds Stefan Gehring @bloodhunter4rc, @longyu, Andrew Lawless @paranoidandy, Pascal Schmidt @smidelis, Ryan McMullan @smarmau, Juha Nykänen @suikula, Johan van der Vlugt @jooopiert, Richárd Józsa @richardjosza

View File

@ -23,6 +23,7 @@ You may also use something like `.*DOWN/BTC` or `.*UP/BTC` to exclude leveraged
* [`StaticPairList`](#static-pair-list) (default, if not configured differently) * [`StaticPairList`](#static-pair-list) (default, if not configured differently)
* [`VolumePairList`](#volume-pair-list) * [`VolumePairList`](#volume-pair-list)
* [`ProducerPairList`](#producerpairlist) * [`ProducerPairList`](#producerpairlist)
* [`RemotePairList`](#remotepairlist)
* [`AgeFilter`](#agefilter) * [`AgeFilter`](#agefilter)
* [`OffsetFilter`](#offsetfilter) * [`OffsetFilter`](#offsetfilter)
* [`PerformanceFilter`](#performancefilter) * [`PerformanceFilter`](#performancefilter)
@ -173,6 +174,48 @@ You can limit the length of the pairlist with the optional parameter `number_ass
`ProducerPairList` can also be used multiple times in sequence, combining the pairs from multiple producers. `ProducerPairList` can also be used multiple times in sequence, combining the pairs from multiple producers.
Obviously in complex such configurations, the Producer may not provide data for all pairs, so the strategy must be fit for this. Obviously in complex such configurations, the Producer may not provide data for all pairs, so the strategy must be fit for this.
#### RemotePairList
It allows the user to fetch a pairlist from a remote server or a locally stored json file within the freqtrade directory, enabling dynamic updates and customization of the trading pairlist.
The RemotePairList is defined in the pairlists section of the configuration settings. It uses the following configuration options:
```json
"pairlists": [
{
"method": "RemotePairList",
"pairlist_url": "https://example.com/pairlist",
"number_assets": 10,
"refresh_period": 1800,
"keep_pairlist_on_failure": true,
"read_timeout": 60,
"bearer_token": "my-bearer-token"
}
]
```
The `pairlist_url` option specifies the URL of the remote server where the pairlist is located, or the path to a local file (if file:/// is prepended). This allows the user to use either a remote server or a local file as the source for the pairlist.
The user is responsible for providing a server or local file that returns a JSON object with the following structure:
```json
{
"pairs": ["XRP/USDT", "ETH/USDT", "LTC/USDT"],
"refresh_period": 1800,
}
```
The `pairs` property should contain a list of strings with the trading pairs to be used by the bot. The `refresh_period` property is optional and specifies the number of seconds that the pairlist should be cached before being refreshed.
The optional `keep_pairlist_on_failure` specifies whether the previous received pairlist should be used if the remote server is not reachable or returns an error. The default value is true.
The optional `read_timeout` specifies the maximum amount of time (in seconds) to wait for a response from the remote source, The default value is 60.
The optional `bearer_token` will be included in the requests Authorization Header.
!!! Note
In case of a server error the last received pairlist will be kept if `keep_pairlist_on_failure` is set to true, when set to false a empty pairlist is returned.
#### AgeFilter #### AgeFilter
Removes pairs that have been listed on the exchange for less than `min_days_listed` days (defaults to `10`) or more than `max_days_listed` days (defaults `None` mean infinity). Removes pairs that have been listed on the exchange for less than `min_days_listed` days (defaults to `10`) or more than `max_days_listed` days (defaults `None` mean infinity).

View File

@ -1,6 +1,6 @@
markdown==3.3.7 markdown==3.3.7
mkdocs==1.4.2 mkdocs==1.4.2
mkdocs-material==8.5.10 mkdocs-material==8.5.11
mdx_truly_sane_lists==1.3 mdx_truly_sane_lists==1.3
pymdown-extensions==9.8 pymdown-extensions==9.9
jinja2==3.1.2 jinja2==3.1.2

View File

@ -13,12 +13,12 @@ Feel free to use a visual Database editor like SqliteBrowser if you feel more co
sudo apt-get install sqlite3 sudo apt-get install sqlite3
``` ```
### Using sqlite3 via docker-compose ### Using sqlite3 via docker
The freqtrade docker image does contain sqlite3, so you can edit the database without having to install anything on the host system. The freqtrade docker image does contain sqlite3, so you can edit the database without having to install anything on the host system.
``` bash ``` bash
docker-compose exec freqtrade /bin/bash docker compose exec freqtrade /bin/bash
sqlite3 <database-file>.sqlite sqlite3 <database-file>.sqlite
``` ```

View File

@ -773,7 +773,7 @@ class DigDeeperStrategy(IStrategy):
* Sell 100@10\$ -> Avg price: 8.5\$, realized profit 150\$, 17.65% * Sell 100@10\$ -> Avg price: 8.5\$, realized profit 150\$, 17.65%
* Buy 150@11\$ -> Avg price: 10\$, realized profit 150\$, 17.65% * Buy 150@11\$ -> Avg price: 10\$, realized profit 150\$, 17.65%
* Sell 100@12\$ -> Avg price: 10\$, total realized profit 350\$, 20% * Sell 100@12\$ -> Avg price: 10\$, total realized profit 350\$, 20%
* Sell 150@14\$ -> Avg price: 10\$, total realized profit 950\$, 40% * Sell 150@14\$ -> Avg price: 10\$, total realized profit 950\$, 40% <- *This will be the last "Exit" message*
The total profit for this trade was 950$ on a 3350$ investment (`100@8$ + 100@9$ + 150@11$`). As such - the final relative profit is 28.35% (`950 / 3350`). The total profit for this trade was 950$ on a 3350$ investment (`100@8$ + 100@9$ + 150@11$`). As such - the final relative profit is 28.35% (`950 / 3350`).

View File

@ -364,8 +364,8 @@ class AwesomeStrategy(IStrategy):
timeframe_mins = timeframe_to_minutes(timeframe) timeframe_mins = timeframe_to_minutes(timeframe)
minimal_roi = { minimal_roi = {
"0": 0.05, # 5% for the first 3 candles "0": 0.05, # 5% for the first 3 candles
str(timeframe_mins * 3)): 0.02, # 2% after 3 candles str(timeframe_mins * 3): 0.02, # 2% after 3 candles
str(timeframe_mins * 6)): 0.01, # 1% After 6 candles str(timeframe_mins * 6): 0.01, # 1% After 6 candles
} }
``` ```
@ -989,38 +989,18 @@ from freqtrade.persistence import Trade
The following example queries for the current pair and trades from today, however other filters can easily be added. The following example queries for the current pair and trades from today, however other filters can easily be added.
``` python ``` python
if self.config['runmode'].value in ('live', 'dry_run'): trades = Trade.get_trades_proxy(pair=metadata['pair'],
trades = Trade.get_trades([Trade.pair == metadata['pair'], open_date=datetime.now(timezone.utc) - timedelta(days=1),
Trade.open_date > datetime.utcnow() - timedelta(days=1), is_open=False,
Trade.is_open.is_(False),
]).order_by(Trade.close_date).all() ]).order_by(Trade.close_date).all()
# Summarize profit for this pair. # Summarize profit for this pair.
curdayprofit = sum(trade.close_profit for trade in trades) curdayprofit = sum(trade.close_profit for trade in trades)
``` ```
Get amount of stake_currency currently invested in Trades: For a full list of available methods, please consult the [Trade object](trade-object.md) documentation.
``` python
if self.config['runmode'].value in ('live', 'dry_run'):
total_stakes = Trade.total_open_trades_stakes()
```
Retrieve performance per pair.
Returns a List of dicts per pair.
``` python
if self.config['runmode'].value in ('live', 'dry_run'):
performance = Trade.get_overall_performance()
```
Sample return value: ETH/BTC had 5 trades, with a total profit of 1.5% (ratio of 0.015).
``` json
{"pair": "ETH/BTC", "profit": 0.015, "count": 5}
```
!!! Warning !!! Warning
Trade history is not available during backtesting or hyperopt. Trade history is not available in `populate_*` methods during backtesting or hyperopt, and will result in empty results.
## Prevent trades from happening for a specific pair ## Prevent trades from happening for a specific pair

View File

@ -2,12 +2,37 @@
Debugging a strategy can be time-consuming. Freqtrade offers helper functions to visualize raw data. Debugging a strategy can be time-consuming. Freqtrade offers helper functions to visualize raw data.
The following assumes you work with SampleStrategy, data for 5m timeframe from Binance and have downloaded them into the data directory in the default location. The following assumes you work with SampleStrategy, data for 5m timeframe from Binance and have downloaded them into the data directory in the default location.
Please follow the [documentation](https://www.freqtrade.io/en/stable/data-download/) for more details.
## Setup ## Setup
### Change Working directory to repository root
```python ```python
import os
from pathlib import Path from pathlib import Path
# Change directory
# Modify this cell to insure that the output shows the correct path.
# Define all paths relative to the project root shown in the cell output
project_root = "somedir/freqtrade"
i=0
try:
os.chdirdir(project_root)
assert Path('LICENSE').is_file()
except:
while i<4 and (not Path('LICENSE').is_file()):
os.chdir(Path(Path.cwd(), '../'))
i+=1
project_root = Path.cwd()
print(Path.cwd())
```
### Configure Freqtrade environment
```python
from freqtrade.configuration import Configuration from freqtrade.configuration import Configuration
# Customize these according to your needs. # Customize these according to your needs.
@ -15,14 +40,14 @@ from freqtrade.configuration import Configuration
# Initialize empty configuration object # Initialize empty configuration object
config = Configuration.from_files([]) config = Configuration.from_files([])
# Optionally (recommended), use existing configuration file # Optionally (recommended), use existing configuration file
# config = Configuration.from_files(["config.json"]) # config = Configuration.from_files(["user_data/config.json"])
# Define some constants # Define some constants
config["timeframe"] = "5m" config["timeframe"] = "5m"
# Name of the strategy class # Name of the strategy class
config["strategy"] = "SampleStrategy" config["strategy"] = "SampleStrategy"
# Location of the data # Location of the data
data_location = config['datadir'] data_location = config["datadir"]
# Pair to analyze - Only use one pair here # Pair to analyze - Only use one pair here
pair = "BTC/USDT" pair = "BTC/USDT"
``` ```
@ -36,12 +61,12 @@ from freqtrade.enums import CandleType
candles = load_pair_history(datadir=data_location, candles = load_pair_history(datadir=data_location,
timeframe=config["timeframe"], timeframe=config["timeframe"],
pair=pair, pair=pair,
data_format = "hdf5", data_format = "json", # Make sure to update this to your data
candle_type=CandleType.SPOT, candle_type=CandleType.SPOT,
) )
# Confirm success # Confirm success
print("Loaded " + str(len(candles)) + f" rows of data for {pair} from {data_location}") print(f"Loaded {len(candles)} rows of data for {pair} from {data_location}")
candles.head() candles.head()
``` ```
@ -232,7 +257,7 @@ graph = generate_candlestick_graph(pair=pair,
# Show graph inline # Show graph inline
# graph.show() # graph.show()
# Render graph in a seperate window # Render graph in a separate window
graph.show(renderer="browser") graph.show(renderer="browser")
``` ```

148
docs/trade-object.md Normal file
View File

@ -0,0 +1,148 @@
# Trade Object
## Trade
A position freqtrade enters is stored in a `Trade` object - which is persisted to the database.
It's a core concept of freqtrade - and something you'll come across in many sections of the documentation, which will most likely point you to this location.
It will be passed to the strategy in many [strategy callbacks](strategy-callbacks.md). The object passed to the strategy cannot be modified directly. Indirect modifications may occur based on callback results.
## Trade - Available attributes
The following attributes / properties are available for each individual trade - and can be used with `trade.<property>` (e.g. `trade.pair`).
| Attribute | DataType | Description |
|------------|-------------|-------------|
`pair`| string | Pair of this trade
`is_open`| boolean | Is the trade currently open, or has it been concluded
`open_rate`| float | Rate this trade was entered at (Avg. entry rate in case of trade-adjustments)
`close_rate`| float | Close rate - only set when is_open = False
`stake_amount`| float | Amount in Stake (or Quote) currency.
`amount`| float | Amount in Asset / Base currency that is currently owned.
`open_date`| datetime | Timestamp when trade was opened **use `open_date_utc` instead**
`open_date_utc`| datetime | Timestamp when trade was opened - in UTC
`close_date`| datetime | Timestamp when trade was closed **use `close_date_utc` instead**
`close_date_utc`| datetime | Timestamp when trade was closed - in UTC
`close_profit`| float | Relative profit at the time of trade closure. `0.01` == 1%
`close_profit_abs`| float | Absolute profit (in stake currency) at the time of trade closure.
`leverage` | float | Leverage used for this trade - defaults to 1.0 in spot markets.
`enter_tag`| string | Tag provided on entry via the `enter_tag` column in the dataframe
`is_short` | boolean | True for short trades, False otherwise
`orders` | Order[] | List of order objects attached to this trade (includes both filled and cancelled orders)
`date_last_filled_utc` | datetime | Time of the last filled order
`entry_side` | "buy" / "sell" | Order Side the trade was entered
`exit_side` | "buy" / "sell" | Order Side that will result in a trade exit / position reduction.
`trade_direction` | "long" / "short" | Trade direction in text - long or short.
`nr_of_successful_entries` | int | Number of successful (filled) entry orders
`nr_of_successful_exits` | int | Number of successful (filled) exit orders
## Class methods
The following are class methods - which return generic information, and usually result in an explicit query against the database.
They can be used as `Trade.<method>` - e.g. `open_trades = Trade.get_open_trade_count()`
!!! Warning "Backtesting/hyperopt"
Most methods will work in both backtesting / hyperopt and live/dry modes.
During backtesting, it's limited to usage in [strategy callbacks](strategy-callbacks.md). Usage in `populate_*()` methods is not supported and will result in wrong results.
### get_trades_proxy
When your strategy needs some information on existing (open or close) trades - it's best to use `Trade.get_trades_proxy()`.
Usage:
``` python
from freqtrade.persistence import Trade
from datetime import timedelta
# ...
trade_hist = Trade.get_trades_proxy(pair='ETH/USDT', is_open=False, open_date=current_date - timedelta(days=2))
```
`get_trades_proxy()` supports the following keyword arguments. All arguments are optional - calling `get_trades_proxy()` without arguments will return a list of all trades in the database.
* `pair` e.g. `pair='ETH/USDT'`
* `is_open` e.g. `is_open=False`
* `open_date` e.g. `open_date=current_date - timedelta(days=2)`
* `close_date` e.g. `close_date=current_date - timedelta(days=5)`
### get_open_trade_count
Get the number of currently open trades
``` python
from freqtrade.persistence import Trade
# ...
open_trades = Trade.get_open_trade_count()
```
### get_total_closed_profit
Retrieve the total profit the bot has generated so far.
Aggregates `close_profit_abs` for all closed trades.
``` python
from freqtrade.persistence import Trade
# ...
profit = Trade.get_total_closed_profit()
```
### total_open_trades_stakes
Retrieve the total stake_amount that's currently in trades.
``` python
from freqtrade.persistence import Trade
# ...
profit = Trade.total_open_trades_stakes()
```
### get_overall_performance
Retrieve the overall performance - similar to the `/performance` telegram command.
``` python
from freqtrade.persistence import Trade
# ...
if self.config['runmode'].value in ('live', 'dry_run'):
performance = Trade.get_overall_performance()
```
Sample return value: ETH/BTC had 5 trades, with a total profit of 1.5% (ratio of 0.015).
``` json
{"pair": "ETH/BTC", "profit": 0.015, "count": 5}
```
## Order Object
An `Order` object represents an order on the exchange (or a simulated order in dry-run mode).
An `Order` object will always be tied to it's corresponding [`Trade`](#trade-object), and only really makes sense in the context of a trade.
### Order - Available attributes
an Order object is typically attached to a trade.
Most properties here can be None as they are dependant on the exchange response.
| Attribute | DataType | Description |
|------------|-------------|-------------|
`trade` | Trade | Trade object this order is attached to
`ft_pair` | string | Pair this order is for
`ft_is_open` | boolean | is the order filled?
`order_type` | string | Order type as defined on the exchange - usually market, limit or stoploss
`status` | string | Status as defined by ccxt. Usually open, closed, expired or canceled
`side` | string | Buy or Sell
`price` | float | Price the order was placed at
`average` | float | Average price the order filled at
`amount` | float | Amount in base currency
`filled` | float | Filled amount (in base currency)
`remaining` | float | Remaining amount
`cost` | float | Cost of the order - usually average * filled
`order_date` | datetime | Order creation date **use `order_date_utc` instead**
`order_date_utc` | datetime | Order creation date (in UTC)
`order_fill_date` | datetime | Order fill date **use `order_fill_utc` instead**
`order_fill_date_utc` | datetime | Order fill date

View File

@ -6,14 +6,14 @@ To update your freqtrade installation, please use one of the below methods, corr
Breaking changes / changed behavior will be documented in the changelog that is posted alongside every release. Breaking changes / changed behavior will be documented in the changelog that is posted alongside every release.
For the develop branch, please follow PR's to avoid being surprised by changes. For the develop branch, please follow PR's to avoid being surprised by changes.
## docker-compose ## docker
!!! Note "Legacy installations using the `master` image" !!! Note "Legacy installations using the `master` image"
We're switching from master to stable for the release Images - please adjust your docker-file and replace `freqtradeorg/freqtrade:master` with `freqtradeorg/freqtrade:stable` We're switching from master to stable for the release Images - please adjust your docker-file and replace `freqtradeorg/freqtrade:master` with `freqtradeorg/freqtrade:stable`
``` bash ``` bash
docker-compose pull docker compose pull
docker-compose up -d docker compose up -d
``` ```
## Installation via setup script ## Installation via setup script

View File

@ -652,7 +652,7 @@ Common arguments:
You can also use webserver mode via docker. You can also use webserver mode via docker.
Starting a one-off container requires the configuration of the port explicitly, as ports are not exposed by default. Starting a one-off container requires the configuration of the port explicitly, as ports are not exposed by default.
You can use `docker-compose run --rm -p 127.0.0.1:8080:8080 freqtrade webserver` to start a one-off container that'll be removed once you stop it. This assumes that port 8080 is still available and no other bot is running on that port. You can use `docker compose run --rm -p 127.0.0.1:8080:8080 freqtrade webserver` to start a one-off container that'll be removed once you stop it. This assumes that port 8080 is still available and no other bot is running on that port.
Alternatively, you can reconfigure the docker-compose file to have the command updated: Alternatively, you can reconfigure the docker-compose file to have the command updated:
@ -662,7 +662,7 @@ Alternatively, you can reconfigure the docker-compose file to have the command u
--config /freqtrade/user_data/config.json --config /freqtrade/user_data/config.json
``` ```
You can now use `docker-compose up` to start the webserver. You can now use `docker compose up` to start the webserver.
This assumes that the configuration has a webserver enabled and configured for docker (listening port = `0.0.0.0`). This assumes that the configuration has a webserver enabled and configured for docker (listening port = `0.0.0.0`).
!!! Tip !!! Tip
@ -722,6 +722,7 @@ usage: freqtrade backtesting-analysis [-h] [-v] [--logfile FILE] [-V]
[--enter-reason-list ENTER_REASON_LIST [ENTER_REASON_LIST ...]] [--enter-reason-list ENTER_REASON_LIST [ENTER_REASON_LIST ...]]
[--exit-reason-list EXIT_REASON_LIST [EXIT_REASON_LIST ...]] [--exit-reason-list EXIT_REASON_LIST [EXIT_REASON_LIST ...]]
[--indicator-list INDICATOR_LIST [INDICATOR_LIST ...]] [--indicator-list INDICATOR_LIST [INDICATOR_LIST ...]]
[--timerange YYYYMMDD-[YYYYMMDD]]
optional arguments: optional arguments:
-h, --help show this help message and exit -h, --help show this help message and exit
@ -744,6 +745,10 @@ optional arguments:
--indicator-list INDICATOR_LIST [INDICATOR_LIST ...] --indicator-list INDICATOR_LIST [INDICATOR_LIST ...]
Comma separated list of indicators to analyse. e.g. Comma separated list of indicators to analyse. e.g.
'close,rsi,bb_lowerband,profit_abs' 'close,rsi,bb_lowerband,profit_abs'
--timerange YYYYMMDD-[YYYYMMDD]
Timerange to filter trades for analysis,
start inclusive, end exclusive. e.g.
20220101-20220201
Common arguments: Common arguments:
-v, --verbose Verbose mode (-vv for more, -vvv to get all messages). -v, --verbose Verbose mode (-vv for more, -vvv to get all messages).

View File

@ -60,10 +60,4 @@ def start_analysis_entries_exits(args: Dict[str, Any]) -> None:
logger.info('Starting freqtrade in analysis mode') logger.info('Starting freqtrade in analysis mode')
process_entry_exit_reasons(config['exportfilename'], process_entry_exit_reasons(config)
config['exchange']['pair_whitelist'],
config['analysis_groups'],
config['enter_reason_list'],
config['exit_reason_list'],
config['indicator_list']
)

View File

@ -106,7 +106,7 @@ ARGS_HYPEROPT_SHOW = ["hyperopt_list_best", "hyperopt_list_profitable", "hyperop
"disableparamexport", "backtest_breakdown"] "disableparamexport", "backtest_breakdown"]
ARGS_ANALYZE_ENTRIES_EXITS = ["exportfilename", "analysis_groups", "enter_reason_list", ARGS_ANALYZE_ENTRIES_EXITS = ["exportfilename", "analysis_groups", "enter_reason_list",
"exit_reason_list", "indicator_list"] "exit_reason_list", "indicator_list", "timerange"]
NO_CONF_REQURIED = ["convert-data", "convert-trade-data", "download-data", "list-timeframes", NO_CONF_REQURIED = ["convert-data", "convert-trade-data", "download-data", "list-timeframes",
"list-markets", "list-pairs", "list-strategies", "list-freqaimodels", "list-markets", "list-pairs", "list-strategies", "list-freqaimodels",

View File

@ -355,6 +355,13 @@ def _validate_freqai_include_timeframes(conf: Dict[str, Any]) -> None:
f"Main timeframe of {main_tf} must be smaller or equal to FreqAI " f"Main timeframe of {main_tf} must be smaller or equal to FreqAI "
f"`include_timeframes`.Offending include-timeframes: {', '.join(offending_lines)}") f"`include_timeframes`.Offending include-timeframes: {', '.join(offending_lines)}")
# Ensure that the base timeframe is included in the include_timeframes list
if main_tf not in freqai_include_timeframes:
feature_parameters = conf.get('freqai', {}).get('feature_parameters', {})
include_timeframes = [main_tf] + freqai_include_timeframes
conf.get('freqai', {}).get('feature_parameters', {}) \
.update({**feature_parameters, 'include_timeframes': include_timeframes})
def _validate_freqai_backtest(conf: Dict[str, Any]) -> None: def _validate_freqai_backtest(conf: Dict[str, Any]) -> None:
if conf.get('runmode', RunMode.OTHER) == RunMode.BACKTEST: if conf.get('runmode', RunMode.OTHER) == RunMode.BACKTEST:

View File

@ -462,6 +462,9 @@ class Configuration:
self._args_to_config(config, argname='indicator_list', self._args_to_config(config, argname='indicator_list',
logstring='Analysis indicator list: {}') logstring='Analysis indicator list: {}')
self._args_to_config(config, argname='timerange',
logstring='Filter trades by timerange: {}')
def _process_runmode(self, config: Config) -> None: def _process_runmode(self, config: Config) -> None:
self._args_to_config(config, argname='dry_run', self._args_to_config(config, argname='dry_run',

View File

@ -31,7 +31,7 @@ HYPEROPT_LOSS_BUILTIN = ['ShortTradeDurHyperOptLoss', 'OnlyProfitHyperOptLoss',
'CalmarHyperOptLoss', 'CalmarHyperOptLoss',
'MaxDrawDownHyperOptLoss', 'MaxDrawDownRelativeHyperOptLoss', 'MaxDrawDownHyperOptLoss', 'MaxDrawDownRelativeHyperOptLoss',
'ProfitDrawDownHyperOptLoss'] 'ProfitDrawDownHyperOptLoss']
AVAILABLE_PAIRLISTS = ['StaticPairList', 'VolumePairList', 'ProducerPairList', AVAILABLE_PAIRLISTS = ['StaticPairList', 'VolumePairList', 'ProducerPairList', 'RemotePairList',
'AgeFilter', 'OffsetFilter', 'PerformanceFilter', 'AgeFilter', 'OffsetFilter', 'PerformanceFilter',
'PrecisionFilter', 'PriceFilter', 'RangeStabilityFilter', 'PrecisionFilter', 'PriceFilter', 'RangeStabilityFilter',
'ShuffleFilter', 'SpreadFilter', 'VolatilityFilter'] 'ShuffleFilter', 'SpreadFilter', 'VolatilityFilter']
@ -61,6 +61,7 @@ USERPATH_FREQAIMODELS = 'freqaimodels'
TELEGRAM_SETTING_OPTIONS = ['on', 'off', 'silent'] TELEGRAM_SETTING_OPTIONS = ['on', 'off', 'silent']
WEBHOOK_FORMAT_OPTIONS = ['form', 'json', 'raw'] WEBHOOK_FORMAT_OPTIONS = ['form', 'json', 'raw']
FULL_DATAFRAME_THRESHOLD = 100
ENV_VAR_PREFIX = 'FREQTRADE__' ENV_VAR_PREFIX = 'FREQTRADE__'
@ -591,6 +592,7 @@ CONF_SCHEMA = {
"model_type": {"type": "string", "default": "PPO"}, "model_type": {"type": "string", "default": "PPO"},
"policy_type": {"type": "string", "default": "MlpPolicy"}, "policy_type": {"type": "string", "default": "MlpPolicy"},
"net_arch": {"type": "array", "default": [128, 128]}, "net_arch": {"type": "array", "default": [128, 128]},
"randomize_startinng_position": {"type": "boolean", "default": False},
"model_reward_parameters": { "model_reward_parameters": {
"type": "object", "type": "object",
"properties": { "properties": {
@ -607,8 +609,7 @@ CONF_SCHEMA = {
"backtest_period_days", "backtest_period_days",
"identifier", "identifier",
"feature_parameters", "feature_parameters",
"data_split_parameters", "data_split_parameters"
"model_training_parameters"
] ]
}, },
}, },

View File

@ -20,8 +20,8 @@ from freqtrade.persistence import LocalTrade, Trade, init_db
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
# Newest format # Newest format
BT_DATA_COLUMNS = ['pair', 'stake_amount', 'amount', 'open_date', 'close_date', BT_DATA_COLUMNS = ['pair', 'stake_amount', 'max_stake_amount', 'amount',
'open_rate', 'close_rate', 'open_date', 'close_date', 'open_rate', 'close_rate',
'fee_open', 'fee_close', 'trade_duration', 'fee_open', 'fee_close', 'trade_duration',
'profit_ratio', 'profit_abs', 'exit_reason', 'profit_ratio', 'profit_abs', 'exit_reason',
'initial_stop_loss_abs', 'initial_stop_loss_ratio', 'stop_loss_abs', 'initial_stop_loss_abs', 'initial_stop_loss_ratio', 'stop_loss_abs',
@ -241,6 +241,33 @@ def find_existing_backtest_stats(dirname: Union[Path, str], run_ids: Dict[str, s
return results return results
def _load_backtest_data_df_compatibility(df: pd.DataFrame) -> pd.DataFrame:
"""
Compatibility support for older backtest data.
"""
df['open_date'] = pd.to_datetime(df['open_date'],
utc=True,
infer_datetime_format=True
)
df['close_date'] = pd.to_datetime(df['close_date'],
utc=True,
infer_datetime_format=True
)
# Compatibility support for pre short Columns
if 'is_short' not in df.columns:
df['is_short'] = False
if 'leverage' not in df.columns:
df['leverage'] = 1.0
if 'enter_tag' not in df.columns:
df['enter_tag'] = df['buy_tag']
df = df.drop(['buy_tag'], axis=1)
if 'max_stake_amount' not in df.columns:
df['max_stake_amount'] = df['stake_amount']
if 'orders' not in df.columns:
df['orders'] = None
return df
def load_backtest_data(filename: Union[Path, str], strategy: Optional[str] = None) -> pd.DataFrame: def load_backtest_data(filename: Union[Path, str], strategy: Optional[str] = None) -> pd.DataFrame:
""" """
Load backtest data file. Load backtest data file.
@ -269,24 +296,7 @@ def load_backtest_data(filename: Union[Path, str], strategy: Optional[str] = Non
data = data['strategy'][strategy]['trades'] data = data['strategy'][strategy]['trades']
df = pd.DataFrame(data) df = pd.DataFrame(data)
if not df.empty: if not df.empty:
df['open_date'] = pd.to_datetime(df['open_date'], df = _load_backtest_data_df_compatibility(df)
utc=True,
infer_datetime_format=True
)
df['close_date'] = pd.to_datetime(df['close_date'],
utc=True,
infer_datetime_format=True
)
# Compatibility support for pre short Columns
if 'is_short' not in df.columns:
df['is_short'] = 0
if 'leverage' not in df.columns:
df['leverage'] = 1.0
if 'enter_tag' not in df.columns:
df['enter_tag'] = df['buy_tag']
df = df.drop(['buy_tag'], axis=1)
if 'orders' not in df.columns:
df['orders'] = None
else: else:
# old format - only with lists. # old format - only with lists.

View File

@ -9,14 +9,16 @@ from collections import deque
from datetime import datetime, timezone from datetime import datetime, timezone
from typing import Any, Dict, List, Optional, Tuple from typing import Any, Dict, List, Optional, Tuple
from pandas import DataFrame from pandas import DataFrame, to_timedelta
from freqtrade.configuration import TimeRange from freqtrade.configuration import TimeRange
from freqtrade.constants import Config, ListPairsWithTimeframes, PairWithTimeframe from freqtrade.constants import (FULL_DATAFRAME_THRESHOLD, Config, ListPairsWithTimeframes,
PairWithTimeframe)
from freqtrade.data.history import load_pair_history from freqtrade.data.history import load_pair_history
from freqtrade.enums import CandleType, RPCMessageType, RunMode from freqtrade.enums import CandleType, RPCMessageType, RunMode
from freqtrade.exceptions import ExchangeError, OperationalException from freqtrade.exceptions import ExchangeError, OperationalException
from freqtrade.exchange import Exchange, timeframe_to_seconds from freqtrade.exchange import Exchange, timeframe_to_seconds
from freqtrade.misc import append_candles_to_dataframe
from freqtrade.rpc import RPCManager from freqtrade.rpc import RPCManager
from freqtrade.util import PeriodicCache from freqtrade.util import PeriodicCache
@ -104,13 +106,15 @@ class DataProvider:
def _emit_df( def _emit_df(
self, self,
pair_key: PairWithTimeframe, pair_key: PairWithTimeframe,
dataframe: DataFrame dataframe: DataFrame,
new_candle: bool
) -> None: ) -> None:
""" """
Send this dataframe as an ANALYZED_DF message to RPC Send this dataframe as an ANALYZED_DF message to RPC
:param pair_key: PairWithTimeframe tuple :param pair_key: PairWithTimeframe tuple
:param data: Tuple containing the DataFrame and the datetime it was cached :param dataframe: Dataframe to emit
:param new_candle: This is a new candle
""" """
if self.__rpc: if self.__rpc:
self.__rpc.send_msg( self.__rpc.send_msg(
@ -118,13 +122,18 @@ class DataProvider:
'type': RPCMessageType.ANALYZED_DF, 'type': RPCMessageType.ANALYZED_DF,
'data': { 'data': {
'key': pair_key, 'key': pair_key,
'df': dataframe, 'df': dataframe.tail(1),
'la': datetime.now(timezone.utc) 'la': datetime.now(timezone.utc)
} }
} }
) )
if new_candle:
self.__rpc.send_msg({
'type': RPCMessageType.NEW_CANDLE,
'data': pair_key,
})
def _add_external_df( def _replace_external_df(
self, self,
pair: str, pair: str,
dataframe: DataFrame, dataframe: DataFrame,
@ -150,6 +159,85 @@ class DataProvider:
self.__producer_pairs_df[producer_name][pair_key] = (dataframe, _last_analyzed) self.__producer_pairs_df[producer_name][pair_key] = (dataframe, _last_analyzed)
logger.debug(f"External DataFrame for {pair_key} from {producer_name} added.") logger.debug(f"External DataFrame for {pair_key} from {producer_name} added.")
def _add_external_df(
self,
pair: str,
dataframe: DataFrame,
last_analyzed: datetime,
timeframe: str,
candle_type: CandleType,
producer_name: str = "default"
) -> Tuple[bool, int]:
"""
Append a candle to the existing external dataframe. The incoming dataframe
must have at least 1 candle.
:param pair: pair to get the data for
:param timeframe: Timeframe to get data for
:param candle_type: Any of the enum CandleType (must match trading mode!)
:returns: False if the candle could not be appended, or the int number of missing candles.
"""
pair_key = (pair, timeframe, candle_type)
if dataframe.empty:
# The incoming dataframe must have at least 1 candle
return (False, 0)
if len(dataframe) >= FULL_DATAFRAME_THRESHOLD:
# This is likely a full dataframe
# Add the dataframe to the dataprovider
self._replace_external_df(
pair,
dataframe,
last_analyzed=last_analyzed,
timeframe=timeframe,
candle_type=candle_type,
producer_name=producer_name
)
return (True, 0)
if (producer_name not in self.__producer_pairs_df
or pair_key not in self.__producer_pairs_df[producer_name]):
# We don't have data from this producer yet,
# or we don't have data for this pair_key
# return False and 1000 for the full df
return (False, 1000)
existing_df, _ = self.__producer_pairs_df[producer_name][pair_key]
# CHECK FOR MISSING CANDLES
timeframe_delta = to_timedelta(timeframe) # Convert the timeframe to a timedelta for pandas
local_last = existing_df.iloc[-1]['date'] # We want the last date from our copy
incoming_first = dataframe.iloc[0]['date'] # We want the first date from the incoming
# Remove existing candles that are newer than the incoming first candle
existing_df1 = existing_df[existing_df['date'] < incoming_first]
candle_difference = (incoming_first - local_last) / timeframe_delta
# If the difference divided by the timeframe is 1, then this
# is the candle we want and the incoming data isn't missing any.
# If the candle_difference is more than 1, that means
# we missed some candles between our data and the incoming
# so return False and candle_difference.
if candle_difference > 1:
return (False, candle_difference)
if existing_df1.empty:
appended_df = dataframe
else:
appended_df = append_candles_to_dataframe(existing_df1, dataframe)
# Everything is good, we appended
self._replace_external_df(
pair,
appended_df,
last_analyzed=last_analyzed,
timeframe=timeframe,
candle_type=candle_type,
producer_name=producer_name
)
return (True, 0)
def get_producer_df( def get_producer_df(
self, self,
pair: str, pair: str,

View File

@ -1,11 +1,12 @@
import logging import logging
from pathlib import Path from pathlib import Path
from typing import List, Optional
import joblib import joblib
import pandas as pd import pandas as pd
from tabulate import tabulate from tabulate import tabulate
from freqtrade.configuration import TimeRange
from freqtrade.constants import Config
from freqtrade.data.btanalysis import (get_latest_backtest_filename, load_backtest_data, from freqtrade.data.btanalysis import (get_latest_backtest_filename, load_backtest_data,
load_backtest_stats) load_backtest_stats)
from freqtrade.exceptions import OperationalException from freqtrade.exceptions import OperationalException
@ -152,37 +153,55 @@ def _do_group_table_output(bigdf, glist):
logger.warning("Invalid group mask specified.") logger.warning("Invalid group mask specified.")
def _print_results(analysed_trades, stratname, analysis_groups, def _select_rows_within_dates(df, timerange=None, df_date_col: str = 'date'):
enter_reason_list, exit_reason_list, if timerange:
indicator_list, columns=None): if timerange.starttype == 'date':
if columns is None: df = df.loc[(df[df_date_col] >= timerange.startdt)]
columns = ['pair', 'open_date', 'close_date', 'profit_abs', 'enter_reason', 'exit_reason'] if timerange.stoptype == 'date':
df = df.loc[(df[df_date_col] < timerange.stopdt)]
return df
bigdf = pd.DataFrame()
for pair, trades in analysed_trades[stratname].items():
bigdf = pd.concat([bigdf, trades], ignore_index=True)
if bigdf.shape[0] > 0 and ('enter_reason' in bigdf.columns):
if analysis_groups:
_do_group_table_output(bigdf, analysis_groups)
def _select_rows_by_tags(df, enter_reason_list, exit_reason_list):
if enter_reason_list and "all" not in enter_reason_list: if enter_reason_list and "all" not in enter_reason_list:
bigdf = bigdf.loc[(bigdf['enter_reason'].isin(enter_reason_list))] df = df.loc[(df['enter_reason'].isin(enter_reason_list))]
if exit_reason_list and "all" not in exit_reason_list: if exit_reason_list and "all" not in exit_reason_list:
bigdf = bigdf.loc[(bigdf['exit_reason'].isin(exit_reason_list))] df = df.loc[(df['exit_reason'].isin(exit_reason_list))]
return df
def prepare_results(analysed_trades, stratname,
enter_reason_list, exit_reason_list,
timerange=None):
res_df = pd.DataFrame()
for pair, trades in analysed_trades[stratname].items():
res_df = pd.concat([res_df, trades], ignore_index=True)
res_df = _select_rows_within_dates(res_df, timerange)
if res_df is not None and res_df.shape[0] > 0 and ('enter_reason' in res_df.columns):
res_df = _select_rows_by_tags(res_df, enter_reason_list, exit_reason_list)
return res_df
def print_results(res_df, analysis_groups, indicator_list):
if res_df.shape[0] > 0:
if analysis_groups:
_do_group_table_output(res_df, analysis_groups)
if "all" in indicator_list: if "all" in indicator_list:
print(bigdf) print(res_df)
elif indicator_list is not None: elif indicator_list is not None:
available_inds = [] available_inds = []
for ind in indicator_list: for ind in indicator_list:
if ind in bigdf: if ind in res_df:
available_inds.append(ind) available_inds.append(ind)
ilist = ["pair", "enter_reason", "exit_reason"] + available_inds ilist = ["pair", "enter_reason", "exit_reason"] + available_inds
_print_table(bigdf[ilist], sortcols=['exit_reason'], show_index=False) _print_table(res_df[ilist], sortcols=['exit_reason'], show_index=False)
else: else:
print("\\_ No trades to show") print("\\No trades to show")
def _print_table(df, sortcols=None, show_index=False): def _print_table(df, sortcols=None, show_index=False):
@ -201,26 +220,33 @@ def _print_table(df, sortcols=None, show_index=False):
) )
def process_entry_exit_reasons(backtest_dir: Path, def process_entry_exit_reasons(config: Config):
pairlist: List[str],
analysis_groups: Optional[List[str]] = ["0", "1", "2"],
enter_reason_list: Optional[List[str]] = ["all"],
exit_reason_list: Optional[List[str]] = ["all"],
indicator_list: Optional[List[str]] = []):
try: try:
backtest_stats = load_backtest_stats(backtest_dir) analysis_groups = config.get('analysis_groups', [])
enter_reason_list = config.get('enter_reason_list', ["all"])
exit_reason_list = config.get('exit_reason_list', ["all"])
indicator_list = config.get('indicator_list', [])
timerange = TimeRange.parse_timerange(None if config.get(
'timerange') is None else str(config.get('timerange')))
backtest_stats = load_backtest_stats(config['exportfilename'])
for strategy_name, results in backtest_stats['strategy'].items(): for strategy_name, results in backtest_stats['strategy'].items():
trades = load_backtest_data(backtest_dir, strategy_name) trades = load_backtest_data(config['exportfilename'], strategy_name)
if not trades.empty: if not trades.empty:
signal_candles = _load_signal_candles(backtest_dir) signal_candles = _load_signal_candles(config['exportfilename'])
analysed_trades_dict = _process_candles_and_indicators(pairlist, strategy_name, analysed_trades_dict = _process_candles_and_indicators(
config['exchange']['pair_whitelist'], strategy_name,
trades, signal_candles) trades, signal_candles)
_print_results(analysed_trades_dict,
strategy_name, res_df = prepare_results(analysed_trades_dict, strategy_name,
enter_reason_list, exit_reason_list,
timerange=timerange)
print_results(res_df,
analysis_groups, analysis_groups,
enter_reason_list,
exit_reason_list,
indicator_list) indicator_list)
except ValueError as e: except ValueError as e:

View File

@ -6,7 +6,7 @@ from freqtrade.enums.exittype import ExitType
from freqtrade.enums.hyperoptstate import HyperoptState from freqtrade.enums.hyperoptstate import HyperoptState
from freqtrade.enums.marginmode import MarginMode from freqtrade.enums.marginmode import MarginMode
from freqtrade.enums.ordertypevalue import OrderTypeValues from freqtrade.enums.ordertypevalue import OrderTypeValues
from freqtrade.enums.rpcmessagetype import RPCMessageType, RPCRequestType from freqtrade.enums.rpcmessagetype import NO_ECHO_MESSAGES, RPCMessageType, RPCRequestType
from freqtrade.enums.runmode import NON_UTIL_MODES, OPTIMIZE_MODES, TRADING_MODES, RunMode from freqtrade.enums.runmode import NON_UTIL_MODES, OPTIMIZE_MODES, TRADING_MODES, RunMode
from freqtrade.enums.signaltype import SignalDirection, SignalTagType, SignalType from freqtrade.enums.signaltype import SignalDirection, SignalTagType, SignalType
from freqtrade.enums.state import State from freqtrade.enums.state import State

View File

@ -21,6 +21,7 @@ class RPCMessageType(str, Enum):
WHITELIST = 'whitelist' WHITELIST = 'whitelist'
ANALYZED_DF = 'analyzed_df' ANALYZED_DF = 'analyzed_df'
NEW_CANDLE = 'new_candle'
def __repr__(self): def __repr__(self):
return self.value return self.value
@ -35,3 +36,6 @@ class RPCRequestType(str, Enum):
WHITELIST = 'whitelist' WHITELIST = 'whitelist'
ANALYZED_DF = 'analyzed_df' ANALYZED_DF = 'analyzed_df'
NO_ECHO_MESSAGES = (RPCMessageType.ANALYZED_DF, RPCMessageType.WHITELIST, RPCMessageType.NEW_CANDLE)

View File

@ -3,7 +3,6 @@
from freqtrade.exchange.common import remove_credentials, MAP_EXCHANGE_CHILDCLASS from freqtrade.exchange.common import remove_credentials, MAP_EXCHANGE_CHILDCLASS
from freqtrade.exchange.exchange import Exchange from freqtrade.exchange.exchange import Exchange
# isort: on # isort: on
from freqtrade.exchange.bibox import Bibox
from freqtrade.exchange.binance import Binance from freqtrade.exchange.binance import Binance
from freqtrade.exchange.bitpanda import Bitpanda from freqtrade.exchange.bitpanda import Bitpanda
from freqtrade.exchange.bittrex import Bittrex from freqtrade.exchange.bittrex import Bittrex

View File

@ -1,28 +0,0 @@
""" Bibox exchange subclass """
import logging
from typing import Dict
from freqtrade.exchange import Exchange
logger = logging.getLogger(__name__)
class Bibox(Exchange):
"""
Bibox exchange class. Contains adjustments needed for Freqtrade to work
with this exchange.
Please note that this exchange is not included in the list of exchanges
officially supported by the Freqtrade development team. So some features
may still not work as expected.
"""
# fetchCurrencies API point requires authentication for Bibox,
# so switch it off for Freqtrade load_markets()
@property
def _ccxt_config(self) -> Dict:
# Parameters to add directly to ccxt sync/async initialization.
config = {"has": {"fetchCurrencies": False}}
config.update(super()._ccxt_config)
return config

View File

@ -31,7 +31,7 @@ class Binance(Exchange):
"ccxt_futures_name": "future" "ccxt_futures_name": "future"
} }
_ft_has_futures: Dict = { _ft_has_futures: Dict = {
"stoploss_order_types": {"limit": "limit", "market": "market"}, "stoploss_order_types": {"limit": "stop", "market": "stop_market"},
"tickers_have_price": False, "tickers_have_price": False,
} }

View File

@ -0,0 +1,125 @@
import logging
from enum import Enum
from gym import spaces
from freqtrade.freqai.RL.BaseEnvironment import BaseEnvironment, Positions
logger = logging.getLogger(__name__)
class Actions(Enum):
Neutral = 0
Buy = 1
Sell = 2
class Base3ActionRLEnv(BaseEnvironment):
"""
Base class for a 3 action environment
"""
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.actions = Actions
def set_action_space(self):
self.action_space = spaces.Discrete(len(Actions))
def step(self, action: int):
"""
Logic for a single step (incrementing one candle in time)
by the agent
:param: action: int = the action type that the agent plans
to take for the current step.
:returns:
observation = current state of environment
step_reward = the reward from `calculate_reward()`
_done = if the agent "died" or if the candles finished
info = dict passed back to openai gym lib
"""
self._done = False
self._current_tick += 1
if self._current_tick == self._end_tick:
self._done = True
self._update_unrealized_total_profit()
step_reward = self.calculate_reward(action)
self.total_reward += step_reward
self.tensorboard_log(self.actions._member_names_[action])
trade_type = None
if self.is_tradesignal(action):
if action == Actions.Buy.value:
if self._position == Positions.Short:
self._update_total_profit()
self._position = Positions.Long
trade_type = "long"
self._last_trade_tick = self._current_tick
elif action == Actions.Sell.value and self.can_short:
if self._position == Positions.Long:
self._update_total_profit()
self._position = Positions.Short
trade_type = "short"
self._last_trade_tick = self._current_tick
elif action == Actions.Sell.value and not self.can_short:
self._update_total_profit()
self._position = Positions.Neutral
trade_type = "neutral"
self._last_trade_tick = None
else:
print("case not defined")
if trade_type is not None:
self.trade_history.append(
{'price': self.current_price(), 'index': self._current_tick,
'type': trade_type})
if (self._total_profit < self.max_drawdown or
self._total_unrealized_profit < self.max_drawdown):
self._done = True
self._position_history.append(self._position)
info = dict(
tick=self._current_tick,
action=action,
total_reward=self.total_reward,
total_profit=self._total_profit,
position=self._position.value,
trade_duration=self.get_trade_duration(),
current_profit_pct=self.get_unrealized_profit()
)
observation = self._get_observation()
self._update_history(info)
return observation, step_reward, self._done, info
def is_tradesignal(self, action: int) -> bool:
"""
Determine if the signal is a trade signal
e.g.: agent wants a Actions.Buy while it is in a Positions.short
"""
return (
(action == Actions.Buy.value and self._position == Positions.Neutral)
or (action == Actions.Sell.value and self._position == Positions.Long)
or (action == Actions.Sell.value and self._position == Positions.Neutral
and self.can_short)
or (action == Actions.Buy.value and self._position == Positions.Short
and self.can_short)
)
def _is_valid(self, action: int) -> bool:
"""
Determine if the signal is valid.
e.g.: agent wants a Actions.Sell while it is in a Positions.Long
"""
if self.can_short:
return action in [Actions.Buy.value, Actions.Sell.value, Actions.Neutral.value]
else:
if action == Actions.Sell.value and self._position != Positions.Long:
return False
return True

View File

@ -20,6 +20,9 @@ class Base4ActionRLEnv(BaseEnvironment):
""" """
Base class for a 4 action environment Base class for a 4 action environment
""" """
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.actions = Actions
def set_action_space(self): def set_action_space(self):
self.action_space = spaces.Discrete(len(Actions)) self.action_space = spaces.Discrete(len(Actions))
@ -43,9 +46,9 @@ class Base4ActionRLEnv(BaseEnvironment):
self._done = True self._done = True
self._update_unrealized_total_profit() self._update_unrealized_total_profit()
step_reward = self.calculate_reward(action) step_reward = self.calculate_reward(action)
self.total_reward += step_reward self.total_reward += step_reward
self.tensorboard_log(self.actions._member_names_[action])
trade_type = None trade_type = None
if self.is_tradesignal(action): if self.is_tradesignal(action):
@ -85,16 +88,20 @@ class Base4ActionRLEnv(BaseEnvironment):
{'price': self.current_price(), 'index': self._current_tick, {'price': self.current_price(), 'index': self._current_tick,
'type': trade_type}) 'type': trade_type})
if self._total_profit < 1 - self.rl_config.get('max_training_drawdown_pct', 0.8): if (self._total_profit < self.max_drawdown or
self._total_unrealized_profit < self.max_drawdown):
self._done = True self._done = True
self._position_history.append(self._position) self._position_history.append(self._position)
info = dict( info = dict(
tick=self._current_tick, tick=self._current_tick,
action=action,
total_reward=self.total_reward, total_reward=self.total_reward,
total_profit=self._total_profit, total_profit=self._total_profit,
position=self._position.value position=self._position.value,
trade_duration=self.get_trade_duration(),
current_profit_pct=self.get_unrealized_profit()
) )
observation = self._get_observation() observation = self._get_observation()

View File

@ -21,6 +21,9 @@ class Base5ActionRLEnv(BaseEnvironment):
""" """
Base class for a 5 action environment Base class for a 5 action environment
""" """
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.actions = Actions
def set_action_space(self): def set_action_space(self):
self.action_space = spaces.Discrete(len(Actions)) self.action_space = spaces.Discrete(len(Actions))
@ -46,6 +49,7 @@ class Base5ActionRLEnv(BaseEnvironment):
self._update_unrealized_total_profit() self._update_unrealized_total_profit()
step_reward = self.calculate_reward(action) step_reward = self.calculate_reward(action)
self.total_reward += step_reward self.total_reward += step_reward
self.tensorboard_log(self.actions._member_names_[action])
trade_type = None trade_type = None
if self.is_tradesignal(action): if self.is_tradesignal(action):
@ -98,9 +102,12 @@ class Base5ActionRLEnv(BaseEnvironment):
info = dict( info = dict(
tick=self._current_tick, tick=self._current_tick,
action=action,
total_reward=self.total_reward, total_reward=self.total_reward,
total_profit=self._total_profit, total_profit=self._total_profit,
position=self._position.value position=self._position.value,
trade_duration=self.get_trade_duration(),
current_profit_pct=self.get_unrealized_profit()
) )
observation = self._get_observation() observation = self._get_observation()

View File

@ -1,7 +1,8 @@
import logging import logging
import random
from abc import abstractmethod from abc import abstractmethod
from enum import Enum from enum import Enum
from typing import Optional from typing import Optional, Type, Union
import gym import gym
import numpy as np import numpy as np
@ -10,12 +11,21 @@ from gym import spaces
from gym.utils import seeding from gym.utils import seeding
from pandas import DataFrame from pandas import DataFrame
from freqtrade.data.dataprovider import DataProvider
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
class BaseActions(Enum):
"""
Default action space, mostly used for type handling.
"""
Neutral = 0
Long_enter = 1
Long_exit = 2
Short_enter = 3
Short_exit = 4
class Positions(Enum): class Positions(Enum):
Short = 0 Short = 0
Long = 1 Long = 1
@ -34,8 +44,8 @@ class BaseEnvironment(gym.Env):
def __init__(self, df: DataFrame = DataFrame(), prices: DataFrame = DataFrame(), def __init__(self, df: DataFrame = DataFrame(), prices: DataFrame = DataFrame(),
reward_kwargs: dict = {}, window_size=10, starting_point=True, reward_kwargs: dict = {}, window_size=10, starting_point=True,
id: str = 'baseenv-1', seed: int = 1, config: dict = {}, id: str = 'baseenv-1', seed: int = 1, config: dict = {}, live: bool = False,
dp: Optional[DataProvider] = None): fee: float = 0.0015, can_short: bool = False):
""" """
Initializes the training/eval environment. Initializes the training/eval environment.
:param df: dataframe of features :param df: dataframe of features
@ -46,22 +56,31 @@ class BaseEnvironment(gym.Env):
:param id: string id of the environment (used in backend for multiprocessed env) :param id: string id of the environment (used in backend for multiprocessed env)
:param seed: Sets the seed of the environment higher in the gym.Env object :param seed: Sets the seed of the environment higher in the gym.Env object
:param config: Typical user configuration file :param config: Typical user configuration file
:param dp: dataprovider from freqtrade :param live: Whether or not this environment is active in dry/live/backtesting
:param fee: The fee to use for environmental interactions.
:param can_short: Whether or not the environment can short
""" """
self.config = config self.config = config
self.rl_config = config['freqai']['rl_config'] self.rl_config = config['freqai']['rl_config']
self.add_state_info = self.rl_config.get('add_state_info', False) self.add_state_info = self.rl_config.get('add_state_info', False)
self.id = id self.id = id
self.seed(seed)
self.reset_env(df, prices, window_size, reward_kwargs, starting_point)
self.max_drawdown = 1 - self.rl_config.get('max_training_drawdown_pct', 0.8) self.max_drawdown = 1 - self.rl_config.get('max_training_drawdown_pct', 0.8)
self.compound_trades = config['stake_amount'] == 'unlimited' self.compound_trades = config['stake_amount'] == 'unlimited'
if self.config.get('fee', None) is not None: if self.config.get('fee', None) is not None:
self.fee = self.config['fee'] self.fee = self.config['fee']
elif dp is not None:
self.fee = dp._exchange.get_fee(symbol=dp.current_whitelist()[0]) # type: ignore
else: else:
self.fee = 0.0015 self.fee = fee
# set here to default 5Ac, but all children envs can override this
self.actions: Type[Enum] = BaseActions
self.tensorboard_metrics: dict = {}
self.can_short = can_short
self.live = live
if not self.live and self.add_state_info:
self.add_state_info = False
logger.warning("add_state_info is not available in backtesting. Deactivating.")
self.seed(seed)
self.reset_env(df, prices, window_size, reward_kwargs, starting_point)
def reset_env(self, df: DataFrame, prices: DataFrame, window_size: int, def reset_env(self, df: DataFrame, prices: DataFrame, window_size: int,
reward_kwargs: dict, starting_point=True): reward_kwargs: dict, starting_point=True):
@ -116,11 +135,46 @@ class BaseEnvironment(gym.Env):
self.np_random, seed = seeding.np_random(seed) self.np_random, seed = seeding.np_random(seed)
return [seed] return [seed]
def tensorboard_log(self, metric: str, value: Union[int, float] = 1, inc: bool = True):
"""
Function builds the tensorboard_metrics dictionary
to be parsed by the TensorboardCallback. This
function is designed for tracking incremented objects,
events, actions inside the training environment.
For example, a user can call this to track the
frequency of occurence of an `is_valid` call in
their `calculate_reward()`:
def calculate_reward(self, action: int) -> float:
if not self._is_valid(action):
self.tensorboard_log("is_valid")
return -2
:param metric: metric to be tracked and incremented
:param value: value to increment `metric` by
:param inc: sets whether the `value` is incremented or not
"""
if not inc or metric not in self.tensorboard_metrics:
self.tensorboard_metrics[metric] = value
else:
self.tensorboard_metrics[metric] += value
def reset_tensorboard_log(self):
self.tensorboard_metrics = {}
def reset(self): def reset(self):
"""
Reset is called at the beginning of every episode
"""
self.reset_tensorboard_log()
self._done = False self._done = False
if self.starting_point is True: if self.starting_point is True:
if self.rl_config.get('randomize_starting_position', False):
length_of_data = int(self._end_tick / 4)
start_tick = random.randint(self.window_size + 1, length_of_data)
self._start_tick = start_tick
self._position_history = (self._start_tick * [None]) + [self._position] self._position_history = (self._start_tick * [None]) + [self._position]
else: else:
self._position_history = (self.window_size * [None]) + [self._position] self._position_history = (self.window_size * [None]) + [self._position]
@ -189,12 +243,12 @@ class BaseEnvironment(gym.Env):
if self._position == Positions.Neutral: if self._position == Positions.Neutral:
return 0. return 0.
elif self._position == Positions.Short: elif self._position == Positions.Short:
current_price = self.add_exit_fee(self.prices.iloc[self._current_tick].open)
last_trade_price = self.add_entry_fee(self.prices.iloc[self._last_trade_tick].open)
return (last_trade_price - current_price) / last_trade_price
elif self._position == Positions.Long:
current_price = self.add_entry_fee(self.prices.iloc[self._current_tick].open) current_price = self.add_entry_fee(self.prices.iloc[self._current_tick].open)
last_trade_price = self.add_exit_fee(self.prices.iloc[self._last_trade_tick].open) last_trade_price = self.add_exit_fee(self.prices.iloc[self._last_trade_tick].open)
return (last_trade_price - current_price) / last_trade_price
elif self._position == Positions.Long:
current_price = self.add_exit_fee(self.prices.iloc[self._current_tick].open)
last_trade_price = self.add_entry_fee(self.prices.iloc[self._last_trade_tick].open)
return (current_price - last_trade_price) / last_trade_price return (current_price - last_trade_price) / last_trade_price
else: else:
return 0. return 0.
@ -266,6 +320,13 @@ class BaseEnvironment(gym.Env):
def current_price(self) -> float: def current_price(self) -> float:
return self.prices.iloc[self._current_tick].open return self.prices.iloc[self._current_tick].open
def get_actions(self) -> Type[Enum]:
"""
Used by SubprocVecEnv to get actions from
initialized env for tensorboard callback
"""
return self.actions
# Keeping around incase we want to start building more complex environment # Keeping around incase we want to start building more complex environment
# templates in the future. # templates in the future.
# def most_recent_return(self): # def most_recent_return(self):

View File

@ -21,7 +21,8 @@ from freqtrade.exceptions import OperationalException
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
from freqtrade.freqai.freqai_interface import IFreqaiModel from freqtrade.freqai.freqai_interface import IFreqaiModel
from freqtrade.freqai.RL.Base5ActionRLEnv import Actions, Base5ActionRLEnv from freqtrade.freqai.RL.Base5ActionRLEnv import Actions, Base5ActionRLEnv
from freqtrade.freqai.RL.BaseEnvironment import Positions from freqtrade.freqai.RL.BaseEnvironment import BaseActions, Positions
from freqtrade.freqai.RL.TensorboardCallback import TensorboardCallback
from freqtrade.persistence import Trade from freqtrade.persistence import Trade
@ -44,8 +45,8 @@ class BaseReinforcementLearningModel(IFreqaiModel):
'cpu_count', 1), max(int(self.max_system_threads / 2), 1)) 'cpu_count', 1), max(int(self.max_system_threads / 2), 1))
th.set_num_threads(self.max_threads) th.set_num_threads(self.max_threads)
self.reward_params = self.freqai_info['rl_config']['model_reward_parameters'] self.reward_params = self.freqai_info['rl_config']['model_reward_parameters']
self.train_env: Union[SubprocVecEnv, gym.Env] = None self.train_env: Union[SubprocVecEnv, Type[gym.Env]] = gym.Env()
self.eval_env: Union[SubprocVecEnv, gym.Env] = None self.eval_env: Union[SubprocVecEnv, Type[gym.Env]] = gym.Env()
self.eval_callback: Optional[EvalCallback] = None self.eval_callback: Optional[EvalCallback] = None
self.model_type = self.freqai_info['rl_config']['model_type'] self.model_type = self.freqai_info['rl_config']['model_type']
self.rl_config = self.freqai_info['rl_config'] self.rl_config = self.freqai_info['rl_config']
@ -64,6 +65,9 @@ class BaseReinforcementLearningModel(IFreqaiModel):
self.policy_type = self.freqai_info['rl_config']['policy_type'] self.policy_type = self.freqai_info['rl_config']['policy_type']
self.unset_outlier_removal() self.unset_outlier_removal()
self.net_arch = self.rl_config.get('net_arch', [128, 128]) self.net_arch = self.rl_config.get('net_arch', [128, 128])
self.dd.model_type = import_str
self.tensorboard_callback: TensorboardCallback = \
TensorboardCallback(verbose=1, actions=BaseActions)
def unset_outlier_removal(self): def unset_outlier_removal(self):
""" """
@ -139,22 +143,36 @@ class BaseReinforcementLearningModel(IFreqaiModel):
train_df = data_dictionary["train_features"] train_df = data_dictionary["train_features"]
test_df = data_dictionary["test_features"] test_df = data_dictionary["test_features"]
env_info = self.pack_env_dict()
self.train_env = self.MyRLEnv(df=train_df, self.train_env = self.MyRLEnv(df=train_df,
prices=prices_train, prices=prices_train,
window_size=self.CONV_WIDTH, **env_info)
reward_kwargs=self.reward_params,
config=self.config,
dp=self.data_provider)
self.eval_env = Monitor(self.MyRLEnv(df=test_df, self.eval_env = Monitor(self.MyRLEnv(df=test_df,
prices=prices_test, prices=prices_test,
window_size=self.CONV_WIDTH, **env_info))
reward_kwargs=self.reward_params,
config=self.config,
dp=self.data_provider))
self.eval_callback = EvalCallback(self.eval_env, deterministic=True, self.eval_callback = EvalCallback(self.eval_env, deterministic=True,
render=False, eval_freq=len(train_df), render=False, eval_freq=len(train_df),
best_model_save_path=str(dk.data_path)) best_model_save_path=str(dk.data_path))
actions = self.train_env.get_actions()
self.tensorboard_callback = TensorboardCallback(verbose=1, actions=actions)
def pack_env_dict(self) -> Dict[str, Any]:
"""
Create dictionary of environment arguments
"""
env_info = {"window_size": self.CONV_WIDTH,
"reward_kwargs": self.reward_params,
"config": self.config,
"live": self.live,
"can_short": self.can_short}
if self.data_provider:
env_info["fee"] = self.data_provider._exchange \
.get_fee(symbol=self.data_provider.current_whitelist()[0]) # type: ignore
return env_info
@abstractmethod @abstractmethod
def fit(self, data_dictionary: Dict[str, Any], dk: FreqaiDataKitchen, **kwargs): def fit(self, data_dictionary: Dict[str, Any], dk: FreqaiDataKitchen, **kwargs):
""" """
@ -192,6 +210,10 @@ class BaseReinforcementLearningModel(IFreqaiModel):
now = datetime.now(timezone.utc).timestamp() now = datetime.now(timezone.utc).timestamp()
trade_duration = int((now - trade.open_date_utc.timestamp()) / self.base_tf_seconds) trade_duration = int((now - trade.open_date_utc.timestamp()) / self.base_tf_seconds)
current_profit = trade.calc_profit_ratio(current_rate) current_profit = trade.calc_profit_ratio(current_rate)
if trade.is_short:
market_side = 0
else:
market_side = 1
return market_side, current_profit, int(trade_duration) return market_side, current_profit, int(trade_duration)
@ -372,8 +394,8 @@ class BaseReinforcementLearningModel(IFreqaiModel):
def make_env(MyRLEnv: Type[gym.Env], env_id: str, rank: int, def make_env(MyRLEnv: Type[gym.Env], env_id: str, rank: int,
seed: int, train_df: DataFrame, price: DataFrame, seed: int, train_df: DataFrame, price: DataFrame,
reward_params: Dict[str, int], window_size: int, monitor: bool = False, monitor: bool = False,
config: Dict[str, Any] = {}) -> Callable: env_info: Dict[str, Any] = {}) -> Callable:
""" """
Utility function for multiprocessed env. Utility function for multiprocessed env.
@ -381,13 +403,14 @@ def make_env(MyRLEnv: Type[gym.Env], env_id: str, rank: int,
:param num_env: (int) the number of environment you wish to have in subprocesses :param num_env: (int) the number of environment you wish to have in subprocesses
:param seed: (int) the inital seed for RNG :param seed: (int) the inital seed for RNG
:param rank: (int) index of the subprocess :param rank: (int) index of the subprocess
:param env_info: (dict) all required arguments to instantiate the environment.
:return: (Callable) :return: (Callable)
""" """
def _init() -> gym.Env: def _init() -> gym.Env:
env = MyRLEnv(df=train_df, prices=price, window_size=window_size, env = MyRLEnv(df=train_df, prices=price, id=env_id, seed=seed + rank,
reward_kwargs=reward_params, id=env_id, seed=seed + rank, config=config) **env_info)
if monitor: if monitor:
env = Monitor(env) env = Monitor(env)
return env return env

View File

@ -0,0 +1,59 @@
from enum import Enum
from typing import Any, Dict, Type, Union
from stable_baselines3.common.callbacks import BaseCallback
from stable_baselines3.common.logger import HParam
from freqtrade.freqai.RL.BaseEnvironment import BaseActions, BaseEnvironment
class TensorboardCallback(BaseCallback):
"""
Custom callback for plotting additional values in tensorboard and
episodic summary reports.
"""
def __init__(self, verbose=1, actions: Type[Enum] = BaseActions):
super(TensorboardCallback, self).__init__(verbose)
self.model: Any = None
self.logger = None # type: Any
self.training_env: BaseEnvironment = None # type: ignore
self.actions: Type[Enum] = actions
def _on_training_start(self) -> None:
hparam_dict = {
"algorithm": self.model.__class__.__name__,
"learning_rate": self.model.learning_rate,
# "gamma": self.model.gamma,
# "gae_lambda": self.model.gae_lambda,
# "batch_size": self.model.batch_size,
# "n_steps": self.model.n_steps,
}
metric_dict: Dict[str, Union[float, int]] = {
"eval/mean_reward": 0,
"rollout/ep_rew_mean": 0,
"rollout/ep_len_mean": 0,
"train/value_loss": 0,
"train/explained_variance": 0,
}
self.logger.record(
"hparams",
HParam(hparam_dict, metric_dict),
exclude=("stdout", "log", "json", "csv"),
)
def _on_step(self) -> bool:
local_info = self.locals["infos"][0]
tensorboard_metrics = self.training_env.get_attr("tensorboard_metrics")[0]
for info in local_info:
if info not in ["episode", "terminal_observation"]:
self.logger.record(f"_info/{info}", local_info[info])
for info in tensorboard_metrics:
if info in [action.name for action in self.actions]:
self.logger.record(f"_actions/{info}", tensorboard_metrics[info])
else:
self.logger.record(f"_custom/{info}", tensorboard_metrics[info])
return True

View File

@ -95,9 +95,14 @@ class BaseClassifierModel(IFreqaiModel):
self.data_cleaning_predict(dk) self.data_cleaning_predict(dk)
predictions = self.model.predict(dk.data_dictionary["prediction_features"]) predictions = self.model.predict(dk.data_dictionary["prediction_features"])
if self.CONV_WIDTH == 1:
predictions = np.reshape(predictions, (-1, len(dk.label_list)))
pred_df = DataFrame(predictions, columns=dk.label_list) pred_df = DataFrame(predictions, columns=dk.label_list)
predictions_prob = self.model.predict_proba(dk.data_dictionary["prediction_features"]) predictions_prob = self.model.predict_proba(dk.data_dictionary["prediction_features"])
if self.CONV_WIDTH == 1:
predictions_prob = np.reshape(predictions_prob, (-1, len(self.model.classes_)))
pred_df_prob = DataFrame(predictions_prob, columns=self.model.classes_) pred_df_prob = DataFrame(predictions_prob, columns=self.model.classes_)
pred_df = pd.concat([pred_df, pred_df_prob], axis=1) pred_df = pd.concat([pred_df, pred_df_prob], axis=1)

View File

@ -95,6 +95,9 @@ class BaseRegressionModel(IFreqaiModel):
self.data_cleaning_predict(dk) self.data_cleaning_predict(dk)
predictions = self.model.predict(dk.data_dictionary["prediction_features"]) predictions = self.model.predict(dk.data_dictionary["prediction_features"])
if self.CONV_WIDTH == 1:
predictions = np.reshape(predictions, (-1, len(dk.label_list)))
pred_df = DataFrame(predictions, columns=dk.label_list) pred_df = DataFrame(predictions, columns=dk.label_list)
pred_df = dk.denormalize_labels_from_metadata(pred_df) pred_df = dk.denormalize_labels_from_metadata(pred_df)

View File

@ -4,7 +4,7 @@ import logging
import re import re
import shutil import shutil
import threading import threading
from datetime import datetime, timezone from datetime import datetime, timedelta, timezone
from pathlib import Path from pathlib import Path
from typing import Any, Dict, Tuple, TypedDict from typing import Any, Dict, Tuple, TypedDict
@ -82,6 +82,7 @@ class FreqaiDataDrawer:
self.historic_predictions_bkp_path = Path( self.historic_predictions_bkp_path = Path(
self.full_path / "historic_predictions.backup.pkl") self.full_path / "historic_predictions.backup.pkl")
self.pair_dictionary_path = Path(self.full_path / "pair_dictionary.json") self.pair_dictionary_path = Path(self.full_path / "pair_dictionary.json")
self.global_metadata_path = Path(self.full_path / "global_metadata.json")
self.metric_tracker_path = Path(self.full_path / "metric_tracker.json") self.metric_tracker_path = Path(self.full_path / "metric_tracker.json")
self.follow_mode = follow_mode self.follow_mode = follow_mode
if follow_mode: if follow_mode:
@ -99,11 +100,6 @@ class FreqaiDataDrawer:
self.empty_pair_dict: pair_info = { self.empty_pair_dict: pair_info = {
"model_filename": "", "trained_timestamp": 0, "model_filename": "", "trained_timestamp": 0,
"data_path": "", "extras": {}} "data_path": "", "extras": {}}
if 'Reinforcement' in self.config['freqaimodel']:
self.model_type = 'stable_baselines'
logger.warning('User passed a ReinforcementLearner model, FreqAI will '
'now use stable_baselines3 to save models.')
else:
self.model_type = self.freqai_info.get('model_save_type', 'joblib') self.model_type = self.freqai_info.get('model_save_type', 'joblib')
def update_metric_tracker(self, metric: str, value: float, pair: str) -> None: def update_metric_tracker(self, metric: str, value: float, pair: str) -> None:
@ -132,6 +128,17 @@ class FreqaiDataDrawer:
self.update_metric_tracker('cpu_load5min', load5 / cpus, pair) self.update_metric_tracker('cpu_load5min', load5 / cpus, pair)
self.update_metric_tracker('cpu_load15min', load15 / cpus, pair) self.update_metric_tracker('cpu_load15min', load15 / cpus, pair)
def load_global_metadata_from_disk(self):
"""
Locate and load a previously saved global metadata in present model folder.
"""
exists = self.global_metadata_path.is_file()
if exists:
with open(self.global_metadata_path, "r") as fp:
metatada_dict = rapidjson.load(fp, number_mode=rapidjson.NM_NATIVE)
return metatada_dict
return {}
def load_drawer_from_disk(self): def load_drawer_from_disk(self):
""" """
Locate and load a previously saved data drawer full of all pair model metadata in Locate and load a previously saved data drawer full of all pair model metadata in
@ -232,6 +239,15 @@ class FreqaiDataDrawer:
rapidjson.dump(self.follower_dict, fp, default=self.np_encoder, rapidjson.dump(self.follower_dict, fp, default=self.np_encoder,
number_mode=rapidjson.NM_NATIVE) number_mode=rapidjson.NM_NATIVE)
def save_global_metadata_to_disk(self, metadata: Dict[str, Any]):
"""
Save global metadata json to disk
"""
with self.save_lock:
with open(self.global_metadata_path, 'w') as fp:
rapidjson.dump(metadata, fp, default=self.np_encoder,
number_mode=rapidjson.NM_NATIVE)
def create_follower_dict(self): def create_follower_dict(self):
""" """
Create or dictionary for each follower to maintain unique persistent prediction targets Create or dictionary for each follower to maintain unique persistent prediction targets
@ -487,7 +503,7 @@ class FreqaiDataDrawer:
dump(model, save_path / f"{dk.model_filename}_model.joblib") dump(model, save_path / f"{dk.model_filename}_model.joblib")
elif self.model_type == 'keras': elif self.model_type == 'keras':
model.save(save_path / f"{dk.model_filename}_model.h5") model.save(save_path / f"{dk.model_filename}_model.h5")
elif 'stable_baselines' in self.model_type: elif 'stable_baselines' in self.model_type or 'sb3_contrib' == self.model_type:
model.save(save_path / f"{dk.model_filename}_model.zip") model.save(save_path / f"{dk.model_filename}_model.zip")
if dk.svm_model is not None: if dk.svm_model is not None:
@ -573,9 +589,9 @@ class FreqaiDataDrawer:
elif self.model_type == 'keras': elif self.model_type == 'keras':
from tensorflow import keras from tensorflow import keras
model = keras.models.load_model(dk.data_path / f"{dk.model_filename}_model.h5") model = keras.models.load_model(dk.data_path / f"{dk.model_filename}_model.h5")
elif self.model_type == 'stable_baselines': elif 'stable_baselines' in self.model_type or 'sb3_contrib' == self.model_type:
mod = importlib.import_module( mod = importlib.import_module(
'stable_baselines3', self.freqai_info['rl_config']['model_type']) self.model_type, self.freqai_info['rl_config']['model_type'])
MODELCLASS = getattr(mod, self.freqai_info['rl_config']['model_type']) MODELCLASS = getattr(mod, self.freqai_info['rl_config']['model_type'])
model = MODELCLASS.load(dk.data_path / f"{dk.model_filename}_model") model = MODELCLASS.load(dk.data_path / f"{dk.model_filename}_model")
@ -701,3 +717,31 @@ class FreqaiDataDrawer:
).reset_index(drop=True) ).reset_index(drop=True)
return corr_dataframes, base_dataframes return corr_dataframes, base_dataframes
def get_timerange_from_live_historic_predictions(self) -> TimeRange:
"""
Returns timerange information based on historic predictions file
:return: timerange calculated from saved live data
"""
if not self.historic_predictions_path.is_file():
raise OperationalException(
'Historic predictions not found. Historic predictions data is required '
'to run backtest with the freqai-backtest-live-models option '
)
self.load_historic_predictions_from_disk()
all_pairs_end_dates = []
for pair in self.historic_predictions:
pair_historic_data = self.historic_predictions[pair]
all_pairs_end_dates.append(pair_historic_data.date_pred.max())
global_metadata = self.load_global_metadata_from_disk()
start_date = datetime.fromtimestamp(int(global_metadata["start_dry_live_date"]))
end_date = max(all_pairs_end_dates)
# add 1 day to string timerange to ensure BT module will load all dataframe data
end_date = end_date + timedelta(days=1)
backtesting_timerange = TimeRange(
'date', 'date', int(start_date.timestamp()), int(end_date.timestamp())
)
return backtesting_timerange

View File

@ -1,7 +1,7 @@
import copy import copy
import logging import logging
import shutil import shutil
from datetime import datetime, timedelta, timezone from datetime import datetime, timezone
from math import cos, sin from math import cos, sin
from pathlib import Path from pathlib import Path
from typing import Any, Dict, List, Tuple from typing import Any, Dict, List, Tuple
@ -87,12 +87,7 @@ class FreqaiDataKitchen:
if not self.live: if not self.live:
self.full_path = self.get_full_models_path(self.config) self.full_path = self.get_full_models_path(self.config)
if self.backtest_live_models: if not self.backtest_live_models:
if self.pair:
self.set_timerange_from_ready_models()
(self.training_timeranges,
self.backtesting_timeranges) = self.split_timerange_live_models()
else:
self.full_timerange = self.create_fulltimerange( self.full_timerange = self.create_fulltimerange(
self.config["timerange"], self.freqai_config.get("train_period_days", 0) self.config["timerange"], self.freqai_config.get("train_period_days", 0)
) )
@ -460,29 +455,6 @@ class FreqaiDataKitchen:
# print(tr_training_list, tr_backtesting_list) # print(tr_training_list, tr_backtesting_list)
return tr_training_list_timerange, tr_backtesting_list_timerange return tr_training_list_timerange, tr_backtesting_list_timerange
def split_timerange_live_models(
self
) -> Tuple[list, list]:
tr_backtesting_list_timerange = []
asset = self.pair.split("/")[0]
if asset not in self.backtest_live_models_data["assets_end_dates"]:
raise OperationalException(
f"Model not available for pair {self.pair}. "
"Please, try again after removing this pair from the configuration file."
)
asset_data = self.backtest_live_models_data["assets_end_dates"][asset]
backtesting_timerange = self.backtest_live_models_data["backtesting_timerange"]
model_end_dates = [x for x in asset_data]
model_end_dates.append(backtesting_timerange.stopts)
model_end_dates.sort()
for index, item in enumerate(model_end_dates):
if len(model_end_dates) > (index + 1):
tr_to_add = TimeRange("date", "date", item, model_end_dates[index + 1])
tr_backtesting_list_timerange.append(tr_to_add)
return tr_backtesting_list_timerange, tr_backtesting_list_timerange
def slice_dataframe(self, timerange: TimeRange, df: DataFrame) -> DataFrame: def slice_dataframe(self, timerange: TimeRange, df: DataFrame) -> DataFrame:
""" """
Given a full dataframe, extract the user desired window Given a full dataframe, extract the user desired window
@ -490,10 +462,10 @@ class FreqaiDataKitchen:
:param df: Dataframe containing all candles to run the entire backtest. Here :param df: Dataframe containing all candles to run the entire backtest. Here
it is sliced down to just the present training period. it is sliced down to just the present training period.
""" """
df = df.loc[df["date"] >= timerange.startdt, :]
if not self.live: if not self.live:
df = df.loc[df["date"] < timerange.stopdt, :] df = df.loc[(df["date"] >= timerange.startdt) & (df["date"] < timerange.stopdt), :]
else:
df = df.loc[df["date"] >= timerange.startdt, :]
return df return df
@ -978,7 +950,8 @@ class FreqaiDataKitchen:
return weights return weights
def get_predictions_to_append(self, predictions: DataFrame, def get_predictions_to_append(self, predictions: DataFrame,
do_predict: npt.ArrayLike) -> DataFrame: do_predict: npt.ArrayLike,
dataframe_backtest: DataFrame) -> DataFrame:
""" """
Get backtest prediction from current backtest period Get backtest prediction from current backtest period
""" """
@ -1000,7 +973,9 @@ class FreqaiDataKitchen:
if self.freqai_config["feature_parameters"].get("DI_threshold", 0) > 0: if self.freqai_config["feature_parameters"].get("DI_threshold", 0) > 0:
append_df["DI_values"] = self.DI_values append_df["DI_values"] = self.DI_values
return append_df dataframe_backtest.reset_index(drop=True, inplace=True)
merged_df = pd.concat([dataframe_backtest["date"], append_df], axis=1)
return merged_df
def append_predictions(self, append_df: DataFrame) -> None: def append_predictions(self, append_df: DataFrame) -> None:
""" """
@ -1010,23 +985,18 @@ class FreqaiDataKitchen:
if self.full_df.empty: if self.full_df.empty:
self.full_df = append_df self.full_df = append_df
else: else:
self.full_df = pd.concat([self.full_df, append_df], axis=0) self.full_df = pd.concat([self.full_df, append_df], axis=0, ignore_index=True)
def fill_predictions(self, dataframe): def fill_predictions(self, dataframe):
""" """
Back fill values to before the backtesting range so that the dataframe matches size Back fill values to before the backtesting range so that the dataframe matches size
when it goes back to the strategy. These rows are not included in the backtest. when it goes back to the strategy. These rows are not included in the backtest.
""" """
len_filler = len(dataframe) - len(self.full_df.index) # startup_candle_count
filler_df = pd.DataFrame(
np.zeros((len_filler, len(self.full_df.columns))), columns=self.full_df.columns
)
self.full_df = pd.concat([filler_df, self.full_df], axis=0, ignore_index=True)
to_keep = [col for col in dataframe.columns if not col.startswith("&")] to_keep = [col for col in dataframe.columns if not col.startswith("&")]
self.return_dataframe = pd.concat([dataframe[to_keep], self.full_df], axis=1) self.return_dataframe = pd.merge(dataframe[to_keep],
self.full_df, how='left', on='date')
self.return_dataframe[self.full_df.columns] = (
self.return_dataframe[self.full_df.columns].fillna(value=0))
self.full_df = DataFrame() self.full_df = DataFrame()
return return
@ -1323,22 +1293,22 @@ class FreqaiDataKitchen:
self, append_df: DataFrame self, append_df: DataFrame
) -> None: ) -> None:
""" """
Save prediction dataframe from backtesting to h5 file format Save prediction dataframe from backtesting to feather file format
:param append_df: dataframe for backtesting period :param append_df: dataframe for backtesting period
""" """
full_predictions_folder = Path(self.full_path / self.backtest_predictions_folder) full_predictions_folder = Path(self.full_path / self.backtest_predictions_folder)
if not full_predictions_folder.is_dir(): if not full_predictions_folder.is_dir():
full_predictions_folder.mkdir(parents=True, exist_ok=True) full_predictions_folder.mkdir(parents=True, exist_ok=True)
append_df.to_hdf(self.backtesting_results_path, key='append_df', mode='w') append_df.to_feather(self.backtesting_results_path)
def get_backtesting_prediction( def get_backtesting_prediction(
self self
) -> DataFrame: ) -> DataFrame:
""" """
Get prediction dataframe from h5 file format Get prediction dataframe from feather file format
""" """
append_df = pd.read_hdf(self.backtesting_results_path) append_df = pd.read_feather(self.backtesting_results_path)
return append_df return append_df
def check_if_backtest_prediction_is_valid( def check_if_backtest_prediction_is_valid(
@ -1354,19 +1324,20 @@ class FreqaiDataKitchen:
""" """
path_to_predictionfile = Path(self.full_path / path_to_predictionfile = Path(self.full_path /
self.backtest_predictions_folder / self.backtest_predictions_folder /
f"{self.model_filename}_prediction.h5") f"{self.model_filename}_prediction.feather")
self.backtesting_results_path = path_to_predictionfile self.backtesting_results_path = path_to_predictionfile
file_exists = path_to_predictionfile.is_file() file_exists = path_to_predictionfile.is_file()
if file_exists: if file_exists:
append_df = self.get_backtesting_prediction() append_df = self.get_backtesting_prediction()
if len(append_df) == len_backtest_df: if len(append_df) == len_backtest_df and 'date' in append_df:
logger.info(f"Found backtesting prediction file at {path_to_predictionfile}") logger.info(f"Found backtesting prediction file at {path_to_predictionfile}")
return True return True
else: else:
logger.info("A new backtesting prediction file is required. " logger.info("A new backtesting prediction file is required. "
"(Number of predictions is different from dataframe length).") "(Number of predictions is different from dataframe length or "
"old prediction file version).")
return False return False
else: else:
logger.info( logger.info(
@ -1374,17 +1345,6 @@ class FreqaiDataKitchen:
) )
return False return False
def set_timerange_from_ready_models(self):
backtesting_timerange, \
assets_end_dates = (
self.get_timerange_and_assets_end_dates_from_ready_models(self.full_path))
self.backtest_live_models_data = {
"backtesting_timerange": backtesting_timerange,
"assets_end_dates": assets_end_dates
}
return
def get_full_models_path(self, config: Config) -> Path: def get_full_models_path(self, config: Config) -> Path:
""" """
Returns default FreqAI model path Returns default FreqAI model path
@ -1395,88 +1355,6 @@ class FreqaiDataKitchen:
config["user_data_dir"] / "models" / str(freqai_config.get("identifier")) config["user_data_dir"] / "models" / str(freqai_config.get("identifier"))
) )
def get_timerange_and_assets_end_dates_from_ready_models(
self, models_path: Path) -> Tuple[TimeRange, Dict[str, Any]]:
"""
Returns timerange information based on a FreqAI model directory
:param models_path: FreqAI model path
:return: a Tuple with (Timerange calculated from directory and
a Dict with pair and model end training dates info)
"""
all_models_end_dates = []
assets_end_dates: Dict[str, Any] = self.get_assets_timestamps_training_from_ready_models(
models_path)
for key in assets_end_dates:
for model_end_date in assets_end_dates[key]:
if model_end_date not in all_models_end_dates:
all_models_end_dates.append(model_end_date)
if len(all_models_end_dates) == 0:
raise OperationalException(
'At least 1 saved model is required to '
'run backtest with the freqai-backtest-live-models option'
)
if len(all_models_end_dates) == 1:
logger.warning(
"Only 1 model was found. Backtesting will run with the "
"timerange from the end of the training date to the current date"
)
finish_timestamp = int(datetime.now(tz=timezone.utc).timestamp())
if len(all_models_end_dates) > 1:
# After last model end date, use the same period from previous model
# to finish the backtest
all_models_end_dates.sort(reverse=True)
finish_timestamp = all_models_end_dates[0] + \
(all_models_end_dates[0] - all_models_end_dates[1])
all_models_end_dates.append(finish_timestamp)
all_models_end_dates.sort()
start_date = (datetime(*datetime.fromtimestamp(min(all_models_end_dates),
timezone.utc).timetuple()[:3], tzinfo=timezone.utc))
end_date = (datetime(*datetime.fromtimestamp(max(all_models_end_dates),
timezone.utc).timetuple()[:3], tzinfo=timezone.utc))
# add 1 day to string timerange to ensure BT module will load all dataframe data
end_date = end_date + timedelta(days=1)
backtesting_timerange = TimeRange(
'date', 'date', int(start_date.timestamp()), int(end_date.timestamp())
)
return backtesting_timerange, assets_end_dates
def get_assets_timestamps_training_from_ready_models(
self, models_path: Path) -> Dict[str, Any]:
"""
Scan the models path and returns all assets end training dates (timestamp)
:param models_path: FreqAI model path
:return: a Dict with asset and model end training dates info
"""
assets_end_dates: Dict[str, Any] = {}
if not models_path.is_dir():
raise OperationalException(
'Model folders not found. Saved models are required '
'to run backtest with the freqai-backtest-live-models option'
)
for model_dir in models_path.iterdir():
if str(model_dir.name).startswith("sub-train"):
model_end_date = int(model_dir.name.split("_")[1])
asset = model_dir.name.split("_")[0].replace("sub-train-", "")
model_file_name = (
f"cb_{str(model_dir.name).replace('sub-train-', '').lower()}"
"_model.joblib"
)
model_path_file = Path(model_dir / model_file_name)
if model_path_file.is_file():
if asset not in assets_end_dates:
assets_end_dates[asset] = []
assets_end_dates[asset].append(model_end_date)
return assets_end_dates
def remove_special_chars_from_feature_names(self, dataframe: pd.DataFrame) -> pd.DataFrame: def remove_special_chars_from_feature_names(self, dataframe: pd.DataFrame) -> pd.DataFrame:
""" """
Remove all special characters from feature strings (:) Remove all special characters from feature strings (:)

View File

@ -69,6 +69,7 @@ class IFreqaiModel(ABC):
self.save_backtest_models: bool = self.freqai_info.get("save_backtest_models", True) self.save_backtest_models: bool = self.freqai_info.get("save_backtest_models", True)
if self.save_backtest_models: if self.save_backtest_models:
logger.info('Backtesting module configured to save all models.') logger.info('Backtesting module configured to save all models.')
self.dd = FreqaiDataDrawer(Path(self.full_path), self.config, self.follow_mode) self.dd = FreqaiDataDrawer(Path(self.full_path), self.config, self.follow_mode)
# set current candle to arbitrary historical date # set current candle to arbitrary historical date
self.current_candle: datetime = datetime.fromtimestamp(637887600, tz=timezone.utc) self.current_candle: datetime = datetime.fromtimestamp(637887600, tz=timezone.utc)
@ -100,8 +101,10 @@ class IFreqaiModel(ABC):
self.get_corr_dataframes: bool = True self.get_corr_dataframes: bool = True
self._threads: List[threading.Thread] = [] self._threads: List[threading.Thread] = []
self._stop_event = threading.Event() self._stop_event = threading.Event()
self.metadata: Dict[str, Any] = self.dd.load_global_metadata_from_disk()
self.data_provider: Optional[DataProvider] = None self.data_provider: Optional[DataProvider] = None
self.max_system_threads = max(int(psutil.cpu_count() * 2 - 2), 1) self.max_system_threads = max(int(psutil.cpu_count() * 2 - 2), 1)
self.can_short = True # overridden in start() with strategy.can_short
record_params(config, self.full_path) record_params(config, self.full_path)
@ -131,11 +134,13 @@ class IFreqaiModel(ABC):
self.live = strategy.dp.runmode in (RunMode.DRY_RUN, RunMode.LIVE) self.live = strategy.dp.runmode in (RunMode.DRY_RUN, RunMode.LIVE)
self.dd.set_pair_dict_info(metadata) self.dd.set_pair_dict_info(metadata)
self.data_provider = strategy.dp self.data_provider = strategy.dp
self.can_short = strategy.can_short
if self.live: if self.live:
self.inference_timer('start') self.inference_timer('start')
self.dk = FreqaiDataKitchen(self.config, self.live, metadata["pair"]) self.dk = FreqaiDataKitchen(self.config, self.live, metadata["pair"])
dk = self.start_live(dataframe, metadata, strategy, self.dk) dk = self.start_live(dataframe, metadata, strategy, self.dk)
dataframe = dk.remove_features_from_df(dk.return_dataframe)
# For backtesting, each pair enters and then gets trained for each window along the # For backtesting, each pair enters and then gets trained for each window along the
# sliding window defined by "train_period_days" (training window) and "live_retrain_hours" # sliding window defined by "train_period_days" (training window) and "live_retrain_hours"
@ -144,20 +149,24 @@ class IFreqaiModel(ABC):
# the concatenated results for the full backtesting period back to the strategy. # the concatenated results for the full backtesting period back to the strategy.
elif not self.follow_mode: elif not self.follow_mode:
self.dk = FreqaiDataKitchen(self.config, self.live, metadata["pair"]) self.dk = FreqaiDataKitchen(self.config, self.live, metadata["pair"])
if self.dk.backtest_live_models:
logger.info(
f"Backtesting {len(self.dk.backtesting_timeranges)} timeranges (live models)")
else:
logger.info(f"Training {len(self.dk.training_timeranges)} timeranges")
dataframe = self.dk.use_strategy_to_populate_indicators( dataframe = self.dk.use_strategy_to_populate_indicators(
strategy, prediction_dataframe=dataframe, pair=metadata["pair"] strategy, prediction_dataframe=dataframe, pair=metadata["pair"]
) )
if not self.config.get("freqai_backtest_live_models", False):
logger.info(f"Training {len(self.dk.training_timeranges)} timeranges")
dk = self.start_backtesting(dataframe, metadata, self.dk) dk = self.start_backtesting(dataframe, metadata, self.dk)
dataframe = dk.remove_features_from_df(dk.return_dataframe) dataframe = dk.remove_features_from_df(dk.return_dataframe)
else:
logger.info(
"Backtesting using historic predictions (live models)")
dk = self.start_backtesting_from_historic_predictions(
dataframe, metadata, self.dk)
dataframe = dk.return_dataframe
self.clean_up() self.clean_up()
if self.live: if self.live:
self.inference_timer('stop', metadata["pair"]) self.inference_timer('stop', metadata["pair"])
return dataframe return dataframe
def clean_up(self): def clean_up(self):
@ -275,10 +284,10 @@ class IFreqaiModel(ABC):
train_it += 1 train_it += 1
total_trains = len(dk.backtesting_timeranges) total_trains = len(dk.backtesting_timeranges)
self.training_timerange = tr_train self.training_timerange = tr_train
dataframe_train = dk.slice_dataframe(tr_train, dataframe) len_backtest_df = len(dataframe.loc[(dataframe["date"] >= tr_backtest.startdt) & (
dataframe_backtest = dk.slice_dataframe(tr_backtest, dataframe) dataframe["date"] < tr_backtest.stopdt), :])
if not self.ensure_data_exists(dataframe_backtest, tr_backtest, pair): if not self.ensure_data_exists(len_backtest_df, tr_backtest, pair):
continue continue
self.log_backtesting_progress(tr_train, pair, train_it, total_trains) self.log_backtesting_progress(tr_train, pair, train_it, total_trains)
@ -291,13 +300,15 @@ class IFreqaiModel(ABC):
dk.set_new_model_names(pair, timestamp_model_id) dk.set_new_model_names(pair, timestamp_model_id)
if dk.check_if_backtest_prediction_is_valid(len(dataframe_backtest)): if dk.check_if_backtest_prediction_is_valid(len_backtest_df):
self.dd.load_metadata(dk) self.dd.load_metadata(dk)
dk.find_features(dataframe_train) dk.find_features(dataframe)
self.check_if_feature_list_matches_strategy(dk) self.check_if_feature_list_matches_strategy(dk)
append_df = dk.get_backtesting_prediction() append_df = dk.get_backtesting_prediction()
dk.append_predictions(append_df) dk.append_predictions(append_df)
else: else:
dataframe_train = dk.slice_dataframe(tr_train, dataframe)
dataframe_backtest = dk.slice_dataframe(tr_backtest, dataframe)
if not self.model_exists(dk): if not self.model_exists(dk):
dk.find_features(dataframe_train) dk.find_features(dataframe_train)
dk.find_labels(dataframe_train) dk.find_labels(dataframe_train)
@ -316,10 +327,11 @@ class IFreqaiModel(ABC):
self.model = self.dd.load_data(pair, dk) self.model = self.dd.load_data(pair, dk)
pred_df, do_preds = self.predict(dataframe_backtest, dk) pred_df, do_preds = self.predict(dataframe_backtest, dk)
append_df = dk.get_predictions_to_append(pred_df, do_preds) append_df = dk.get_predictions_to_append(pred_df, do_preds, dataframe_backtest)
dk.append_predictions(append_df) dk.append_predictions(append_df)
dk.save_backtesting_prediction(append_df) dk.save_backtesting_prediction(append_df)
self.backtesting_fit_live_predictions(dk)
dk.fill_predictions(dataframe) dk.fill_predictions(dataframe)
return dk return dk
@ -632,6 +644,8 @@ class IFreqaiModel(ABC):
self.dd.historic_predictions[pair] = pred_df self.dd.historic_predictions[pair] = pred_df
hist_preds_df = self.dd.historic_predictions[pair] hist_preds_df = self.dd.historic_predictions[pair]
self.set_start_dry_live_date(strat_df)
for label in hist_preds_df.columns: for label in hist_preds_df.columns:
if hist_preds_df[label].dtype == object: if hist_preds_df[label].dtype == object:
continue continue
@ -672,7 +686,8 @@ class IFreqaiModel(ABC):
for label in full_labels: for label in full_labels:
if self.dd.historic_predictions[dk.pair][label].dtype == object: if self.dd.historic_predictions[dk.pair][label].dtype == object:
continue continue
f = spy.stats.norm.fit(self.dd.historic_predictions[dk.pair][label].tail(num_candles)) f = spy.stats.norm.fit(
self.dd.historic_predictions[dk.pair][label].tail(num_candles))
dk.data["labels_mean"][label], dk.data["labels_std"][label] = f[0], f[1] dk.data["labels_mean"][label], dk.data["labels_std"][label] = f[0], f[1]
return return
@ -793,16 +808,16 @@ class IFreqaiModel(ABC):
self.pair_it = 1 self.pair_it = 1
self.current_candle = self.dd.current_candle self.current_candle = self.dd.current_candle
def ensure_data_exists(self, dataframe_backtest: DataFrame, def ensure_data_exists(self, len_dataframe_backtest: int,
tr_backtest: TimeRange, pair: str) -> bool: tr_backtest: TimeRange, pair: str) -> bool:
""" """
Check if the dataframe is empty, if not, report useful information to user. Check if the dataframe is empty, if not, report useful information to user.
:param dataframe_backtest: the backtesting dataframe, maybe empty. :param len_dataframe_backtest: the len of backtesting dataframe
:param tr_backtest: current backtesting timerange. :param tr_backtest: current backtesting timerange.
:param pair: current pair :param pair: current pair
:return: if the data exists or not :return: if the data exists or not
""" """
if self.config.get("freqai_backtest_live_models", False) and len(dataframe_backtest) == 0: if self.config.get("freqai_backtest_live_models", False) and len_dataframe_backtest == 0:
logger.info(f"No data found for pair {pair} from " logger.info(f"No data found for pair {pair} from "
f"from { tr_backtest.start_fmt} to {tr_backtest.stop_fmt}. " f"from { tr_backtest.start_fmt} to {tr_backtest.stop_fmt}. "
"Probably more than one training within the same candle period.") "Probably more than one training within the same candle period.")
@ -826,6 +841,81 @@ class IFreqaiModel(ABC):
f"to {tr_train.stop_fmt}, {train_it}/{total_trains} " f"to {tr_train.stop_fmt}, {train_it}/{total_trains} "
"trains" "trains"
) )
def backtesting_fit_live_predictions(self, dk: FreqaiDataKitchen):
"""
Apply fit_live_predictions function in backtesting with a dummy historic_predictions
The loop is required to simulate dry/live operation, as it is not possible to predict
the type of logic implemented by the user.
:param dk: datakitchen object
"""
fit_live_predictions_candles = self.freqai_info.get("fit_live_predictions_candles", 0)
if fit_live_predictions_candles:
logger.info("Applying fit_live_predictions in backtesting")
label_columns = [col for col in dk.full_df.columns if (
col.startswith("&") and
not (col.startswith("&") and col.endswith("_mean")) and
not (col.startswith("&") and col.endswith("_std")) and
col not in self.dk.data["extra_returns_per_train"])
]
for index in range(len(dk.full_df)):
if index >= fit_live_predictions_candles:
self.dd.historic_predictions[self.dk.pair] = (
dk.full_df.iloc[index - fit_live_predictions_candles:index])
self.fit_live_predictions(self.dk, self.dk.pair)
for label in label_columns:
if dk.full_df[label].dtype == object:
continue
if "labels_mean" in self.dk.data:
dk.full_df.at[index, f"{label}_mean"] = (
self.dk.data["labels_mean"][label])
if "labels_std" in self.dk.data:
dk.full_df.at[index, f"{label}_std"] = self.dk.data["labels_std"][label]
for extra_col in self.dk.data["extra_returns_per_train"]:
dk.full_df.at[index, f"{extra_col}"] = (
self.dk.data["extra_returns_per_train"][extra_col])
return
def update_metadata(self, metadata: Dict[str, Any]):
"""
Update global metadata and save the updated json file
:param metadata: new global metadata dict
"""
self.dd.save_global_metadata_to_disk(metadata)
self.metadata = metadata
def set_start_dry_live_date(self, live_dataframe: DataFrame):
key_name = "start_dry_live_date"
if key_name not in self.metadata:
metadata = self.metadata
metadata[key_name] = int(
pd.to_datetime(live_dataframe.tail(1)["date"].values[0]).timestamp())
self.update_metadata(metadata)
def start_backtesting_from_historic_predictions(
self, dataframe: DataFrame, metadata: dict, dk: FreqaiDataKitchen
) -> FreqaiDataKitchen:
"""
:param dataframe: DataFrame = strategy passed dataframe
:param metadata: Dict = pair metadata
:param dk: FreqaiDataKitchen = Data management/analysis tool associated to present pair only
:return:
FreqaiDataKitchen = Data management/analysis tool associated to present pair only
"""
pair = metadata["pair"]
dk.return_dataframe = dataframe
saved_dataframe = self.dd.historic_predictions[pair]
columns_to_drop = list(set(saved_dataframe.columns).intersection(
dk.return_dataframe.columns))
dk.return_dataframe = dk.return_dataframe.drop(columns=list(columns_to_drop))
dk.return_dataframe = pd.merge(
dk.return_dataframe, saved_dataframe, how='left', left_on='date', right_on="date_pred")
# dk.return_dataframe = dk.return_dataframe[saved_dataframe.columns].fillna(0)
return dk
# Following methods which are overridden by user made prediction models. # Following methods which are overridden by user made prediction models.
# See freqai/prediction_models/CatboostPredictionModel.py for an example. # See freqai/prediction_models/CatboostPredictionModel.py for an example.

View File

@ -61,7 +61,7 @@ class ReinforcementLearner(BaseReinforcementLearningModel):
model = self.MODELCLASS(self.policy_type, self.train_env, policy_kwargs=policy_kwargs, model = self.MODELCLASS(self.policy_type, self.train_env, policy_kwargs=policy_kwargs,
tensorboard_log=Path( tensorboard_log=Path(
dk.full_path / "tensorboard" / dk.pair.split('/')[0]), dk.full_path / "tensorboard" / dk.pair.split('/')[0]),
**self.freqai_info['model_training_parameters'] **self.freqai_info.get('model_training_parameters', {})
) )
else: else:
logger.info('Continual training activated - starting training from previously ' logger.info('Continual training activated - starting training from previously '
@ -71,7 +71,7 @@ class ReinforcementLearner(BaseReinforcementLearningModel):
model.learn( model.learn(
total_timesteps=int(total_timesteps), total_timesteps=int(total_timesteps),
callback=self.eval_callback callback=[self.eval_callback, self.tensorboard_callback]
) )
if Path(dk.data_path / "best_model.zip").is_file(): if Path(dk.data_path / "best_model.zip").is_file():
@ -100,13 +100,17 @@ class ReinforcementLearner(BaseReinforcementLearningModel):
""" """
# first, penalize if the action is not valid # first, penalize if the action is not valid
if not self._is_valid(action): if not self._is_valid(action):
self.tensorboard_log("is_valid")
return -2 return -2
pnl = self.get_unrealized_profit() pnl = self.get_unrealized_profit()
factor = 100. factor = 100.
# reward agent for entering trades # reward agent for entering trades
if (action in (Actions.Long_enter.value, Actions.Short_enter.value) if (action == Actions.Long_enter.value
and self._position == Positions.Neutral):
return 25
if (action == Actions.Short_enter.value
and self._position == Positions.Neutral): and self._position == Positions.Neutral):
return 25 return 25
# discourage agent from not entering trades # discourage agent from not entering trades

View File

@ -1,7 +1,6 @@
import logging import logging
from typing import Any, Dict # , Tuple from typing import Any, Dict
# import numpy.typing as npt
from pandas import DataFrame from pandas import DataFrame
from stable_baselines3.common.callbacks import EvalCallback from stable_baselines3.common.callbacks import EvalCallback
from stable_baselines3.common.vec_env import SubprocVecEnv from stable_baselines3.common.vec_env import SubprocVecEnv
@ -9,6 +8,7 @@ from stable_baselines3.common.vec_env import SubprocVecEnv
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
from freqtrade.freqai.prediction_models.ReinforcementLearner import ReinforcementLearner from freqtrade.freqai.prediction_models.ReinforcementLearner import ReinforcementLearner
from freqtrade.freqai.RL.BaseReinforcementLearningModel import make_env from freqtrade.freqai.RL.BaseReinforcementLearningModel import make_env
from freqtrade.freqai.RL.TensorboardCallback import TensorboardCallback
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
@ -34,18 +34,24 @@ class ReinforcementLearner_multiproc(ReinforcementLearner):
train_df = data_dictionary["train_features"] train_df = data_dictionary["train_features"]
test_df = data_dictionary["test_features"] test_df = data_dictionary["test_features"]
env_info = self.pack_env_dict()
env_id = "train_env" env_id = "train_env"
self.train_env = SubprocVecEnv([make_env(self.MyRLEnv, env_id, i, 1, train_df, prices_train, self.train_env = SubprocVecEnv([make_env(self.MyRLEnv, env_id, i, 1,
self.reward_params, self.CONV_WIDTH, monitor=True, train_df, prices_train,
config=self.config) for i monitor=True,
env_info=env_info) for i
in range(self.max_threads)]) in range(self.max_threads)])
eval_env_id = 'eval_env' eval_env_id = 'eval_env'
self.eval_env = SubprocVecEnv([make_env(self.MyRLEnv, eval_env_id, i, 1, self.eval_env = SubprocVecEnv([make_env(self.MyRLEnv, eval_env_id, i, 1,
test_df, prices_test, test_df, prices_test,
self.reward_params, self.CONV_WIDTH, monitor=True, monitor=True,
config=self.config) for i env_info=env_info) for i
in range(self.max_threads)]) in range(self.max_threads)])
self.eval_callback = EvalCallback(self.eval_env, deterministic=True, self.eval_callback = EvalCallback(self.eval_env, deterministic=True,
render=False, eval_freq=len(train_df), render=False, eval_freq=len(train_df),
best_model_save_path=str(dk.data_path)) best_model_save_path=str(dk.data_path))
actions = self.train_env.env_method("get_actions")[0]
self.tensorboard_callback = TensorboardCallback(verbose=1, actions=actions)

View File

@ -14,6 +14,7 @@ from freqtrade.data.history.history_utils import refresh_backtest_ohlcv_data
from freqtrade.exceptions import OperationalException from freqtrade.exceptions import OperationalException
from freqtrade.exchange import timeframe_to_seconds from freqtrade.exchange import timeframe_to_seconds
from freqtrade.exchange.exchange import market_is_active from freqtrade.exchange.exchange import market_is_active
from freqtrade.freqai.data_drawer import FreqaiDataDrawer
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
from freqtrade.plugins.pairlist.pairlist_helpers import dynamic_expand_pairlist from freqtrade.plugins.pairlist.pairlist_helpers import dynamic_expand_pairlist
@ -229,5 +230,6 @@ def get_timerange_backtest_live_models(config: Config) -> str:
""" """
dk = FreqaiDataKitchen(config) dk = FreqaiDataKitchen(config)
models_path = dk.get_full_models_path(config) models_path = dk.get_full_models_path(config)
timerange, _ = dk.get_timerange_and_assets_end_dates_from_ready_models(models_path) dd = FreqaiDataDrawer(models_path, config)
timerange = dd.get_timerange_from_live_historic_predictions()
return timerange.timerange_str return timerange.timerange_str

View File

@ -155,6 +155,8 @@ class FreqtradeBot(LoggingMixin):
self.cancel_all_open_orders() self.cancel_all_open_orders()
self.check_for_open_trades() self.check_for_open_trades()
except Exception as e:
logger.warning(f'Exception during cleanup: {e.__class__.__name__} {e}')
finally: finally:
self.strategy.ft_bot_cleanup() self.strategy.ft_bot_cleanup()
@ -162,8 +164,13 @@ class FreqtradeBot(LoggingMixin):
self.rpc.cleanup() self.rpc.cleanup()
if self.emc: if self.emc:
self.emc.shutdown() self.emc.shutdown()
Trade.commit()
self.exchange.close() self.exchange.close()
try:
Trade.commit()
except Exception:
# Exeptions here will be happening if the db disappeared.
# At which point we can no longer commit anyway.
pass
def startup(self) -> None: def startup(self) -> None:
""" """
@ -905,6 +912,7 @@ class FreqtradeBot(LoggingMixin):
stake_amount=stake_amount, stake_amount=stake_amount,
min_stake_amount=min_stake_amount, min_stake_amount=min_stake_amount,
max_stake_amount=max_stake_amount, max_stake_amount=max_stake_amount,
trade_amount=trade.stake_amount if trade else None,
) )
return enter_limit_requested, stake_amount, leverage return enter_limit_requested, stake_amount, leverage

View File

@ -7,6 +7,8 @@ import logging
import sys import sys
from typing import Any, List from typing import Any, List
from freqtrade.util.gc_setup import gc_set_threshold
# check min. python version # check min. python version
if sys.version_info < (3, 8): # pragma: no cover if sys.version_info < (3, 8): # pragma: no cover
@ -36,6 +38,7 @@ def main(sysargv: List[str] = None) -> None:
# Call subcommand. # Call subcommand.
if 'func' in args: if 'func' in args:
logger.info(f'freqtrade {__version__}') logger.info(f'freqtrade {__version__}')
gc_set_threshold()
return_code = args['func'](args) return_code = args['func'](args)
else: else:
# No subcommand was issued. # No subcommand was issued.

View File

@ -301,3 +301,21 @@ def remove_entry_exit_signals(dataframe: pd.DataFrame):
dataframe[SignalTagType.EXIT_TAG.value] = None dataframe[SignalTagType.EXIT_TAG.value] = None
return dataframe return dataframe
def append_candles_to_dataframe(left: pd.DataFrame, right: pd.DataFrame) -> pd.DataFrame:
"""
Append the `right` dataframe to the `left` dataframe
:param left: The full dataframe you want appended to
:param right: The new dataframe containing the data you want appended
:returns: The dataframe with the right data in it
"""
if left.iloc[-1]['date'] != right.iloc[-1]['date']:
left = pd.concat([left, right])
# Only keep the last 1500 candles in memory
left = left[-1500:] if len(left) > 1500 else left
left.reset_index(drop=True, inplace=True)
return left

View File

@ -769,6 +769,7 @@ class Backtesting:
stake_amount=stake_amount, stake_amount=stake_amount,
min_stake_amount=min_stake_amount, min_stake_amount=min_stake_amount,
max_stake_amount=max_stake_amount, max_stake_amount=max_stake_amount,
trade_amount=trade.stake_amount if trade else None
) )
return propose_rate, stake_amount_val, leverage, min_stake_amount return propose_rate, stake_amount_val, leverage, min_stake_amount

View File

@ -109,11 +109,10 @@ def migrate_trades_and_orders_table(
else: else:
is_short = get_column_def(cols, 'is_short', '0') is_short = get_column_def(cols, 'is_short', '0')
# Margin Properties # Futures Properties
interest_rate = get_column_def(cols, 'interest_rate', '0.0') interest_rate = get_column_def(cols, 'interest_rate', '0.0')
# Futures properties
funding_fees = get_column_def(cols, 'funding_fees', '0.0') funding_fees = get_column_def(cols, 'funding_fees', '0.0')
max_stake_amount = get_column_def(cols, 'max_stake_amount', 'stake_amount')
# If ticker-interval existed use that, else null. # If ticker-interval existed use that, else null.
if has_column(cols, 'ticker_interval'): if has_column(cols, 'ticker_interval'):
@ -162,7 +161,8 @@ def migrate_trades_and_orders_table(
timeframe, open_trade_value, close_profit_abs, timeframe, open_trade_value, close_profit_abs,
trading_mode, leverage, liquidation_price, is_short, trading_mode, leverage, liquidation_price, is_short,
interest_rate, funding_fees, realized_profit, interest_rate, funding_fees, realized_profit,
amount_precision, price_precision, precision_mode, contract_size amount_precision, price_precision, precision_mode, contract_size,
max_stake_amount
) )
select id, lower(exchange), pair, {base_currency} base_currency, select id, lower(exchange), pair, {base_currency} base_currency,
{stake_currency} stake_currency, {stake_currency} stake_currency,
@ -190,7 +190,8 @@ def migrate_trades_and_orders_table(
{is_short} is_short, {interest_rate} interest_rate, {is_short} is_short, {interest_rate} interest_rate,
{funding_fees} funding_fees, {realized_profit} realized_profit, {funding_fees} funding_fees, {realized_profit} realized_profit,
{amount_precision} amount_precision, {price_precision} price_precision, {amount_precision} amount_precision, {price_precision} price_precision,
{precision_mode} precision_mode, {contract_size} contract_size {precision_mode} precision_mode, {contract_size} contract_size,
{max_stake_amount} max_stake_amount
from {trade_back_name} from {trade_back_name}
""")) """))
@ -310,8 +311,8 @@ def check_migrate(engine, decl_base, previous_tables) -> None:
# if ('orders' not in previous_tables # if ('orders' not in previous_tables
# or not has_column(cols_orders, 'funding_fee')): # or not has_column(cols_orders, 'funding_fee')):
migrating = False migrating = False
# if not has_column(cols_trades, 'contract_size'): # if not has_column(cols_orders, 'funding_fee'):
if not has_column(cols_orders, 'funding_fee'): if not has_column(cols_trades, 'max_stake_amount'):
migrating = True migrating = True
logger.info(f"Running database migration for trades - " logger.info(f"Running database migration for trades - "
f"backup: {table_back_name}, {order_table_bak_name}") f"backup: {table_back_name}, {order_table_bak_name}")

View File

@ -87,7 +87,7 @@ class PairLocks():
Get the lock that expires the latest for the pair given. Get the lock that expires the latest for the pair given.
""" """
locks = PairLocks.get_pair_locks(pair, now, side=side) locks = PairLocks.get_pair_locks(pair, now, side=side)
locks = sorted(locks, key=lambda l: l.lock_end_time, reverse=True) locks = sorted(locks, key=lambda lock: lock.lock_end_time, reverse=True)
return locks[0] if locks else None return locks[0] if locks else None
@staticmethod @staticmethod

View File

@ -293,6 +293,7 @@ class LocalTrade():
close_profit: Optional[float] = None close_profit: Optional[float] = None
close_profit_abs: Optional[float] = None close_profit_abs: Optional[float] = None
stake_amount: float = 0.0 stake_amount: float = 0.0
max_stake_amount: float = 0.0
amount: float = 0.0 amount: float = 0.0
amount_requested: Optional[float] = None amount_requested: Optional[float] = None
open_date: datetime open_date: datetime
@ -397,12 +398,6 @@ class LocalTrade():
def close_date_utc(self): def close_date_utc(self):
return self.close_date.replace(tzinfo=timezone.utc) return self.close_date.replace(tzinfo=timezone.utc)
@property
def enter_side(self) -> str:
""" DEPRECATED, please use entry_side instead"""
# TODO: Please remove me after 2022.5
return self.entry_side
@property @property
def entry_side(self) -> str: def entry_side(self) -> str:
if self.is_short: if self.is_short:
@ -475,8 +470,8 @@ class LocalTrade():
'amount': round(self.amount, 8), 'amount': round(self.amount, 8),
'amount_requested': round(self.amount_requested, 8) if self.amount_requested else None, 'amount_requested': round(self.amount_requested, 8) if self.amount_requested else None,
'stake_amount': round(self.stake_amount, 8), 'stake_amount': round(self.stake_amount, 8),
'max_stake_amount': round(self.max_stake_amount, 8) if self.max_stake_amount else None,
'strategy': self.strategy, 'strategy': self.strategy,
'buy_tag': self.enter_tag,
'enter_tag': self.enter_tag, 'enter_tag': self.enter_tag,
'timeframe': self.timeframe, 'timeframe': self.timeframe,
@ -513,7 +508,6 @@ class LocalTrade():
'profit_pct': round(self.close_profit * 100, 2) if self.close_profit else None, 'profit_pct': round(self.close_profit * 100, 2) if self.close_profit else None,
'profit_abs': self.close_profit_abs, 'profit_abs': self.close_profit_abs,
'sell_reason': self.exit_reason, # Deprecated
'exit_reason': self.exit_reason, 'exit_reason': self.exit_reason,
'exit_order_status': self.exit_order_status, 'exit_order_status': self.exit_order_status,
'stop_loss_abs': self.stop_loss, 'stop_loss_abs': self.stop_loss,
@ -882,6 +876,7 @@ class LocalTrade():
ZERO = FtPrecise(0.0) ZERO = FtPrecise(0.0)
current_amount = FtPrecise(0.0) current_amount = FtPrecise(0.0)
current_stake = FtPrecise(0.0) current_stake = FtPrecise(0.0)
max_stake_amount = FtPrecise(0.0)
total_stake = 0.0 # Total stake after all buy orders (does not subtract!) total_stake = 0.0 # Total stake after all buy orders (does not subtract!)
avg_price = FtPrecise(0.0) avg_price = FtPrecise(0.0)
close_profit = 0.0 close_profit = 0.0
@ -923,7 +918,9 @@ class LocalTrade():
exit_rate, amount=exit_amount, open_rate=avg_price) exit_rate, amount=exit_amount, open_rate=avg_price)
else: else:
total_stake = total_stake + self._calc_open_trade_value(tmp_amount, price) total_stake = total_stake + self._calc_open_trade_value(tmp_amount, price)
max_stake_amount += (tmp_amount * price)
self.funding_fees = funding_fees self.funding_fees = funding_fees
self.max_stake_amount = float(max_stake_amount)
if close_profit: if close_profit:
self.close_profit = close_profit self.close_profit = close_profit
@ -1175,6 +1172,7 @@ class Trade(_DECL_BASE, LocalTrade):
close_profit = Column(Float) close_profit = Column(Float)
close_profit_abs = Column(Float) close_profit_abs = Column(Float)
stake_amount = Column(Float, nullable=False) stake_amount = Column(Float, nullable=False)
max_stake_amount = Column(Float)
amount = Column(Float) amount = Column(Float)
amount_requested = Column(Float) amount_requested = Column(Float)
open_date = Column(DateTime, nullable=False, default=datetime.utcnow) open_date = Column(DateTime, nullable=False, default=datetime.utcnow)

View File

@ -0,0 +1,206 @@
"""
Remote PairList provider
Provides pair list fetched from a remote source
"""
import json
import logging
from pathlib import Path
from typing import Any, Dict, List, Tuple
import requests
from cachetools import TTLCache
from freqtrade import __version__
from freqtrade.constants import Config
from freqtrade.exceptions import OperationalException
from freqtrade.exchange.types import Tickers
from freqtrade.plugins.pairlist.IPairList import IPairList
logger = logging.getLogger(__name__)
class RemotePairList(IPairList):
def __init__(self, exchange, pairlistmanager,
config: Config, pairlistconfig: Dict[str, Any],
pairlist_pos: int) -> None:
super().__init__(exchange, pairlistmanager, config, pairlistconfig, pairlist_pos)
if 'number_assets' not in self._pairlistconfig:
raise OperationalException(
'`number_assets` not specified. Please check your configuration '
'for "pairlist.config.number_assets"')
if 'pairlist_url' not in self._pairlistconfig:
raise OperationalException(
'`pairlist_url` not specified. Please check your configuration '
'for "pairlist.config.pairlist_url"')
self._number_pairs = self._pairlistconfig['number_assets']
self._refresh_period: int = self._pairlistconfig.get('refresh_period', 1800)
self._keep_pairlist_on_failure = self._pairlistconfig.get('keep_pairlist_on_failure', True)
self._pair_cache: TTLCache = TTLCache(maxsize=1, ttl=self._refresh_period)
self._pairlist_url = self._pairlistconfig.get('pairlist_url', '')
self._read_timeout = self._pairlistconfig.get('read_timeout', 60)
self._bearer_token = self._pairlistconfig.get('bearer_token', '')
self._init_done = False
self._last_pairlist: List[Any] = list()
@property
def needstickers(self) -> bool:
"""
Boolean property defining if tickers are necessary.
If no Pairlist requires tickers, an empty Dict is passed
as tickers argument to filter_pairlist
"""
return False
def short_desc(self) -> str:
"""
Short whitelist method description - used for startup-messages
"""
return f"{self.name} - {self._pairlistconfig['number_assets']} pairs from RemotePairlist."
def process_json(self, jsonparse) -> List[str]:
pairlist = jsonparse.get('pairs', [])
remote_refresh_period = int(jsonparse.get('refresh_period', self._refresh_period))
if self._refresh_period < remote_refresh_period:
self.log_once(f'Refresh Period has been increased from {self._refresh_period}'
f' to minimum allowed: {remote_refresh_period} from Remote.', logger.info)
self._refresh_period = remote_refresh_period
self._pair_cache = TTLCache(maxsize=1, ttl=remote_refresh_period)
self._init_done = True
return pairlist
def return_last_pairlist(self) -> List[str]:
if self._keep_pairlist_on_failure:
pairlist = self._last_pairlist
self.log_once('Keeping last fetched pairlist', logger.info)
else:
pairlist = []
return pairlist
def fetch_pairlist(self) -> Tuple[List[str], float]:
headers = {
'User-Agent': 'Freqtrade/' + __version__ + ' Remotepairlist'
}
if self._bearer_token:
headers['Authorization'] = f'Bearer {self._bearer_token}'
try:
response = requests.get(self._pairlist_url, headers=headers,
timeout=self._read_timeout)
content_type = response.headers.get('content-type')
time_elapsed = response.elapsed.total_seconds()
if "application/json" in str(content_type):
jsonparse = response.json()
try:
pairlist = self.process_json(jsonparse)
except Exception as e:
if self._init_done:
pairlist = self.return_last_pairlist()
logger.warning(f'Error while processing JSON data: {type(e)}')
else:
raise OperationalException(f'Error while processing JSON data: {type(e)}')
else:
if self._init_done:
self.log_once(f'Error: RemotePairList is not of type JSON: '
f' {self._pairlist_url}', logger.info)
pairlist = self.return_last_pairlist()
else:
raise OperationalException('RemotePairList is not of type JSON, abort.')
except requests.exceptions.RequestException:
self.log_once(f'Was not able to fetch pairlist from:'
f' {self._pairlist_url}', logger.info)
pairlist = self.return_last_pairlist()
time_elapsed = 0
return pairlist, time_elapsed
def gen_pairlist(self, tickers: Tickers) -> List[str]:
"""
Generate the pairlist
:param tickers: Tickers (from exchange.get_tickers). May be cached.
:return: List of pairs
"""
if self._init_done:
pairlist = self._pair_cache.get('pairlist')
else:
pairlist = []
time_elapsed = 0.0
if pairlist:
# Item found - no refresh necessary
return pairlist.copy()
else:
if self._pairlist_url.startswith("file:///"):
filename = self._pairlist_url.split("file:///", 1)[1]
file_path = Path(filename)
if file_path.exists():
with open(filename) as json_file:
# Load the JSON data into a dictionary
jsonparse = json.load(json_file)
try:
pairlist = self.process_json(jsonparse)
except Exception as e:
if self._init_done:
pairlist = self.return_last_pairlist()
logger.warning(f'Error while processing JSON data: {type(e)}')
else:
raise OperationalException('Error while processing'
f'JSON data: {type(e)}')
else:
raise ValueError(f"{self._pairlist_url} does not exist.")
else:
# Fetch Pairlist from Remote URL
pairlist, time_elapsed = self.fetch_pairlist()
self.log_once(f"Fetched pairs: {pairlist}", logger.debug)
pairlist = self._whitelist_for_active_markets(pairlist)
pairlist = pairlist[:self._number_pairs]
self._pair_cache['pairlist'] = pairlist.copy()
if time_elapsed != 0.0:
self.log_once(f'Pairlist Fetched in {time_elapsed} seconds.', logger.info)
else:
self.log_once('Fetched Pairlist.', logger.info)
self._last_pairlist = list(pairlist)
return pairlist
def filter_pairlist(self, pairlist: List[str], tickers: Dict) -> List[str]:
"""
Filters and sorts pairlist and returns the whitelist again.
Called on each bot iteration - please use internal caching if necessary
:param pairlist: pairlist to filter or sort
:param tickers: Tickers (from exchange.get_tickers). May be cached.
:return: new whitelist
"""
rpl_pairlist = self.gen_pairlist(tickers)
merged_list = pairlist + rpl_pairlist
merged_list = sorted(set(merged_list), key=merged_list.index)
return merged_list

View File

@ -218,7 +218,7 @@ class VolumePairList(IPairList):
else: else:
filtered_tickers[i]['quoteVolume'] = 0 filtered_tickers[i]['quoteVolume'] = 0
else: else:
# Tickers mode - filter based on incomming pairlist. # Tickers mode - filter based on incoming pairlist.
filtered_tickers = [v for k, v in tickers.items() if k in pairlist] filtered_tickers = [v for k, v in tickers.items() if k in pairlist]
if self._min_value > 0: if self._min_value > 0:

View File

@ -11,6 +11,7 @@ from freqtrade.configuration.config_validation import validate_config_consistenc
from freqtrade.data.btanalysis import get_backtest_resultlist, load_and_merge_backtest_result from freqtrade.data.btanalysis import get_backtest_resultlist, load_and_merge_backtest_result
from freqtrade.enums import BacktestState from freqtrade.enums import BacktestState
from freqtrade.exceptions import DependencyException from freqtrade.exceptions import DependencyException
from freqtrade.misc import deep_merge_dicts
from freqtrade.rpc.api_server.api_schemas import (BacktestHistoryEntry, BacktestRequest, from freqtrade.rpc.api_server.api_schemas import (BacktestHistoryEntry, BacktestRequest,
BacktestResponse) BacktestResponse)
from freqtrade.rpc.api_server.deps import get_config, is_webserver_mode from freqtrade.rpc.api_server.deps import get_config, is_webserver_mode
@ -37,10 +38,11 @@ async def api_start_backtest(bt_settings: BacktestRequest, background_tasks: Bac
btconfig = deepcopy(config) btconfig = deepcopy(config)
settings = dict(bt_settings) settings = dict(bt_settings)
if settings.get('freqai', None) is not None:
settings['freqai'] = dict(settings['freqai'])
# Pydantic models will contain all keys, but non-provided ones are None # Pydantic models will contain all keys, but non-provided ones are None
for setting in settings.keys():
if settings[setting] is not None: btconfig = deep_merge_dicts(settings, btconfig, allow_null_overrides=False)
btconfig[setting] = settings[setting]
try: try:
btconfig['stake_amount'] = float(btconfig['stake_amount']) btconfig['stake_amount'] = float(btconfig['stake_amount'])
except ValueError: except ValueError:

View File

@ -217,8 +217,8 @@ class TradeSchema(BaseModel):
amount: float amount: float
amount_requested: float amount_requested: float
stake_amount: float stake_amount: float
max_stake_amount: Optional[float]
strategy: str strategy: str
buy_tag: Optional[str] # Deprecated
enter_tag: Optional[str] enter_tag: Optional[str]
timeframe: int timeframe: int
fee_open: Optional[float] fee_open: Optional[float]
@ -243,7 +243,6 @@ class TradeSchema(BaseModel):
profit_pct: Optional[float] profit_pct: Optional[float]
profit_abs: Optional[float] profit_abs: Optional[float]
profit_fiat: Optional[float] profit_fiat: Optional[float]
sell_reason: Optional[str] # Deprecated
exit_reason: Optional[str] exit_reason: Optional[str]
exit_order_status: Optional[str] exit_order_status: Optional[str]
stop_loss_abs: Optional[float] stop_loss_abs: Optional[float]
@ -372,6 +371,10 @@ class StrategyListResponse(BaseModel):
strategies: List[str] strategies: List[str]
class FreqAIModelListResponse(BaseModel):
freqaimodels: List[str]
class StrategyResponse(BaseModel): class StrategyResponse(BaseModel):
strategy: str strategy: str
code: str code: str
@ -410,6 +413,10 @@ class PairHistory(BaseModel):
} }
class BacktestFreqAIInputs(BaseModel):
identifier: str
class BacktestRequest(BaseModel): class BacktestRequest(BaseModel):
strategy: str strategy: str
timeframe: Optional[str] timeframe: Optional[str]
@ -419,6 +426,9 @@ class BacktestRequest(BaseModel):
stake_amount: Optional[str] stake_amount: Optional[str]
enable_protections: bool enable_protections: bool
dry_run_wallet: Optional[float] dry_run_wallet: Optional[float]
backtest_cache: Optional[str]
freqaimodel: Optional[str]
freqai: Optional[BacktestFreqAIInputs]
class BacktestResponse(BaseModel): class BacktestResponse(BaseModel):

View File

@ -13,12 +13,13 @@ from freqtrade.rpc import RPC
from freqtrade.rpc.api_server.api_schemas import (AvailablePairs, Balances, BlacklistPayload, from freqtrade.rpc.api_server.api_schemas import (AvailablePairs, Balances, BlacklistPayload,
BlacklistResponse, Count, Daily, BlacklistResponse, Count, Daily,
DeleteLockRequest, DeleteTrade, ForceEnterPayload, DeleteLockRequest, DeleteTrade, ForceEnterPayload,
ForceEnterResponse, ForceExitPayload, Health, ForceEnterResponse, ForceExitPayload,
Locks, Logs, OpenTradeSchema, PairHistory, FreqAIModelListResponse, Health, Locks, Logs,
PerformanceEntry, Ping, PlotConfig, Profit, OpenTradeSchema, PairHistory, PerformanceEntry,
ResultMsg, ShowConfig, Stats, StatusMsg, Ping, PlotConfig, Profit, ResultMsg, ShowConfig,
StrategyListResponse, StrategyResponse, SysInfo, Stats, StatusMsg, StrategyListResponse,
Version, WhitelistResponse) StrategyResponse, SysInfo, Version,
WhitelistResponse)
from freqtrade.rpc.api_server.deps import get_config, get_exchange, get_rpc, get_rpc_optional from freqtrade.rpc.api_server.deps import get_config, get_exchange, get_rpc, get_rpc_optional
from freqtrade.rpc.rpc import RPCException from freqtrade.rpc.rpc import RPCException
@ -37,7 +38,9 @@ logger = logging.getLogger(__name__)
# 2.16: Additional daily metrics # 2.16: Additional daily metrics
# 2.17: Forceentry - leverage, partial force_exit # 2.17: Forceentry - leverage, partial force_exit
# 2.20: Add websocket endpoints # 2.20: Add websocket endpoints
API_VERSION = 2.20 # 2.21: Add new_candle messagetype
# 2.22: Add FreqAI to backtesting
API_VERSION = 2.22
# Public API, requires no auth. # Public API, requires no auth.
router_public = APIRouter() router_public = APIRouter()
@ -278,6 +281,16 @@ def get_strategy(strategy: str, config=Depends(get_config)):
} }
@router.get('/freqaimodels', response_model=FreqAIModelListResponse, tags=['freqai'])
def list_freqaimodels(config=Depends(get_config)):
from freqtrade.resolvers.freqaimodel_resolver import FreqaiModelResolver
strategies = FreqaiModelResolver.search_all_objects(
config, False)
strategies = sorted(strategies, key=lambda x: x['name'])
return {'freqaimodels': [x['name'] for x in strategies]}
@router.get('/available_pairs', response_model=AvailablePairs, tags=['candle data']) @router.get('/available_pairs', response_model=AvailablePairs, tags=['candle data'])
def list_available_pairs(timeframe: Optional[str] = None, stake_currency: Optional[str] = None, def list_available_pairs(timeframe: Optional[str] = None, stake_currency: Optional[str] = None,
candletype: Optional[CandleType] = None, config=Depends(get_config)): candletype: Optional[CandleType] = None, config=Depends(get_config)):

View File

@ -91,9 +91,10 @@ async def _process_consumer_request(
elif type == RPCRequestType.ANALYZED_DF: elif type == RPCRequestType.ANALYZED_DF:
# Limit the amount of candles per dataframe to 'limit' or 1500 # Limit the amount of candles per dataframe to 'limit' or 1500
limit = min(data.get('limit', 1500), 1500) if data else None limit = min(data.get('limit', 1500), 1500) if data else None
pair = data.get('pair', None) if data else None
# For every pair in the generator, send a separate message # For every pair in the generator, send a separate message
for message in rpc._ws_request_analyzed_df(limit): for message in rpc._ws_request_analyzed_df(limit, pair):
# Format response # Format response
response = WSAnalyzedDFMessage(data=message) response = WSAnalyzedDFMessage(data=message)
await channel.send(response.dict(exclude_none=True)) await channel.send(response.dict(exclude_none=True))

View File

@ -27,7 +27,8 @@ class WebSocketChannel:
self, self,
websocket: WebSocketType, websocket: WebSocketType,
channel_id: Optional[str] = None, channel_id: Optional[str] = None,
serializer_cls: Type[WebSocketSerializer] = HybridJSONWebSocketSerializer serializer_cls: Type[WebSocketSerializer] = HybridJSONWebSocketSerializer,
send_throttle: float = 0.01
): ):
self.channel_id = channel_id if channel_id else uuid4().hex[:8] self.channel_id = channel_id if channel_id else uuid4().hex[:8]
self._websocket = WebSocketProxy(websocket) self._websocket = WebSocketProxy(websocket)
@ -41,6 +42,7 @@ class WebSocketChannel:
self._send_times: Deque[float] = deque([], maxlen=10) self._send_times: Deque[float] = deque([], maxlen=10)
# High limit defaults to 3 to start # High limit defaults to 3 to start
self._send_high_limit = 3 self._send_high_limit = 3
self._send_throttle = send_throttle
# The subscribed message types # The subscribed message types
self._subscriptions: List[str] = [] self._subscriptions: List[str] = []
@ -106,7 +108,8 @@ class WebSocketChannel:
# Explicitly give control back to event loop as # Explicitly give control back to event loop as
# websockets.send does not # websockets.send does not
await asyncio.sleep(0.01) # Also throttles how fast we send
await asyncio.sleep(self._send_throttle)
async def recv(self): async def recv(self):
""" """

View File

@ -47,7 +47,7 @@ class WSWhitelistRequest(WSRequestSchema):
class WSAnalyzedDFRequest(WSRequestSchema): class WSAnalyzedDFRequest(WSRequestSchema):
type: RPCRequestType = RPCRequestType.ANALYZED_DF type: RPCRequestType = RPCRequestType.ANALYZED_DF
data: Dict[str, Any] = {"limit": 1500} data: Dict[str, Any] = {"limit": 1500, "pair": None}
# ------------------------------ MESSAGE SCHEMAS ---------------------------- # ------------------------------ MESSAGE SCHEMAS ----------------------------

View File

@ -8,15 +8,17 @@ import asyncio
import logging import logging
import socket import socket
from threading import Thread from threading import Thread
from typing import TYPE_CHECKING, Any, Callable, Dict, List, TypedDict from typing import TYPE_CHECKING, Any, Callable, Dict, List, TypedDict, Union
import websockets import websockets
from pydantic import ValidationError from pydantic import ValidationError
from freqtrade.constants import FULL_DATAFRAME_THRESHOLD
from freqtrade.data.dataprovider import DataProvider from freqtrade.data.dataprovider import DataProvider
from freqtrade.enums import RPCMessageType from freqtrade.enums import RPCMessageType
from freqtrade.misc import remove_entry_exit_signals from freqtrade.misc import remove_entry_exit_signals
from freqtrade.rpc.api_server.ws import WebSocketChannel from freqtrade.rpc.api_server.ws.channel import WebSocketChannel, create_channel
from freqtrade.rpc.api_server.ws.message_stream import MessageStream
from freqtrade.rpc.api_server.ws_schemas import (WSAnalyzedDFMessage, WSAnalyzedDFRequest, from freqtrade.rpc.api_server.ws_schemas import (WSAnalyzedDFMessage, WSAnalyzedDFRequest,
WSMessageSchema, WSRequestSchema, WSMessageSchema, WSRequestSchema,
WSSubscribeRequest, WSWhitelistMessage, WSSubscribeRequest, WSWhitelistMessage,
@ -38,6 +40,10 @@ class Producer(TypedDict):
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
def schema_to_dict(schema: Union[WSMessageSchema, WSRequestSchema]):
return schema.dict(exclude_none=True)
class ExternalMessageConsumer: class ExternalMessageConsumer:
""" """
The main controller class for consuming external messages from The main controller class for consuming external messages from
@ -92,6 +98,8 @@ class ExternalMessageConsumer:
RPCMessageType.ANALYZED_DF: self._consume_analyzed_df_message, RPCMessageType.ANALYZED_DF: self._consume_analyzed_df_message,
} }
self._channel_streams: Dict[str, MessageStream] = {}
self.start() self.start()
def start(self): def start(self):
@ -118,6 +126,8 @@ class ExternalMessageConsumer:
logger.info("Stopping ExternalMessageConsumer") logger.info("Stopping ExternalMessageConsumer")
self._running = False self._running = False
self._channel_streams = {}
if self._sub_tasks: if self._sub_tasks:
# Cancel sub tasks # Cancel sub tasks
for task in self._sub_tasks: for task in self._sub_tasks:
@ -175,7 +185,6 @@ class ExternalMessageConsumer:
:param producer: Dictionary containing producer info :param producer: Dictionary containing producer info
:param lock: An asyncio Lock :param lock: An asyncio Lock
""" """
channel = None
while self._running: while self._running:
try: try:
host, port = producer['host'], producer['port'] host, port = producer['host'], producer['port']
@ -190,19 +199,21 @@ class ExternalMessageConsumer:
max_size=self.message_size_limit, max_size=self.message_size_limit,
ping_interval=None ping_interval=None
) as ws: ) as ws:
channel = WebSocketChannel(ws, channel_id=name) async with create_channel(
ws,
channel_id=name,
send_throttle=0.5
) as channel:
logger.info(f"Producer connection success - {channel}") # Create the message stream for this channel
self._channel_streams[name] = MessageStream()
# Now request the initial data from this Producer # Run the channel tasks while connected
for request in self._initial_requests: await channel.run_channel_tasks(
await channel.send( self._receive_messages(channel, producer, lock),
request.dict(exclude_none=True) self._send_requests(channel, self._channel_streams[name])
) )
# Now receive data, if none is within the time limit, ping
await self._receive_messages(channel, producer, lock)
except (websockets.exceptions.InvalidURI, ValueError) as e: except (websockets.exceptions.InvalidURI, ValueError) as e:
logger.error(f"{ws_url} is an invalid WebSocket URL - {e}") logger.error(f"{ws_url} is an invalid WebSocket URL - {e}")
break break
@ -229,11 +240,19 @@ class ExternalMessageConsumer:
# An unforseen error has occurred, log and continue # An unforseen error has occurred, log and continue
logger.error("Unexpected error has occurred:") logger.error("Unexpected error has occurred:")
logger.exception(e) logger.exception(e)
await asyncio.sleep(self.sleep_time)
continue continue
finally: async def _send_requests(self, channel: WebSocketChannel, channel_stream: MessageStream):
if channel: # Send the initial requests
await channel.close() for init_request in self._initial_requests:
await channel.send(schema_to_dict(init_request))
# Now send any subsequent requests published to
# this channel's stream
async for request, _ in channel_stream:
logger.debug(f"Sending request to channel - {channel} - {request}")
await channel.send(request)
async def _receive_messages( async def _receive_messages(
self, self,
@ -270,19 +289,31 @@ class ExternalMessageConsumer:
latency = (await asyncio.wait_for(pong, timeout=self.ping_timeout) * 1000) latency = (await asyncio.wait_for(pong, timeout=self.ping_timeout) * 1000)
logger.info(f"Connection to {channel} still alive, latency: {latency}ms") logger.info(f"Connection to {channel} still alive, latency: {latency}ms")
continue continue
except (websockets.exceptions.ConnectionClosed):
# Just eat the error and continue reconnecting
logger.warning(f"Disconnection in {channel} - retrying in {self.sleep_time}s")
await asyncio.sleep(self.sleep_time)
break
except Exception as e: except Exception as e:
# Just eat the error and continue reconnecting
logger.warning(f"Ping error {channel} - {e} - retrying in {self.sleep_time}s") logger.warning(f"Ping error {channel} - {e} - retrying in {self.sleep_time}s")
logger.debug(e, exc_info=e) logger.debug(e, exc_info=e)
await asyncio.sleep(self.sleep_time) raise
break def send_producer_request(
self,
producer_name: str,
request: Union[WSRequestSchema, Dict[str, Any]]
):
"""
Publish a message to the producer's message stream to be
sent by the channel task.
:param producer_name: The name of the producer to publish the message to
:param request: The request to send to the producer
"""
if isinstance(request, WSRequestSchema):
request = schema_to_dict(request)
if channel_stream := self._channel_streams.get(producer_name):
channel_stream.publish(request)
def handle_producer_message(self, producer: Producer, message: Dict[str, Any]): def handle_producer_message(self, producer: Producer, message: Dict[str, Any]):
""" """
@ -336,16 +367,45 @@ class ExternalMessageConsumer:
pair, timeframe, candle_type = key pair, timeframe, candle_type = key
if df.empty:
logger.debug(f"Received Empty Dataframe for {key}")
return
# If set, remove the Entry and Exit signals from the Producer # If set, remove the Entry and Exit signals from the Producer
if self._emc_config.get('remove_entry_exit_signals', False): if self._emc_config.get('remove_entry_exit_signals', False):
df = remove_entry_exit_signals(df) df = remove_entry_exit_signals(df)
# Add the dataframe to the dataprovider logger.debug(f"Received {len(df)} candle(s) for {key}")
self._dp._add_external_df(pair, df,
did_append, n_missing = self._dp._add_external_df(
pair,
df,
last_analyzed=la, last_analyzed=la,
timeframe=timeframe, timeframe=timeframe,
candle_type=candle_type, candle_type=candle_type,
producer_name=producer_name) producer_name=producer_name
)
if not did_append:
# We want an overlap in candles incase some data has changed
n_missing += 1
# Set to None for all candles if we missed a full df's worth of candles
n_missing = n_missing if n_missing < FULL_DATAFRAME_THRESHOLD else 1500
logger.warning(f"Holes in data or no existing df, requesting {n_missing} candles "
f"for {key} from `{producer_name}`")
self.send_producer_request(
producer_name,
WSAnalyzedDFRequest(
data={
"limit": n_missing,
"pair": pair
}
)
)
return
logger.debug( logger.debug(
f"Consumed message from `{producer_name}` of type `RPCMessageType.ANALYZED_DF`") f"Consumed message from `{producer_name}` "
f"of type `RPCMessageType.ANALYZED_DF` for {key}")

View File

@ -167,6 +167,7 @@ class RPC:
results = [] results = []
for trade in trades: for trade in trades:
order: Optional[Order] = None order: Optional[Order] = None
current_profit_fiat: Optional[float] = None
if trade.open_order_id: if trade.open_order_id:
order = trade.select_order_by_order_id(trade.open_order_id) order = trade.select_order_by_order_id(trade.open_order_id)
# calculate profit and send message to user # calculate profit and send message to user
@ -176,23 +177,26 @@ class RPC:
trade.pair, side='exit', is_short=trade.is_short, refresh=False) trade.pair, side='exit', is_short=trade.is_short, refresh=False)
except (ExchangeError, PricingError): except (ExchangeError, PricingError):
current_rate = NAN current_rate = NAN
else:
current_rate = trade.close_rate
if len(trade.select_filled_orders(trade.entry_side)) > 0: if len(trade.select_filled_orders(trade.entry_side)) > 0:
current_profit = trade.calc_profit_ratio( current_profit = trade.calc_profit_ratio(
current_rate) if not isnan(current_rate) else NAN current_rate) if not isnan(current_rate) else NAN
current_profit_abs = trade.calc_profit( current_profit_abs = trade.calc_profit(
current_rate) if not isnan(current_rate) else NAN current_rate) if not isnan(current_rate) else NAN
current_profit_fiat: Optional[float] = None else:
current_profit = current_profit_abs = current_profit_fiat = 0.0
else:
# Closed trade ...
current_rate = trade.close_rate
current_profit = trade.close_profit
current_profit_abs = trade.close_profit_abs
# Calculate fiat profit # Calculate fiat profit
if self._fiat_converter: if not isnan(current_profit_abs) and self._fiat_converter:
current_profit_fiat = self._fiat_converter.convert_amount( current_profit_fiat = self._fiat_converter.convert_amount(
current_profit_abs, current_profit_abs,
self._freqtrade.config['stake_currency'], self._freqtrade.config['stake_currency'],
self._freqtrade.config['fiat_display_currency'] self._freqtrade.config['fiat_display_currency']
) )
else:
current_profit = current_profit_abs = current_profit_fiat = 0.0
# Calculate guaranteed profit (in case of trailing stop) # Calculate guaranteed profit (in case of trailing stop)
stoploss_entry_dist = trade.calc_profit(trade.stop_loss) stoploss_entry_dist = trade.calc_profit(trade.stop_loss)
@ -740,6 +744,24 @@ class RPC:
self._freqtrade.wallets.update() self._freqtrade.wallets.update()
return {'result': f'Created sell order for trade {trade_id}.'} return {'result': f'Created sell order for trade {trade_id}.'}
def _force_entry_validations(self, pair: str, order_side: SignalDirection):
if not self._freqtrade.config.get('force_entry_enable', False):
raise RPCException('Force_entry not enabled.')
if self._freqtrade.state != State.RUNNING:
raise RPCException('trader is not running')
if order_side == SignalDirection.SHORT and self._freqtrade.trading_mode == TradingMode.SPOT:
raise RPCException("Can't go short on Spot markets.")
if pair not in self._freqtrade.exchange.get_markets(tradable_only=True):
raise RPCException('Symbol does not exist or market is not active.')
# Check if pair quote currency equals to the stake currency.
stake_currency = self._freqtrade.config.get('stake_currency')
if not self._freqtrade.exchange.get_pair_quote_currency(pair) == stake_currency:
raise RPCException(
f'Wrong pair selected. Only pairs with stake-currency {stake_currency} allowed.')
def _rpc_force_entry(self, pair: str, price: Optional[float], *, def _rpc_force_entry(self, pair: str, price: Optional[float], *,
order_type: Optional[str] = None, order_type: Optional[str] = None,
order_side: SignalDirection = SignalDirection.LONG, order_side: SignalDirection = SignalDirection.LONG,
@ -750,21 +772,8 @@ class RPC:
Handler for forcebuy <asset> <price> Handler for forcebuy <asset> <price>
Buys a pair trade at the given or current price Buys a pair trade at the given or current price
""" """
self._force_entry_validations(pair, order_side)
if not self._freqtrade.config.get('force_entry_enable', False):
raise RPCException('Force_entry not enabled.')
if self._freqtrade.state != State.RUNNING:
raise RPCException('trader is not running')
if order_side == SignalDirection.SHORT and self._freqtrade.trading_mode == TradingMode.SPOT:
raise RPCException("Can't go short on Spot markets.")
# Check if pair quote currency equals to the stake currency.
stake_currency = self._freqtrade.config.get('stake_currency')
if not self._freqtrade.exchange.get_pair_quote_currency(pair) == stake_currency:
raise RPCException(
f'Wrong pair selected. Only pairs with stake-currency {stake_currency} allowed.')
# check if valid pair # check if valid pair
# check if pair already has an open pair # check if pair already has an open pair
@ -1053,15 +1062,26 @@ class RPC:
return self._convert_dataframe_to_dict(self._freqtrade.config['strategy'], return self._convert_dataframe_to_dict(self._freqtrade.config['strategy'],
pair, timeframe, _data, last_analyzed) pair, timeframe, _data, last_analyzed)
def __rpc_analysed_dataframe_raw(self, pair: str, timeframe: str, def __rpc_analysed_dataframe_raw(
limit: Optional[int]) -> Tuple[DataFrame, datetime]: self,
""" Get the dataframe and last analyze from the dataprovider """ pair: str,
timeframe: str,
limit: Optional[int]
) -> Tuple[DataFrame, datetime]:
"""
Get the dataframe and last analyze from the dataprovider
:param pair: The pair to get
:param timeframe: The timeframe of data to get
:param limit: The amount of candles in the dataframe
"""
_data, last_analyzed = self._freqtrade.dataprovider.get_analyzed_dataframe( _data, last_analyzed = self._freqtrade.dataprovider.get_analyzed_dataframe(
pair, timeframe) pair, timeframe)
_data = _data.copy() _data = _data.copy()
if limit: if limit:
_data = _data.iloc[-limit:] _data = _data.iloc[-limit:]
return _data, last_analyzed return _data, last_analyzed
def _ws_all_analysed_dataframes( def _ws_all_analysed_dataframes(
@ -1069,7 +1089,16 @@ class RPC:
pairlist: List[str], pairlist: List[str],
limit: Optional[int] limit: Optional[int]
) -> Generator[Dict[str, Any], None, None]: ) -> Generator[Dict[str, Any], None, None]:
""" Get the analysed dataframes of each pair in the pairlist """ """
Get the analysed dataframes of each pair in the pairlist.
If specified, only return the most recent `limit` candles for
each dataframe.
:param pairlist: A list of pairs to get
:param limit: If an integer, limits the size of dataframe
If a list of string date times, only returns those candles
:returns: A generator of dictionaries with the key, dataframe, and last analyzed timestamp
"""
timeframe = self._freqtrade.config['timeframe'] timeframe = self._freqtrade.config['timeframe']
candle_type = self._freqtrade.config.get('candle_type_def', CandleType.SPOT) candle_type = self._freqtrade.config.get('candle_type_def', CandleType.SPOT)
@ -1082,10 +1111,15 @@ class RPC:
"la": last_analyzed "la": last_analyzed
} }
def _ws_request_analyzed_df(self, limit: Optional[int]): def _ws_request_analyzed_df(
self,
limit: Optional[int] = None,
pair: Optional[str] = None
):
""" Historical Analyzed Dataframes for WebSocket """ """ Historical Analyzed Dataframes for WebSocket """
whitelist = self._freqtrade.active_pair_whitelist pairlist = [pair] if pair else self._freqtrade.active_pair_whitelist
return self._ws_all_analysed_dataframes(whitelist, limit)
return self._ws_all_analysed_dataframes(pairlist, limit)
def _ws_request_whitelist(self): def _ws_request_whitelist(self):
""" Whitelist data for WebSocket """ """ Whitelist data for WebSocket """

View File

@ -6,7 +6,7 @@ from collections import deque
from typing import Any, Dict, List from typing import Any, Dict, List
from freqtrade.constants import Config from freqtrade.constants import Config
from freqtrade.enums import RPCMessageType from freqtrade.enums import NO_ECHO_MESSAGES, RPCMessageType
from freqtrade.rpc import RPC, RPCHandler from freqtrade.rpc import RPC, RPCHandler
@ -67,7 +67,7 @@ class RPCManager:
'status': 'stopping bot' 'status': 'stopping bot'
} }
""" """
if msg.get('type') not in (RPCMessageType.ANALYZED_DF, RPCMessageType.WHITELIST): if msg.get('type') not in NO_ECHO_MESSAGES:
logger.info('Sending rpc message: %s', msg) logger.info('Sending rpc message: %s', msg)
if 'pair' in msg: if 'pair' in msg:
msg.update({ msg.update({

View File

@ -79,6 +79,8 @@ def authorized_only(command_handler: Callable[..., None]) -> Callable[..., Any]:
) )
try: try:
return command_handler(self, *args, **kwargs) return command_handler(self, *args, **kwargs)
except RPCException as e:
self._send_msg(str(e))
except BaseException: except BaseException:
logger.exception('Exception occurred within Telegram module') logger.exception('Exception occurred within Telegram module')
@ -538,8 +540,6 @@ class Telegram(RPCHandler):
handler for `/status` and `/status <id>`. handler for `/status` and `/status <id>`.
""" """
try:
# Check if there's at least one numerical ID provided. # Check if there's at least one numerical ID provided.
# If so, try to get only these trades. # If so, try to get only these trades.
trade_ids = [] trade_ids = []
@ -602,9 +602,6 @@ class Telegram(RPCHandler):
lines.extend(lines_detail if lines_detail else "") lines.extend(lines_detail if lines_detail else "")
self.__send_status_msg(lines, r) self.__send_status_msg(lines, r)
except RPCException as e:
self._send_msg(str(e))
def __send_status_msg(self, lines: List[str], r: Dict[str, Any]) -> None: def __send_status_msg(self, lines: List[str], r: Dict[str, Any]) -> None:
""" """
Send status message. Send status message.
@ -630,7 +627,6 @@ class Telegram(RPCHandler):
:param update: message update :param update: message update
:return: None :return: None
""" """
try:
fiat_currency = self._config.get('fiat_display_currency', '') fiat_currency = self._config.get('fiat_display_currency', '')
statlist, head, fiat_profit_sum = self._rpc._rpc_status_table( statlist, head, fiat_profit_sum = self._rpc._rpc_status_table(
self._config['stake_currency'], fiat_currency) self._config['stake_currency'], fiat_currency)
@ -659,8 +655,6 @@ class Telegram(RPCHandler):
self._send_msg(f"<pre>{message}</pre>", parse_mode=ParseMode.HTML, self._send_msg(f"<pre>{message}</pre>", parse_mode=ParseMode.HTML,
reload_able=True, callback_path="update_status_table", reload_able=True, callback_path="update_status_table",
query=update.callback_query) query=update.callback_query)
except RPCException as e:
self._send_msg(str(e))
@authorized_only @authorized_only
def _timeunit_stats(self, update: Update, context: CallbackContext, unit: str) -> None: def _timeunit_stats(self, update: Update, context: CallbackContext, unit: str) -> None:
@ -686,7 +680,6 @@ class Telegram(RPCHandler):
timescale = int(context.args[0]) if context.args else val.default timescale = int(context.args[0]) if context.args else val.default
except (TypeError, ValueError, IndexError): except (TypeError, ValueError, IndexError):
timescale = val.default timescale = val.default
try:
stats = self._rpc._rpc_timeunit_profit( stats = self._rpc._rpc_timeunit_profit(
timescale, timescale,
stake_cur, stake_cur,
@ -713,8 +706,6 @@ class Telegram(RPCHandler):
) )
self._send_msg(message, parse_mode=ParseMode.HTML, reload_able=True, self._send_msg(message, parse_mode=ParseMode.HTML, reload_able=True,
callback_path=val.callback, query=update.callback_query) callback_path=val.callback, query=update.callback_query)
except RPCException as e:
self._send_msg(str(e))
@authorized_only @authorized_only
def _daily(self, update: Update, context: CallbackContext) -> None: def _daily(self, update: Update, context: CallbackContext) -> None:
@ -878,7 +869,6 @@ class Telegram(RPCHandler):
@authorized_only @authorized_only
def _balance(self, update: Update, context: CallbackContext) -> None: def _balance(self, update: Update, context: CallbackContext) -> None:
""" Handler for /balance """ """ Handler for /balance """
try:
result = self._rpc._rpc_balance(self._config['stake_currency'], result = self._rpc._rpc_balance(self._config['stake_currency'],
self._config.get('fiat_display_currency', '')) self._config.get('fiat_display_currency', ''))
@ -949,8 +939,6 @@ class Telegram(RPCHandler):
f"{fiat_val}\n") f"{fiat_val}\n")
self._send_msg(output, reload_able=True, callback_path="update_balance", self._send_msg(output, reload_able=True, callback_path="update_balance",
query=update.callback_query) query=update.callback_query)
except RPCException as e:
self._send_msg(str(e))
@authorized_only @authorized_only
def _start(self, update: Update, context: CallbackContext) -> None: def _start(self, update: Update, context: CallbackContext) -> None:
@ -1125,7 +1113,6 @@ class Telegram(RPCHandler):
nrecent = int(context.args[0]) if context.args else 10 nrecent = int(context.args[0]) if context.args else 10
except (TypeError, ValueError, IndexError): except (TypeError, ValueError, IndexError):
nrecent = 10 nrecent = 10
try:
trades = self._rpc._rpc_trade_history( trades = self._rpc._rpc_trade_history(
nrecent nrecent
) )
@ -1143,8 +1130,6 @@ class Telegram(RPCHandler):
message = (f"<b>{min(trades['trades_count'], nrecent)} recent trades</b>:\n" message = (f"<b>{min(trades['trades_count'], nrecent)} recent trades</b>:\n"
+ (f"<pre>{trades_tab}</pre>" if trades['trades_count'] > 0 else '')) + (f"<pre>{trades_tab}</pre>" if trades['trades_count'] > 0 else ''))
self._send_msg(message, parse_mode=ParseMode.HTML) self._send_msg(message, parse_mode=ParseMode.HTML)
except RPCException as e:
self._send_msg(str(e))
@authorized_only @authorized_only
def _delete_trade(self, update: Update, context: CallbackContext) -> None: def _delete_trade(self, update: Update, context: CallbackContext) -> None:
@ -1155,7 +1140,6 @@ class Telegram(RPCHandler):
:param update: message update :param update: message update
:return: None :return: None
""" """
try:
if not context.args or len(context.args) == 0: if not context.args or len(context.args) == 0:
raise RPCException("Trade-id not set.") raise RPCException("Trade-id not set.")
trade_id = int(context.args[0]) trade_id = int(context.args[0])
@ -1165,9 +1149,6 @@ class Telegram(RPCHandler):
'Please make sure to take care of this asset on the exchange manually.' 'Please make sure to take care of this asset on the exchange manually.'
)) ))
except RPCException as e:
self._send_msg(str(e))
@authorized_only @authorized_only
def _performance(self, update: Update, context: CallbackContext) -> None: def _performance(self, update: Update, context: CallbackContext) -> None:
""" """
@ -1177,7 +1158,6 @@ class Telegram(RPCHandler):
:param update: message update :param update: message update
:return: None :return: None
""" """
try:
trades = self._rpc._rpc_performance() trades = self._rpc._rpc_performance()
output = "<b>Performance:</b>\n" output = "<b>Performance:</b>\n"
for i, trade in enumerate(trades): for i, trade in enumerate(trades):
@ -1196,8 +1176,6 @@ class Telegram(RPCHandler):
self._send_msg(output, parse_mode=ParseMode.HTML, self._send_msg(output, parse_mode=ParseMode.HTML,
reload_able=True, callback_path="update_performance", reload_able=True, callback_path="update_performance",
query=update.callback_query) query=update.callback_query)
except RPCException as e:
self._send_msg(str(e))
@authorized_only @authorized_only
def _enter_tag_performance(self, update: Update, context: CallbackContext) -> None: def _enter_tag_performance(self, update: Update, context: CallbackContext) -> None:
@ -1208,7 +1186,6 @@ class Telegram(RPCHandler):
:param update: message update :param update: message update
:return: None :return: None
""" """
try:
pair = None pair = None
if context.args and isinstance(context.args[0], str): if context.args and isinstance(context.args[0], str):
pair = context.args[0] pair = context.args[0]
@ -1231,8 +1208,6 @@ class Telegram(RPCHandler):
self._send_msg(output, parse_mode=ParseMode.HTML, self._send_msg(output, parse_mode=ParseMode.HTML,
reload_able=True, callback_path="update_enter_tag_performance", reload_able=True, callback_path="update_enter_tag_performance",
query=update.callback_query) query=update.callback_query)
except RPCException as e:
self._send_msg(str(e))
@authorized_only @authorized_only
def _exit_reason_performance(self, update: Update, context: CallbackContext) -> None: def _exit_reason_performance(self, update: Update, context: CallbackContext) -> None:
@ -1243,7 +1218,6 @@ class Telegram(RPCHandler):
:param update: message update :param update: message update
:return: None :return: None
""" """
try:
pair = None pair = None
if context.args and isinstance(context.args[0], str): if context.args and isinstance(context.args[0], str):
pair = context.args[0] pair = context.args[0]
@ -1266,8 +1240,6 @@ class Telegram(RPCHandler):
self._send_msg(output, parse_mode=ParseMode.HTML, self._send_msg(output, parse_mode=ParseMode.HTML,
reload_able=True, callback_path="update_exit_reason_performance", reload_able=True, callback_path="update_exit_reason_performance",
query=update.callback_query) query=update.callback_query)
except RPCException as e:
self._send_msg(str(e))
@authorized_only @authorized_only
def _mix_tag_performance(self, update: Update, context: CallbackContext) -> None: def _mix_tag_performance(self, update: Update, context: CallbackContext) -> None:
@ -1278,7 +1250,6 @@ class Telegram(RPCHandler):
:param update: message update :param update: message update
:return: None :return: None
""" """
try:
pair = None pair = None
if context.args and isinstance(context.args[0], str): if context.args and isinstance(context.args[0], str):
pair = context.args[0] pair = context.args[0]
@ -1301,8 +1272,6 @@ class Telegram(RPCHandler):
self._send_msg(output, parse_mode=ParseMode.HTML, self._send_msg(output, parse_mode=ParseMode.HTML,
reload_able=True, callback_path="update_mix_tag_performance", reload_able=True, callback_path="update_mix_tag_performance",
query=update.callback_query) query=update.callback_query)
except RPCException as e:
self._send_msg(str(e))
@authorized_only @authorized_only
def _count(self, update: Update, context: CallbackContext) -> None: def _count(self, update: Update, context: CallbackContext) -> None:
@ -1313,7 +1282,6 @@ class Telegram(RPCHandler):
:param update: message update :param update: message update
:return: None :return: None
""" """
try:
counts = self._rpc._rpc_count() counts = self._rpc._rpc_count()
message = tabulate({k: [v] for k, v in counts.items()}, message = tabulate({k: [v] for k, v in counts.items()},
headers=['current', 'max', 'total stake'], headers=['current', 'max', 'total stake'],
@ -1323,8 +1291,6 @@ class Telegram(RPCHandler):
self._send_msg(message, parse_mode=ParseMode.HTML, self._send_msg(message, parse_mode=ParseMode.HTML,
reload_able=True, callback_path="update_count", reload_able=True, callback_path="update_count",
query=update.callback_query) query=update.callback_query)
except RPCException as e:
self._send_msg(str(e))
@authorized_only @authorized_only
def _locks(self, update: Update, context: CallbackContext) -> None: def _locks(self, update: Update, context: CallbackContext) -> None:
@ -1372,7 +1338,6 @@ class Telegram(RPCHandler):
Handler for /whitelist Handler for /whitelist
Shows the currently active whitelist Shows the currently active whitelist
""" """
try:
whitelist = self._rpc._rpc_whitelist() whitelist = self._rpc._rpc_whitelist()
if context.args: if context.args:
@ -1386,8 +1351,6 @@ class Telegram(RPCHandler):
logger.debug(message) logger.debug(message)
self._send_msg(message) self._send_msg(message)
except RPCException as e:
self._send_msg(str(e))
@authorized_only @authorized_only
def _blacklist(self, update: Update, context: CallbackContext) -> None: def _blacklist(self, update: Update, context: CallbackContext) -> None:
@ -1424,7 +1387,6 @@ class Telegram(RPCHandler):
Handler for /logs Handler for /logs
Shows the latest logs Shows the latest logs
""" """
try:
try: try:
limit = int(context.args[0]) if context.args else 10 limit = int(context.args[0]) if context.args else 10
except (TypeError, ValueError, IndexError): except (TypeError, ValueError, IndexError):
@ -1447,8 +1409,6 @@ class Telegram(RPCHandler):
if msgs: if msgs:
self._send_msg(msgs, parse_mode=ParseMode.MARKDOWN_V2) self._send_msg(msgs, parse_mode=ParseMode.MARKDOWN_V2)
except RPCException as e:
self._send_msg(str(e))
@authorized_only @authorized_only
def _edge(self, update: Update, context: CallbackContext) -> None: def _edge(self, update: Update, context: CallbackContext) -> None:
@ -1456,7 +1416,6 @@ class Telegram(RPCHandler):
Handler for /edge Handler for /edge
Shows information related to Edge Shows information related to Edge
""" """
try:
edge_pairs = self._rpc._rpc_edge() edge_pairs = self._rpc._rpc_edge()
if not edge_pairs: if not edge_pairs:
message = '<b>Edge only validated following pairs:</b>' message = '<b>Edge only validated following pairs:</b>'
@ -1469,9 +1428,6 @@ class Telegram(RPCHandler):
self._send_msg(message, parse_mode=ParseMode.HTML) self._send_msg(message, parse_mode=ParseMode.HTML)
except RPCException as e:
self._send_msg(str(e))
@authorized_only @authorized_only
def _help(self, update: Update, context: CallbackContext) -> None: def _help(self, update: Update, context: CallbackContext) -> None:
""" """
@ -1551,12 +1507,9 @@ class Telegram(RPCHandler):
Handler for /health Handler for /health
Shows the last process timestamp Shows the last process timestamp
""" """
try:
health = self._rpc._health() health = self._rpc._health()
message = f"Last process: `{health['last_process_loc']}`" message = f"Last process: `{health['last_process_loc']}`"
self._send_msg(message) self._send_msg(message)
except RPCException as e:
self._send_msg(str(e))
@authorized_only @authorized_only
def _version(self, update: Update, context: CallbackContext) -> None: def _version(self, update: Update, context: CallbackContext) -> None:

View File

@ -68,6 +68,7 @@ class Webhook(RPCHandler):
RPCMessageType.PROTECTION_TRIGGER_GLOBAL, RPCMessageType.PROTECTION_TRIGGER_GLOBAL,
RPCMessageType.WHITELIST, RPCMessageType.WHITELIST,
RPCMessageType.ANALYZED_DF, RPCMessageType.ANALYZED_DF,
RPCMessageType.NEW_CANDLE,
RPCMessageType.STRATEGY_MSG): RPCMessageType.STRATEGY_MSG):
# Don't fail for non-implemented types # Don't fail for non-implemented types
return None return None

View File

@ -739,10 +739,10 @@ class IStrategy(ABC, HyperStrategyMixin):
""" """
pair = str(metadata.get('pair')) pair = str(metadata.get('pair'))
new_candle = self._last_candle_seen_per_pair.get(pair, None) != dataframe.iloc[-1]['date']
# Test if seen this pair and last candle before. # Test if seen this pair and last candle before.
# always run if process_only_new_candles is set to false # always run if process_only_new_candles is set to false
if (not self.process_only_new_candles or if not self.process_only_new_candles or new_candle:
self._last_candle_seen_per_pair.get(pair, None) != dataframe.iloc[-1]['date']):
# Defs that only make change on new candle data. # Defs that only make change on new candle data.
dataframe = self.analyze_ticker(dataframe, metadata) dataframe = self.analyze_ticker(dataframe, metadata)
@ -751,7 +751,7 @@ class IStrategy(ABC, HyperStrategyMixin):
candle_type = self.config.get('candle_type_def', CandleType.SPOT) candle_type = self.config.get('candle_type_def', CandleType.SPOT)
self.dp._set_cached_df(pair, self.timeframe, dataframe, candle_type=candle_type) self.dp._set_cached_df(pair, self.timeframe, dataframe, candle_type=candle_type)
self.dp._emit_df((pair, self.timeframe, candle_type), dataframe) self.dp._emit_df((pair, self.timeframe, candle_type), dataframe, new_candle)
else: else:
logger.debug("Skipping TA Analysis for already analyzed candle") logger.debug("Skipping TA Analysis for already analyzed candle")

View File

@ -19,7 +19,7 @@ class FreqaiExampleHybridStrategy(IStrategy):
Launching this strategy would be: Launching this strategy would be:
freqtrade trade --strategy FreqaiExampleHyridStrategy --strategy-path freqtrade/templates freqtrade trade --strategy FreqaiExampleHybridStrategy --strategy-path freqtrade/templates
--freqaimodel CatboostClassifier --config config_examples/config_freqai.example.json --freqaimodel CatboostClassifier --config config_examples/config_freqai.example.json
or the user simply adds this to their config: or the user simply adds this to their config:
@ -86,7 +86,7 @@ class FreqaiExampleHybridStrategy(IStrategy):
process_only_new_candles = True process_only_new_candles = True
stoploss = -0.05 stoploss = -0.05
use_exit_signal = True use_exit_signal = True
startup_candle_count: int = 300 startup_candle_count: int = 30
can_short = True can_short = True
# Hyperoptable parameters # Hyperoptable parameters

View File

@ -7,14 +7,17 @@
"# Strategy analysis example\n", "# Strategy analysis example\n",
"\n", "\n",
"Debugging a strategy can be time-consuming. Freqtrade offers helper functions to visualize raw data.\n", "Debugging a strategy can be time-consuming. Freqtrade offers helper functions to visualize raw data.\n",
"The following assumes you work with SampleStrategy, data for 5m timeframe from Binance and have downloaded them into the data directory in the default location." "The following assumes you work with SampleStrategy, data for 5m timeframe from Binance and have downloaded them into the data directory in the default location.\n",
"Please follow the [documentation](https://www.freqtrade.io/en/stable/data-download/) for more details."
] ]
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"## Setup" "## Setup\n",
"\n",
"### Change Working directory to repository root"
] ]
}, },
{ {
@ -23,7 +26,38 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"import os\n",
"from pathlib import Path\n", "from pathlib import Path\n",
"\n",
"# Change directory\n",
"# Modify this cell to insure that the output shows the correct path.\n",
"# Define all paths relative to the project root shown in the cell output\n",
"project_root = \"somedir/freqtrade\"\n",
"i=0\n",
"try:\n",
" os.chdirdir(project_root)\n",
" assert Path('LICENSE').is_file()\n",
"except:\n",
" while i<4 and (not Path('LICENSE').is_file()):\n",
" os.chdir(Path(Path.cwd(), '../'))\n",
" i+=1\n",
" project_root = Path.cwd()\n",
"print(Path.cwd())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Configure Freqtrade environment"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from freqtrade.configuration import Configuration\n", "from freqtrade.configuration import Configuration\n",
"\n", "\n",
"# Customize these according to your needs.\n", "# Customize these according to your needs.\n",
@ -31,14 +65,14 @@
"# Initialize empty configuration object\n", "# Initialize empty configuration object\n",
"config = Configuration.from_files([])\n", "config = Configuration.from_files([])\n",
"# Optionally (recommended), use existing configuration file\n", "# Optionally (recommended), use existing configuration file\n",
"# config = Configuration.from_files([\"config.json\"])\n", "# config = Configuration.from_files([\"user_data/config.json\"])\n",
"\n", "\n",
"# Define some constants\n", "# Define some constants\n",
"config[\"timeframe\"] = \"5m\"\n", "config[\"timeframe\"] = \"5m\"\n",
"# Name of the strategy class\n", "# Name of the strategy class\n",
"config[\"strategy\"] = \"SampleStrategy\"\n", "config[\"strategy\"] = \"SampleStrategy\"\n",
"# Location of the data\n", "# Location of the data\n",
"data_location = config['datadir']\n", "data_location = config[\"datadir\"]\n",
"# Pair to analyze - Only use one pair here\n", "# Pair to analyze - Only use one pair here\n",
"pair = \"BTC/USDT\"" "pair = \"BTC/USDT\""
] ]
@ -56,12 +90,12 @@
"candles = load_pair_history(datadir=data_location,\n", "candles = load_pair_history(datadir=data_location,\n",
" timeframe=config[\"timeframe\"],\n", " timeframe=config[\"timeframe\"],\n",
" pair=pair,\n", " pair=pair,\n",
" data_format = \"hdf5\",\n", " data_format = \"json\", # Make sure to update this to your data\n",
" candle_type=CandleType.SPOT,\n", " candle_type=CandleType.SPOT,\n",
" )\n", " )\n",
"\n", "\n",
"# Confirm success\n", "# Confirm success\n",
"print(\"Loaded \" + str(len(candles)) + f\" rows of data for {pair} from {data_location}\")\n", "print(f\"Loaded {len(candles)} rows of data for {pair} from {data_location}\")\n",
"candles.head()" "candles.head()"
] ]
}, },
@ -328,7 +362,7 @@
"# Show graph inline\n", "# Show graph inline\n",
"# graph.show()\n", "# graph.show()\n",
"\n", "\n",
"# Render graph in a seperate window\n", "# Render graph in a separate window\n",
"graph.show(renderer=\"browser\")\n" "graph.show(renderer=\"browser\")\n"
] ]
}, },
@ -365,7 +399,7 @@
"metadata": { "metadata": {
"file_extension": ".py", "file_extension": ".py",
"kernelspec": { "kernelspec": {
"display_name": "Python 3.9.7 64-bit ('trade_397')", "display_name": "Python 3.9.7 64-bit",
"language": "python", "language": "python",
"name": "python3" "name": "python3"
}, },

View File

@ -0,0 +1,18 @@
import gc
import logging
import platform
logger = logging.getLogger(__name__)
def gc_set_threshold():
"""
Reduce number of GC runs to improve performance (explanation video)
https://www.youtube.com/watch?v=p4Sn6UcFTOU
"""
if platform.python_implementation() == "CPython":
# allocs, g1, g2 = gc.get_threshold()
gc.set_threshold(50_000, 500, 1000)
logger.debug("Adjusting python allocations to reduce GC runs")

View File

@ -291,12 +291,17 @@ class Wallets:
return self._check_available_stake_amount(stake_amount, available_amount) return self._check_available_stake_amount(stake_amount, available_amount)
def validate_stake_amount(self, pair: str, stake_amount: Optional[float], def validate_stake_amount(self, pair: str, stake_amount: Optional[float],
min_stake_amount: Optional[float], max_stake_amount: float): min_stake_amount: Optional[float], max_stake_amount: float,
trade_amount: Optional[float]):
if not stake_amount: if not stake_amount:
logger.debug(f"Stake amount is {stake_amount}, ignoring possible trade for {pair}.") logger.debug(f"Stake amount is {stake_amount}, ignoring possible trade for {pair}.")
return 0 return 0
max_stake_amount = min(max_stake_amount, self.get_available_stake_amount()) max_stake_amount = min(max_stake_amount, self.get_available_stake_amount())
if trade_amount:
# if in a trade, then the resulting trade size cannot go beyond the max stake
# Otherwise we could no longer exit.
max_stake_amount = min(max_stake_amount, max_stake_amount - trade_amount)
if min_stake_amount is not None and min_stake_amount > max_stake_amount: if min_stake_amount is not None and min_stake_amount > max_stake_amount:
if self._log: if self._log:

View File

@ -41,6 +41,7 @@ nav:
- Backtest analysis: advanced-backtesting.md - Backtest analysis: advanced-backtesting.md
- Advanced Topics: - Advanced Topics:
- Advanced Post-installation Tasks: advanced-setup.md - Advanced Post-installation Tasks: advanced-setup.md
- Trade Object: trade-object.md
- Advanced Strategy: strategy-advanced.md - Advanced Strategy: strategy-advanced.md
- Advanced Hyperopt: advanced-hyperopt.md - Advanced Hyperopt: advanced-hyperopt.md
- Producer/Consumer mode: producer-consumer.md - Producer/Consumer mode: producer-consumer.md

View File

@ -7,27 +7,27 @@
-r docs/requirements-docs.txt -r docs/requirements-docs.txt
coveralls==3.3.1 coveralls==3.3.1
flake8==5.0.4 flake8==6.0.0
flake8-tidy-imports==4.8.0 flake8-tidy-imports==4.8.0
mypy==0.991 mypy==0.991
pre-commit==2.20.0 pre-commit==2.21.0
pytest==7.2.0 pytest==7.2.0
pytest-asyncio==0.20.2 pytest-asyncio==0.20.3
pytest-cov==4.0.0 pytest-cov==4.0.0
pytest-mock==3.10.0 pytest-mock==3.10.0
pytest-random-order==1.0.4 pytest-random-order==1.1.0
isort==5.10.1 isort==5.11.4
# For datetime mocking # For datetime mocking
time-machine==2.8.2 time-machine==2.8.2
# fastapi testing # fastapi testing
httpx==0.23.1 httpx==0.23.1
# Convert jupyter notebooks to markdown documents # Convert jupyter notebooks to markdown documents
nbconvert==7.2.5 nbconvert==7.2.7
# mypy types # mypy types
types-cachetools==5.2.1 types-cachetools==5.2.1
types-filelock==3.2.7 types-filelock==3.2.7
types-requests==2.28.11.5 types-requests==2.28.11.7
types-tabulate==0.9.0.0 types-tabulate==0.9.0.0
types-python-dateutil==2.8.19.4 types-python-dateutil==2.8.19.5

View File

@ -2,7 +2,8 @@
-r requirements-freqai.txt -r requirements-freqai.txt
# Required for freqai-rl # Required for freqai-rl
torch==1.12.1 torch==1.13.1
stable-baselines3==1.6.1 stable-baselines3==1.6.2
sb3-contrib==1.6.2
# Gym is forced to this version by stable-baselines3.
gym==0.21 gym==0.21
sb3-contrib==1.6.1

View File

@ -7,5 +7,5 @@ scikit-learn==1.1.3
joblib==1.2.0 joblib==1.2.0
catboost==1.1.1; platform_machine != 'aarch64' catboost==1.1.1; platform_machine != 'aarch64'
lightgbm==3.3.3 lightgbm==3.3.3
xgboost==1.7.1 xgboost==1.7.2
tensorboard==2.11.0 tensorboard==2.11.0

View File

@ -5,5 +5,5 @@
scipy==1.9.3 scipy==1.9.3
scikit-learn==1.1.3 scikit-learn==1.1.3
scikit-optimize==0.9.0 scikit-optimize==0.9.0
filelock==3.8.0 filelock==3.8.2
progressbar2==4.2.0 progressbar2==4.2.0

View File

@ -1,28 +1,28 @@
numpy==1.23.5 numpy==1.24.1
pandas==1.5.1 pandas==1.5.2
pandas-ta==0.3.14b pandas-ta==0.3.14b
ccxt==2.1.96 ccxt==2.4.60
# Pin cryptography for now due to rust build errors with piwheels # Pin cryptography for now due to rust build errors with piwheels
cryptography==38.0.1; platform_machine == 'armv7l' cryptography==38.0.1; platform_machine == 'armv7l'
cryptography==38.0.3; platform_machine != 'armv7l' cryptography==38.0.4; platform_machine != 'armv7l'
aiohttp==3.8.3 aiohttp==3.8.3
SQLAlchemy==1.4.44 SQLAlchemy==1.4.45
python-telegram-bot==13.14 python-telegram-bot==13.15
arrow==1.2.3 arrow==1.2.3
cachetools==4.2.2 cachetools==4.2.2
requests==2.28.1 requests==2.28.1
urllib3==1.26.12 urllib3==1.26.13
jsonschema==4.17.0 jsonschema==4.17.3
TA-Lib==0.4.25 TA-Lib==0.4.25
technical==1.3.0 technical==1.3.0
tabulate==0.9.0 tabulate==0.9.0
pycoingecko==3.1.0 pycoingecko==3.1.0
jinja2==3.1.2 jinja2==3.1.2
tables==3.7.0 tables==3.7.0
blosc==1.10.6 blosc==1.11.1
joblib==1.2.0 joblib==1.2.0
pyarrow==10.0.0; platform_machine != 'armv7l' pyarrow==10.0.1; platform_machine != 'armv7l'
# find first, C search in arrays # find first, C search in arrays
py_find_1st==1.1.5 py_find_1st==1.1.5
@ -30,13 +30,13 @@ py_find_1st==1.1.5
# Load ticker files 30% faster # Load ticker files 30% faster
python-rapidjson==1.9 python-rapidjson==1.9
# Properly format api responses # Properly format api responses
orjson==3.8.2 orjson==3.8.3
# Notify systemd # Notify systemd
sdnotify==0.3.2 sdnotify==0.3.2
# API Server # API Server
fastapi==0.87.0 fastapi==0.88.0
pydantic==1.10.2 pydantic==1.10.2
uvicorn==0.20.0 uvicorn==0.20.0
pyjwt==2.6.0 pyjwt==2.6.0
@ -47,7 +47,7 @@ psutil==5.9.4
colorama==0.4.6 colorama==0.4.6
# Building config files interactively # Building config files interactively
questionary==1.10.0 questionary==1.10.0
prompt-toolkit==3.0.32 prompt-toolkit==3.0.36
# Extensions to datetime library # Extensions to datetime library
python-dateutil==2.8.2 python-dateutil==2.8.2

View File

@ -1529,7 +1529,7 @@ def test_backtesting_show(mocker, testdatadir, capsys):
args = [ args = [
"backtesting-show", "backtesting-show",
"--export-filename", "--export-filename",
f"{testdatadir / 'backtest_results/backtest-result_new.json'}", f"{testdatadir / 'backtest_results/backtest-result.json'}",
"--show-pair-list" "--show-pair-list"
] ]
pargs = get_args(args) pargs = get_args(args)

View File

@ -408,6 +408,11 @@ def create_mock_trades_usdt(fee, is_short: Optional[bool] = False, use_db: bool
Trade.commit() Trade.commit()
@pytest.fixture(autouse=True)
def patch_gc(mocker) -> None:
mocker.patch("freqtrade.main.gc_set_threshold")
@pytest.fixture(autouse=True) @pytest.fixture(autouse=True)
def patch_coingekko(mocker) -> None: def patch_coingekko(mocker) -> None:
""" """

View File

@ -30,10 +30,10 @@ def test_get_latest_backtest_filename(testdatadir, mocker):
testdir_bt = testdatadir / "backtest_results" testdir_bt = testdatadir / "backtest_results"
res = get_latest_backtest_filename(testdir_bt) res = get_latest_backtest_filename(testdir_bt)
assert res == 'backtest-result_new.json' assert res == 'backtest-result.json'
res = get_latest_backtest_filename(str(testdir_bt)) res = get_latest_backtest_filename(str(testdir_bt))
assert res == 'backtest-result_new.json' assert res == 'backtest-result.json'
mocker.patch("freqtrade.data.btanalysis.json_load", return_value={}) mocker.patch("freqtrade.data.btanalysis.json_load", return_value={})
@ -81,7 +81,7 @@ def test_load_backtest_data_old_format(testdatadir, mocker):
def test_load_backtest_data_new_format(testdatadir): def test_load_backtest_data_new_format(testdatadir):
filename = testdatadir / "backtest_results/backtest-result_new.json" filename = testdatadir / "backtest_results/backtest-result.json"
bt_data = load_backtest_data(filename) bt_data = load_backtest_data(filename)
assert isinstance(bt_data, DataFrame) assert isinstance(bt_data, DataFrame)
assert set(bt_data.columns) == set(BT_DATA_COLUMNS) assert set(bt_data.columns) == set(BT_DATA_COLUMNS)
@ -182,7 +182,7 @@ def test_extract_trades_of_period(testdatadir):
def test_analyze_trade_parallelism(testdatadir): def test_analyze_trade_parallelism(testdatadir):
filename = testdatadir / "backtest_results/backtest-result_new.json" filename = testdatadir / "backtest_results/backtest-result.json"
bt_data = load_backtest_data(filename) bt_data = load_backtest_data(filename)
res = analyze_trade_parallelism(bt_data, "5m") res = analyze_trade_parallelism(bt_data, "5m")
@ -256,7 +256,7 @@ def test_combine_dataframes_with_mean_no_data(testdatadir):
def test_create_cum_profit(testdatadir): def test_create_cum_profit(testdatadir):
filename = testdatadir / "backtest_results/backtest-result_new.json" filename = testdatadir / "backtest_results/backtest-result.json"
bt_data = load_backtest_data(filename) bt_data = load_backtest_data(filename)
timerange = TimeRange.parse_timerange("20180110-20180112") timerange = TimeRange.parse_timerange("20180110-20180112")
@ -268,11 +268,11 @@ def test_create_cum_profit(testdatadir):
"cum_profits", timeframe="5m") "cum_profits", timeframe="5m")
assert "cum_profits" in cum_profits.columns assert "cum_profits" in cum_profits.columns
assert cum_profits.iloc[0]['cum_profits'] == 0 assert cum_profits.iloc[0]['cum_profits'] == 0
assert pytest.approx(cum_profits.iloc[-1]['cum_profits']) == 8.723007518796964e-06 assert pytest.approx(cum_profits.iloc[-1]['cum_profits']) == 9.0225563e-05
def test_create_cum_profit1(testdatadir): def test_create_cum_profit1(testdatadir):
filename = testdatadir / "backtest_results/backtest-result_new.json" filename = testdatadir / "backtest_results/backtest-result.json"
bt_data = load_backtest_data(filename) bt_data = load_backtest_data(filename)
# Move close-time to "off" the candle, to make sure the logic still works # Move close-time to "off" the candle, to make sure the logic still works
bt_data['close_date'] = bt_data.loc[:, 'close_date'] + DateOffset(seconds=20) bt_data['close_date'] = bt_data.loc[:, 'close_date'] + DateOffset(seconds=20)
@ -286,7 +286,7 @@ def test_create_cum_profit1(testdatadir):
"cum_profits", timeframe="5m") "cum_profits", timeframe="5m")
assert "cum_profits" in cum_profits.columns assert "cum_profits" in cum_profits.columns
assert cum_profits.iloc[0]['cum_profits'] == 0 assert cum_profits.iloc[0]['cum_profits'] == 0
assert pytest.approx(cum_profits.iloc[-1]['cum_profits']) == 8.723007518796964e-06 assert pytest.approx(cum_profits.iloc[-1]['cum_profits']) == 9.0225563e-05
with pytest.raises(ValueError, match='Trade dataframe empty.'): with pytest.raises(ValueError, match='Trade dataframe empty.'):
create_cum_profit(df.set_index('date'), bt_data[bt_data["pair"] == 'NOTAPAIR'], create_cum_profit(df.set_index('date'), bt_data[bt_data["pair"] == 'NOTAPAIR'],
@ -294,18 +294,18 @@ def test_create_cum_profit1(testdatadir):
def test_calculate_max_drawdown(testdatadir): def test_calculate_max_drawdown(testdatadir):
filename = testdatadir / "backtest_results/backtest-result_new.json" filename = testdatadir / "backtest_results/backtest-result.json"
bt_data = load_backtest_data(filename) bt_data = load_backtest_data(filename)
_, hdate, lowdate, hval, lval, drawdown = calculate_max_drawdown( _, hdate, lowdate, hval, lval, drawdown = calculate_max_drawdown(
bt_data, value_col="profit_abs") bt_data, value_col="profit_abs")
assert isinstance(drawdown, float) assert isinstance(drawdown, float)
assert pytest.approx(drawdown) == 0.12071099 assert pytest.approx(drawdown) == 0.29753914
assert isinstance(hdate, Timestamp) assert isinstance(hdate, Timestamp)
assert isinstance(lowdate, Timestamp) assert isinstance(lowdate, Timestamp)
assert isinstance(hval, float) assert isinstance(hval, float)
assert isinstance(lval, float) assert isinstance(lval, float)
assert hdate == Timestamp('2018-01-25 01:30:00', tz='UTC') assert hdate == Timestamp('2018-01-16 19:30:00', tz='UTC')
assert lowdate == Timestamp('2018-01-25 03:50:00', tz='UTC') assert lowdate == Timestamp('2018-01-16 22:25:00', tz='UTC')
underwater = calculate_underwater(bt_data) underwater = calculate_underwater(bt_data)
assert isinstance(underwater, DataFrame) assert isinstance(underwater, DataFrame)
@ -318,14 +318,15 @@ def test_calculate_max_drawdown(testdatadir):
def test_calculate_csum(testdatadir): def test_calculate_csum(testdatadir):
filename = testdatadir / "backtest_results/backtest-result_new.json" filename = testdatadir / "backtest_results/backtest-result.json"
bt_data = load_backtest_data(filename) bt_data = load_backtest_data(filename)
csum_min, csum_max = calculate_csum(bt_data) csum_min, csum_max = calculate_csum(bt_data)
assert isinstance(csum_min, float) assert isinstance(csum_min, float)
assert isinstance(csum_max, float) assert isinstance(csum_max, float)
assert csum_min < 0.01 assert csum_min < csum_max
assert csum_max > 0.02 assert csum_min < 0.0001
assert csum_max > 0.0002
csum_min1, csum_max1 = calculate_csum(bt_data, 5) csum_min1, csum_max1 = calculate_csum(bt_data, 5)
assert csum_min1 == csum_min + 5 assert csum_min1 == csum_min + 5

View File

@ -2,13 +2,13 @@ from datetime import datetime, timezone
from unittest.mock import MagicMock from unittest.mock import MagicMock
import pytest import pytest
from pandas import DataFrame from pandas import DataFrame, Timestamp
from freqtrade.data.dataprovider import DataProvider from freqtrade.data.dataprovider import DataProvider
from freqtrade.enums import CandleType, RunMode from freqtrade.enums import CandleType, RunMode
from freqtrade.exceptions import ExchangeError, OperationalException from freqtrade.exceptions import ExchangeError, OperationalException
from freqtrade.plugins.pairlistmanager import PairListManager from freqtrade.plugins.pairlistmanager import PairListManager
from tests.conftest import get_patched_exchange from tests.conftest import generate_test_data, get_patched_exchange
@pytest.mark.parametrize('candle_type', [ @pytest.mark.parametrize('candle_type', [
@ -144,7 +144,7 @@ def test_available_pairs(mocker, default_conf, ohlcv_history):
assert dp.available_pairs == [("XRP/BTC", timeframe), ("UNITTEST/BTC", timeframe), ] assert dp.available_pairs == [("XRP/BTC", timeframe), ("UNITTEST/BTC", timeframe), ]
def test_producer_pairs(mocker, default_conf, ohlcv_history): def test_producer_pairs(default_conf):
dataprovider = DataProvider(default_conf, None) dataprovider = DataProvider(default_conf, None)
producer = "default" producer = "default"
@ -161,9 +161,9 @@ def test_producer_pairs(mocker, default_conf, ohlcv_history):
assert dataprovider.get_producer_pairs("bad") == [] assert dataprovider.get_producer_pairs("bad") == []
def test_get_producer_df(mocker, default_conf, ohlcv_history): def test_get_producer_df(default_conf):
dataprovider = DataProvider(default_conf, None) dataprovider = DataProvider(default_conf, None)
ohlcv_history = generate_test_data('5m', 150)
pair = 'BTC/USDT' pair = 'BTC/USDT'
timeframe = default_conf['timeframe'] timeframe = default_conf['timeframe']
candle_type = CandleType.SPOT candle_type = CandleType.SPOT
@ -207,15 +207,21 @@ def test_emit_df(mocker, default_conf, ohlcv_history):
assert send_mock.call_count == 0 assert send_mock.call_count == 0
# Rpc is added, we call emit, should call send_msg # Rpc is added, we call emit, should call send_msg
dataprovider._emit_df(pair, ohlcv_history) dataprovider._emit_df(pair, ohlcv_history, False)
assert send_mock.call_count == 1 assert send_mock.call_count == 1
send_mock.reset_mock()
dataprovider._emit_df(pair, ohlcv_history, True)
assert send_mock.call_count == 2
send_mock.reset_mock()
# No rpc added, emit called, should not call send_msg # No rpc added, emit called, should not call send_msg
dataprovider_no_rpc._emit_df(pair, ohlcv_history) dataprovider_no_rpc._emit_df(pair, ohlcv_history, False)
assert send_mock.call_count == 1 assert send_mock.call_count == 0
def test_refresh(mocker, default_conf, ohlcv_history): def test_refresh(mocker, default_conf):
refresh_mock = MagicMock() refresh_mock = MagicMock()
mocker.patch("freqtrade.exchange.Exchange.refresh_latest_ohlcv", refresh_mock) mocker.patch("freqtrade.exchange.Exchange.refresh_latest_ohlcv", refresh_mock)
@ -406,3 +412,80 @@ def test_dp_send_msg(default_conf):
dp = DataProvider(default_conf, None) dp = DataProvider(default_conf, None)
dp.send_msg(msg, always_send=True) dp.send_msg(msg, always_send=True)
assert msg not in dp._msg_queue assert msg not in dp._msg_queue
def test_dp__add_external_df(default_conf_usdt):
timeframe = '1h'
default_conf_usdt["timeframe"] = timeframe
dp = DataProvider(default_conf_usdt, None)
df = generate_test_data(timeframe, 24, '2022-01-01 00:00:00+00:00')
last_analyzed = datetime.now(timezone.utc)
res = dp._add_external_df('ETH/USDT', df, last_analyzed, timeframe, CandleType.SPOT)
assert res[0] is False
# Why 1000 ??
assert res[1] == 1000
# Hard add dataframe
dp._replace_external_df('ETH/USDT', df, last_analyzed, timeframe, CandleType.SPOT)
# BTC is not stored yet
res = dp._add_external_df('BTC/USDT', df, last_analyzed, timeframe, CandleType.SPOT)
assert res[0] is False
df_res, _ = dp.get_producer_df('ETH/USDT', timeframe, CandleType.SPOT)
assert len(df_res) == 24
# Add the same dataframe again - dataframe size shall not change.
res = dp._add_external_df('ETH/USDT', df, last_analyzed, timeframe, CandleType.SPOT)
assert res[0] is True
assert res[1] == 0
df, _ = dp.get_producer_df('ETH/USDT', timeframe, CandleType.SPOT)
assert len(df) == 24
# Add a new day.
df2 = generate_test_data(timeframe, 24, '2022-01-02 00:00:00+00:00')
res = dp._add_external_df('ETH/USDT', df2, last_analyzed, timeframe, CandleType.SPOT)
assert res[0] is True
assert res[1] == 0
df, _ = dp.get_producer_df('ETH/USDT', timeframe, CandleType.SPOT)
assert len(df) == 48
# Add a dataframe with a 12 hour offset - so 12 candles are overlapping, and 12 valid.
df3 = generate_test_data(timeframe, 24, '2022-01-02 12:00:00+00:00')
res = dp._add_external_df('ETH/USDT', df3, last_analyzed, timeframe, CandleType.SPOT)
assert res[0] is True
assert res[1] == 0
df, _ = dp.get_producer_df('ETH/USDT', timeframe, CandleType.SPOT)
# New length = 48 + 12 (since we have a 12 hour offset).
assert len(df) == 60
assert df.iloc[-1]['date'] == df3.iloc[-1]['date']
assert df.iloc[-1]['date'] == Timestamp('2022-01-03 11:00:00+00:00')
# Generate 1 new candle
df4 = generate_test_data(timeframe, 1, '2022-01-03 12:00:00+00:00')
res = dp._add_external_df('ETH/USDT', df4, last_analyzed, timeframe, CandleType.SPOT)
# assert res[0] is True
# assert res[1] == 0
df, _ = dp.get_producer_df('ETH/USDT', timeframe, CandleType.SPOT)
# New length = 61 + 1
assert len(df) == 61
assert df.iloc[-2]['date'] == Timestamp('2022-01-03 11:00:00+00:00')
assert df.iloc[-1]['date'] == Timestamp('2022-01-03 12:00:00+00:00')
# Gap in the data ...
df4 = generate_test_data(timeframe, 1, '2022-01-05 00:00:00+00:00')
res = dp._add_external_df('ETH/USDT', df4, last_analyzed, timeframe, CandleType.SPOT)
assert res[0] is False
# 36 hours - from 2022-01-03 12:00:00+00:00 to 2022-01-05 00:00:00+00:00
assert res[1] == 36
df, _ = dp.get_producer_df('ETH/USDT', timeframe, CandleType.SPOT)
# New length = 61 + 1
assert len(df) == 61
# Empty dataframe
df4 = generate_test_data(timeframe, 0, '2022-01-05 00:00:00+00:00')
res = dp._add_external_df('ETH/USDT', df4, last_analyzed, timeframe, CandleType.SPOT)
assert res[0] is False
# 36 hours - from 2022-01-03 12:00:00+00:00 to 2022-01-05 00:00:00+00:00
assert res[1] == 0

View File

@ -189,3 +189,10 @@ def test_backtest_analysis_nomock(default_conf, mocker, caplog, testdatadir, tmp
assert '0.5' in captured.out assert '0.5' in captured.out
assert '1' in captured.out assert '1' in captured.out
assert '2.5' in captured.out assert '2.5' in captured.out
# test date filtering
args = get_args(base_args + ['--timerange', "20180129-20180130"])
start_analysis_entries_exits(args)
captured = capsys.readouterr()
assert 'enter_tag_long_a' in captured.out
assert 'enter_tag_long_b' not in captured.out

View File

@ -23,7 +23,7 @@ from tests.exchange.test_exchange import ccxt_exceptionhandlers
def test_stoploss_order_binance(default_conf, mocker, limitratio, expected, side, trademode): def test_stoploss_order_binance(default_conf, mocker, limitratio, expected, side, trademode):
api_mock = MagicMock() api_mock = MagicMock()
order_id = 'test_prod_buy_{}'.format(randint(0, 10 ** 6)) order_id = 'test_prod_buy_{}'.format(randint(0, 10 ** 6))
order_type = 'stop_loss_limit' if trademode == TradingMode.SPOT else 'limit' order_type = 'stop_loss_limit' if trademode == TradingMode.SPOT else 'stop'
api_mock.create_order = MagicMock(return_value={ api_mock.create_order = MagicMock(return_value={
'id': order_id, 'id': order_id,

View File

@ -28,15 +28,15 @@ EXCHANGES = {
'leverage_tiers_public': False, 'leverage_tiers_public': False,
'leverage_in_spot_market': False, 'leverage_in_spot_market': False,
}, },
'binance': { # 'binance': {
'pair': 'BTC/USDT', # 'pair': 'BTC/USDT',
'stake_currency': 'USDT', # 'stake_currency': 'USDT',
'hasQuoteVolume': True, # 'hasQuoteVolume': True,
'timeframe': '5m', # 'timeframe': '5m',
'futures': True, # 'futures': True,
'leverage_tiers_public': False, # 'leverage_tiers_public': False,
'leverage_in_spot_market': False, # 'leverage_in_spot_market': False,
}, # },
'kraken': { 'kraken': {
'pair': 'BTC/USDT', 'pair': 'BTC/USDT',
'stake_currency': 'USDT', 'stake_currency': 'USDT',
@ -224,6 +224,11 @@ class TestCCXTExchange():
for val in [1, 2, 5, 25, 100]: for val in [1, 2, 5, 25, 100]:
l2 = exchange.fetch_l2_order_book(pair, val) l2 = exchange.fetch_l2_order_book(pair, val)
if not l2_limit_range or val in l2_limit_range: if not l2_limit_range or val in l2_limit_range:
if val > 50:
# Orderbooks are not always this deep.
assert val - 5 < len(l2['asks']) <= val
assert val - 5 < len(l2['bids']) <= val
else:
assert len(l2['asks']) == val assert len(l2['asks']) == val
assert len(l2['bids']) == val assert len(l2['bids']) == val
else: else:

View File

@ -4014,9 +4014,6 @@ def test_validate_trading_mode_and_margin_mode(
("binance", "spot", {}), ("binance", "spot", {}),
("binance", "margin", {"options": {"defaultType": "margin"}}), ("binance", "margin", {"options": {"defaultType": "margin"}}),
("binance", "futures", {"options": {"defaultType": "future"}}), ("binance", "futures", {"options": {"defaultType": "future"}}),
("bibox", "spot", {"has": {"fetchCurrencies": False}}),
("bibox", "margin", {"has": {"fetchCurrencies": False}, "options": {"defaultType": "margin"}}),
("bibox", "futures", {"has": {"fetchCurrencies": False}, "options": {"defaultType": "swap"}}),
("bybit", "spot", {"options": {"defaultType": "spot"}}), ("bybit", "spot", {"options": {"defaultType": "spot"}}),
("bybit", "futures", {"options": {"defaultType": "linear"}}), ("bybit", "futures", {"options": {"defaultType": "linear"}}),
("gateio", "futures", {"options": {"defaultType": "swap"}}), ("gateio", "futures", {"options": {"defaultType": "swap"}}),

View File

@ -65,6 +65,8 @@ def test_freqai_backtest_live_models_model_not_found(freqai_conf, mocker, testda
mocker.patch('freqtrade.optimize.backtesting.history.load_data') mocker.patch('freqtrade.optimize.backtesting.history.load_data')
mocker.patch('freqtrade.optimize.backtesting.history.get_timerange', return_value=(now, now)) mocker.patch('freqtrade.optimize.backtesting.history.get_timerange', return_value=(now, now))
freqai_conf["timerange"] = "" freqai_conf["timerange"] = ""
freqai_conf.get("freqai", {}).update({"backtest_using_historic_predictions": False})
patched_configuration_load_config_file(mocker, freqai_conf) patched_configuration_load_config_file(mocker, freqai_conf)
args = [ args = [
@ -79,7 +81,7 @@ def test_freqai_backtest_live_models_model_not_found(freqai_conf, mocker, testda
bt_config = setup_optimize_configuration(args, RunMode.BACKTEST) bt_config = setup_optimize_configuration(args, RunMode.BACKTEST)
with pytest.raises(OperationalException, with pytest.raises(OperationalException,
match=r".* Saved models are required to run backtest .*"): match=r".* Historic predictions data is required to run backtest .*"):
Backtesting(bt_config) Backtesting(bt_config)
Backtesting.cleanup() Backtesting.cleanup()

View File

@ -2,8 +2,11 @@
import shutil import shutil
from pathlib import Path from pathlib import Path
import pytest
from freqtrade.configuration import TimeRange from freqtrade.configuration import TimeRange
from freqtrade.data.dataprovider import DataProvider from freqtrade.data.dataprovider import DataProvider
from freqtrade.exceptions import OperationalException
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
from tests.conftest import get_patched_exchange from tests.conftest import get_patched_exchange
from tests.freqai.conftest import get_patched_freqai_strategy from tests.freqai.conftest import get_patched_freqai_strategy
@ -93,3 +96,37 @@ def test_use_strategy_to_populate_indicators(mocker, freqai_conf):
assert len(df.columns) == 33 assert len(df.columns) == 33
shutil.rmtree(Path(freqai.dk.full_path)) shutil.rmtree(Path(freqai.dk.full_path))
def test_get_timerange_from_live_historic_predictions(mocker, freqai_conf):
strategy = get_patched_freqai_strategy(mocker, freqai_conf)
exchange = get_patched_exchange(mocker, freqai_conf)
strategy.dp = DataProvider(freqai_conf, exchange)
freqai = strategy.freqai
freqai.live = True
freqai.dk = FreqaiDataKitchen(freqai_conf)
timerange = TimeRange.parse_timerange("20180126-20180130")
freqai.dd.load_all_pair_histories(timerange, freqai.dk)
sub_timerange = TimeRange.parse_timerange("20180128-20180130")
_, base_df = freqai.dd.get_base_and_corr_dataframes(sub_timerange, "ADA/BTC", freqai.dk)
base_df["5m"]["date_pred"] = base_df["5m"]["date"]
freqai.dd.historic_predictions = {}
freqai.dd.historic_predictions["ADA/USDT"] = base_df["5m"]
freqai.dd.save_historic_predictions_to_disk()
freqai.dd.save_global_metadata_to_disk({"start_dry_live_date": 1516406400})
timerange = freqai.dd.get_timerange_from_live_historic_predictions()
assert timerange.startts == 1516406400
assert timerange.stopts == 1517356500
def test_get_timerange_from_backtesting_live_df_pred_not_found(mocker, freqai_conf):
strategy = get_patched_freqai_strategy(mocker, freqai_conf)
exchange = get_patched_exchange(mocker, freqai_conf)
strategy.dp = DataProvider(freqai_conf, exchange)
freqai = strategy.freqai
with pytest.raises(
OperationalException,
match=r'Historic predictions not found.*'
):
freqai.dd.get_timerange_from_live_historic_predictions()

View File

@ -9,7 +9,6 @@ from freqtrade.configuration import TimeRange
from freqtrade.data.dataprovider import DataProvider from freqtrade.data.dataprovider import DataProvider
from freqtrade.exceptions import OperationalException from freqtrade.exceptions import OperationalException
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
from freqtrade.freqai.utils import get_timerange_backtest_live_models
from tests.conftest import get_patched_exchange, log_has_re from tests.conftest import get_patched_exchange, log_has_re
from tests.freqai.conftest import (get_patched_data_kitchen, get_patched_freqai_strategy, from tests.freqai.conftest import (get_patched_data_kitchen, get_patched_freqai_strategy,
make_data_dictionary, make_unfiltered_dataframe) make_data_dictionary, make_unfiltered_dataframe)
@ -166,71 +165,6 @@ def test_make_train_test_datasets(mocker, freqai_conf):
assert len(data_dictionary['train_features'].index) == 1916 assert len(data_dictionary['train_features'].index) == 1916
def test_get_pairs_timestamp_validation(mocker, freqai_conf):
exchange = get_patched_exchange(mocker, freqai_conf)
strategy = get_patched_freqai_strategy(mocker, freqai_conf)
strategy.dp = DataProvider(freqai_conf, exchange)
strategy.freqai_info = freqai_conf.get("freqai", {})
freqai = strategy.freqai
freqai.live = True
freqai.dk = FreqaiDataKitchen(freqai_conf)
freqai_conf['freqai'].update({"identifier": "invalid_id"})
model_path = freqai.dk.get_full_models_path(freqai_conf)
with pytest.raises(
OperationalException,
match=r'.*required to run backtest with the freqai-backtest-live-models.*'
):
freqai.dk.get_assets_timestamps_training_from_ready_models(model_path)
@pytest.mark.parametrize('model', [
'LightGBMRegressor'
])
def test_get_timerange_from_ready_models(mocker, freqai_conf, model):
freqai_conf.update({"freqaimodel": model})
freqai_conf.update({"timerange": "20180110-20180130"})
freqai_conf.update({"strategy": "freqai_test_strat"})
strategy = get_patched_freqai_strategy(mocker, freqai_conf)
exchange = get_patched_exchange(mocker, freqai_conf)
strategy.dp = DataProvider(freqai_conf, exchange)
strategy.freqai_info = freqai_conf.get("freqai", {})
freqai = strategy.freqai
freqai.live = True
freqai.dk = FreqaiDataKitchen(freqai_conf)
timerange = TimeRange.parse_timerange("20180101-20180130")
freqai.dd.load_all_pair_histories(timerange, freqai.dk)
freqai.dd.pair_dict = MagicMock()
data_load_timerange = TimeRange.parse_timerange("20180101-20180130")
# 1516233600 (2018-01-18 00:00) - Start Training 1
# 1516406400 (2018-01-20 00:00) - End Training 1 (Backtest slice 1)
# 1516579200 (2018-01-22 00:00) - End Training 2 (Backtest slice 2)
# 1516838400 (2018-01-25 00:00) - End Timerange
new_timerange = TimeRange("date", "date", 1516233600, 1516406400)
freqai.extract_data_and_train_model(
new_timerange, "ADA/BTC", strategy, freqai.dk, data_load_timerange)
new_timerange = TimeRange("date", "date", 1516406400, 1516579200)
freqai.extract_data_and_train_model(
new_timerange, "ADA/BTC", strategy, freqai.dk, data_load_timerange)
model_path = freqai.dk.get_full_models_path(freqai_conf)
(backtesting_timerange,
pairs_end_dates) = freqai.dk.get_timerange_and_assets_end_dates_from_ready_models(
models_path=model_path)
assert len(pairs_end_dates["ADA"]) == 2
assert backtesting_timerange.startts == 1516406400
assert backtesting_timerange.stopts == 1516838400
backtesting_string_timerange = get_timerange_backtest_live_models(freqai_conf)
assert backtesting_string_timerange == '20180120-20180125'
@pytest.mark.parametrize('model', [ @pytest.mark.parametrize('model', [
'LightGBMRegressor' 'LightGBMRegressor'
]) ])

View File

@ -27,20 +27,23 @@ def is_mac() -> bool:
return "Darwin" in machine return "Darwin" in machine
@pytest.mark.parametrize('model, pca, dbscan, float32', [ @pytest.mark.parametrize('model, pca, dbscan, float32, can_short', [
('LightGBMRegressor', True, False, True), ('LightGBMRegressor', True, False, True, True),
('XGBoostRegressor', False, True, False), ('XGBoostRegressor', False, True, False, True),
('XGBoostRFRegressor', False, False, False), ('XGBoostRFRegressor', False, False, False, True),
('CatboostRegressor', False, False, False), ('CatboostRegressor', False, False, False, True),
('ReinforcementLearner', False, True, False), ('ReinforcementLearner', False, True, False, True),
('ReinforcementLearner_multiproc', False, False, False), ('ReinforcementLearner_multiproc', False, False, False, True),
('ReinforcementLearner_test_4ac', False, False, False) ('ReinforcementLearner_test_3ac', False, False, False, False),
('ReinforcementLearner_test_3ac', False, False, False, True),
('ReinforcementLearner_test_4ac', False, False, False, True)
]) ])
def test_extract_data_and_train_model_Standard(mocker, freqai_conf, model, pca, dbscan, float32): def test_extract_data_and_train_model_Standard(mocker, freqai_conf, model, pca,
dbscan, float32, can_short):
if is_arm() and model == 'CatboostRegressor': if is_arm() and model == 'CatboostRegressor':
pytest.skip("CatBoost is not supported on ARM") pytest.skip("CatBoost is not supported on ARM")
if is_mac() and 'Reinforcement' in model: if is_mac() and not is_arm() and 'Reinforcement' in model:
pytest.skip("Reinforcement learning module not available on intel based Mac OS") pytest.skip("Reinforcement learning module not available on intel based Mac OS")
model_save_ext = 'joblib' model_save_ext = 'joblib'
@ -58,9 +61,6 @@ def test_extract_data_and_train_model_Standard(mocker, freqai_conf, model, pca,
freqai_conf['freqai']['feature_parameters'].update({"use_SVM_to_remove_outliers": True}) freqai_conf['freqai']['feature_parameters'].update({"use_SVM_to_remove_outliers": True})
freqai_conf['freqai']['data_split_parameters'].update({'shuffle': True}) freqai_conf['freqai']['data_split_parameters'].update({'shuffle': True})
if 'test_4ac' in model:
freqai_conf["freqaimodel_path"] = str(Path(__file__).parents[1] / "freqai" / "test_models")
if 'ReinforcementLearner' in model: if 'ReinforcementLearner' in model:
model_save_ext = 'zip' model_save_ext = 'zip'
freqai_conf = make_rl_config(freqai_conf) freqai_conf = make_rl_config(freqai_conf)
@ -68,7 +68,7 @@ def test_extract_data_and_train_model_Standard(mocker, freqai_conf, model, pca,
freqai_conf['freqai']['feature_parameters'].update({"use_SVM_to_remove_outliers": True}) freqai_conf['freqai']['feature_parameters'].update({"use_SVM_to_remove_outliers": True})
freqai_conf['freqai']['data_split_parameters'].update({'shuffle': True}) freqai_conf['freqai']['data_split_parameters'].update({'shuffle': True})
if 'test_4ac' in model: if 'test_3ac' in model or 'test_4ac' in model:
freqai_conf["freqaimodel_path"] = str(Path(__file__).parents[1] / "freqai" / "test_models") freqai_conf["freqaimodel_path"] = str(Path(__file__).parents[1] / "freqai" / "test_models")
strategy = get_patched_freqai_strategy(mocker, freqai_conf) strategy = get_patched_freqai_strategy(mocker, freqai_conf)
@ -77,6 +77,7 @@ def test_extract_data_and_train_model_Standard(mocker, freqai_conf, model, pca,
strategy.freqai_info = freqai_conf.get("freqai", {}) strategy.freqai_info = freqai_conf.get("freqai", {})
freqai = strategy.freqai freqai = strategy.freqai
freqai.live = True freqai.live = True
freqai.can_short = can_short
freqai.dk = FreqaiDataKitchen(freqai_conf) freqai.dk = FreqaiDataKitchen(freqai_conf)
freqai.dk.set_paths('ADA/BTC', 10000) freqai.dk.set_paths('ADA/BTC', 10000)
timerange = TimeRange.parse_timerange("20180110-20180130") timerange = TimeRange.parse_timerange("20180110-20180130")
@ -237,7 +238,6 @@ def test_start_backtesting(mocker, freqai_conf, model, num_files, strat, caplog)
df = freqai.cache_corr_pairlist_dfs(df, freqai.dk) df = freqai.cache_corr_pairlist_dfs(df, freqai.dk)
for i in range(5): for i in range(5):
df[f'%-constant_{i}'] = i df[f'%-constant_{i}'] = i
# df.loc[:, f'%-constant_{i}'] = i
metadata = {"pair": "LTC/BTC"} metadata = {"pair": "LTC/BTC"}
freqai.start_backtesting(df, metadata, freqai.dk) freqai.start_backtesting(df, metadata, freqai.dk)
@ -301,7 +301,9 @@ def test_start_backtesting_from_existing_folder(mocker, freqai_conf, caplog):
df = freqai.dk.use_strategy_to_populate_indicators(strategy, corr_df, base_df, "LTC/BTC") df = freqai.dk.use_strategy_to_populate_indicators(strategy, corr_df, base_df, "LTC/BTC")
metadata = {"pair": "ADA/BTC"} pair = "ADA/BTC"
metadata = {"pair": pair}
freqai.dk.pair = pair
freqai.start_backtesting(df, metadata, freqai.dk) freqai.start_backtesting(df, metadata, freqai.dk)
model_folders = [x for x in freqai.dd.full_path.iterdir() if x.is_dir()] model_folders = [x for x in freqai.dd.full_path.iterdir() if x.is_dir()]
@ -324,6 +326,9 @@ def test_start_backtesting_from_existing_folder(mocker, freqai_conf, caplog):
df = freqai.dk.use_strategy_to_populate_indicators(strategy, corr_df, base_df, "LTC/BTC") df = freqai.dk.use_strategy_to_populate_indicators(strategy, corr_df, base_df, "LTC/BTC")
pair = "ADA/BTC"
metadata = {"pair": pair}
freqai.dk.pair = pair
freqai.start_backtesting(df, metadata, freqai.dk) freqai.start_backtesting(df, metadata, freqai.dk)
assert log_has_re( assert log_has_re(
@ -331,13 +336,43 @@ def test_start_backtesting_from_existing_folder(mocker, freqai_conf, caplog):
caplog, caplog,
) )
pair = "ETH/BTC"
metadata = {"pair": pair}
freqai.dk.pair = pair
freqai.start_backtesting(df, metadata, freqai.dk)
path = (freqai.dd.full_path / freqai.dk.backtest_predictions_folder) path = (freqai.dd.full_path / freqai.dk.backtest_predictions_folder)
prediction_files = [x for x in path.iterdir() if x.is_file()] prediction_files = [x for x in path.iterdir() if x.is_file()]
assert len(prediction_files) == 1 assert len(prediction_files) == 2
shutil.rmtree(Path(freqai.dk.full_path)) shutil.rmtree(Path(freqai.dk.full_path))
def test_backtesting_fit_live_predictions(mocker, freqai_conf, caplog):
freqai_conf.get("freqai", {}).update({"fit_live_predictions_candles": 10})
strategy = get_patched_freqai_strategy(mocker, freqai_conf)
exchange = get_patched_exchange(mocker, freqai_conf)
strategy.dp = DataProvider(freqai_conf, exchange)
strategy.freqai_info = freqai_conf.get("freqai", {})
freqai = strategy.freqai
freqai.live = False
freqai.dk = FreqaiDataKitchen(freqai_conf)
timerange = TimeRange.parse_timerange("20180128-20180130")
freqai.dd.load_all_pair_histories(timerange, freqai.dk)
sub_timerange = TimeRange.parse_timerange("20180129-20180130")
corr_df, base_df = freqai.dd.get_base_and_corr_dataframes(sub_timerange, "LTC/BTC", freqai.dk)
df = freqai.dk.use_strategy_to_populate_indicators(strategy, corr_df, base_df, "LTC/BTC")
freqai.dk.pair = "ADA/BTC"
freqai.dk.full_df = df.fillna(0)
freqai.dk.full_df
assert "&-s_close_mean" not in freqai.dk.full_df.columns
assert "&-s_close_std" not in freqai.dk.full_df.columns
freqai.backtesting_fit_live_predictions(freqai.dk)
assert "&-s_close_mean" in freqai.dk.full_df.columns
assert "&-s_close_std" in freqai.dk.full_df.columns
shutil.rmtree(Path(freqai.dk.full_path))
def test_follow_mode(mocker, freqai_conf): def test_follow_mode(mocker, freqai_conf):
freqai_conf.update({"timerange": "20180110-20180130"}) freqai_conf.update({"timerange": "20180110-20180130"})

View File

@ -0,0 +1,65 @@
import logging
import numpy as np
from freqtrade.freqai.prediction_models.ReinforcementLearner import ReinforcementLearner
from freqtrade.freqai.RL.Base3ActionRLEnv import Actions, Base3ActionRLEnv, Positions
logger = logging.getLogger(__name__)
class ReinforcementLearner_test_3ac(ReinforcementLearner):
"""
User created Reinforcement Learning Model prediction model.
"""
class MyRLEnv(Base3ActionRLEnv):
"""
User can override any function in BaseRLEnv and gym.Env. Here the user
sets a custom reward based on profit and trade duration.
"""
def calculate_reward(self, action: int) -> float:
# first, penalize if the action is not valid
if not self._is_valid(action):
return -2
pnl = self.get_unrealized_profit()
rew = np.sign(pnl) * (pnl + 1)
factor = 100.
# reward agent for entering trades
if (action in (Actions.Buy.value, Actions.Sell.value)
and self._position == Positions.Neutral):
return 25
# discourage agent from not entering trades
if action == Actions.Neutral.value and self._position == Positions.Neutral:
return -1
max_trade_duration = self.rl_config.get('max_trade_duration_candles', 300)
trade_duration = self._current_tick - self._last_trade_tick # type: ignore
if trade_duration <= max_trade_duration:
factor *= 1.5
elif trade_duration > max_trade_duration:
factor *= 0.5
# discourage sitting in position
if self._position in (Positions.Short, Positions.Long) and (
action == Actions.Neutral.value
or (action == Actions.Sell.value and self._position == Positions.Short)
or (action == Actions.Buy.value and self._position == Positions.Long)
):
return -1 * trade_duration / max_trade_duration
# close position
if (action == Actions.Buy.value and self._position == Positions.Short) or (
action == Actions.Sell.value and self._position == Positions.Long
):
if pnl > self.profit_aim * self.rr:
factor *= self.rl_config["model_reward_parameters"].get("win_reward_factor", 2)
return float(rew * factor)
return 0.

View File

@ -710,6 +710,7 @@ def test_backtest_one(default_conf, fee, mocker, testdatadir) -> None:
expected = pd.DataFrame( expected = pd.DataFrame(
{'pair': [pair, pair], {'pair': [pair, pair],
'stake_amount': [0.001, 0.001], 'stake_amount': [0.001, 0.001],
'max_stake_amount': [0.001, 0.001],
'amount': [0.00957442, 0.0097064], 'amount': [0.00957442, 0.0097064],
'open_date': pd.to_datetime([Arrow(2018, 1, 29, 18, 40, 0).datetime, 'open_date': pd.to_datetime([Arrow(2018, 1, 29, 18, 40, 0).datetime,
Arrow(2018, 1, 30, 3, 30, 0).datetime], utc=True Arrow(2018, 1, 30, 3, 30, 0).datetime], utc=True

View File

@ -50,6 +50,7 @@ def test_backtest_position_adjustment(default_conf, fee, mocker, testdatadir) ->
expected = pd.DataFrame( expected = pd.DataFrame(
{'pair': [pair, pair], {'pair': [pair, pair],
'stake_amount': [500.0, 100.0], 'stake_amount': [500.0, 100.0],
'max_stake_amount': [500.0, 100],
'amount': [4806.87657523, 970.63960782], 'amount': [4806.87657523, 970.63960782],
'open_date': pd.to_datetime([Arrow(2018, 1, 29, 18, 40, 0).datetime, 'open_date': pd.to_datetime([Arrow(2018, 1, 29, 18, 40, 0).datetime,
Arrow(2018, 1, 30, 3, 30, 0).datetime], utc=True Arrow(2018, 1, 30, 3, 30, 0).datetime], utc=True

View File

@ -308,7 +308,7 @@ def test_generate_pair_metrics():
def test_generate_daily_stats(testdatadir): def test_generate_daily_stats(testdatadir):
filename = testdatadir / "backtest_results/backtest-result_new.json" filename = testdatadir / "backtest_results/backtest-result.json"
bt_data = load_backtest_data(filename) bt_data = load_backtest_data(filename)
res = generate_daily_stats(bt_data) res = generate_daily_stats(bt_data)
assert isinstance(res, dict) assert isinstance(res, dict)
@ -328,7 +328,7 @@ def test_generate_daily_stats(testdatadir):
def test_generate_trading_stats(testdatadir): def test_generate_trading_stats(testdatadir):
filename = testdatadir / "backtest_results/backtest-result_new.json" filename = testdatadir / "backtest_results/backtest-result.json"
bt_data = load_backtest_data(filename) bt_data = load_backtest_data(filename)
res = generate_trading_stats(bt_data) res = generate_trading_stats(bt_data)
assert isinstance(res, dict) assert isinstance(res, dict)
@ -444,7 +444,7 @@ def test_generate_edge_table():
def test_generate_periodic_breakdown_stats(testdatadir): def test_generate_periodic_breakdown_stats(testdatadir):
filename = testdatadir / "backtest_results/backtest-result_new.json" filename = testdatadir / "backtest_results/backtest-result.json"
bt_data = load_backtest_data(filename).to_dict(orient='records') bt_data = load_backtest_data(filename).to_dict(orient='records')
res = generate_periodic_breakdown_stats(bt_data, 'day') res = generate_periodic_breakdown_stats(bt_data, 'day')
@ -472,7 +472,7 @@ def test__get_resample_from_period():
def test_show_sorted_pairlist(testdatadir, default_conf, capsys): def test_show_sorted_pairlist(testdatadir, default_conf, capsys):
filename = testdatadir / "backtest_results/backtest-result_new.json" filename = testdatadir / "backtest_results/backtest-result.json"
bt_data = load_backtest_stats(filename) bt_data = load_backtest_stats(filename)
default_conf['backtest_show_pair_list'] = True default_conf['backtest_show_pair_list'] = True

View File

@ -0,0 +1,412 @@
# pragma pylint: disable=missing-docstring, C0103
import logging
from pathlib import Path
from unittest.mock import MagicMock
import pytest
from sqlalchemy import create_engine, text
from freqtrade.constants import DEFAULT_DB_PROD_URL
from freqtrade.enums import TradingMode
from freqtrade.exceptions import OperationalException
from freqtrade.persistence import Trade, init_db
from freqtrade.persistence.migrations import get_last_sequence_ids, set_sequence_ids
from freqtrade.persistence.models import PairLock
from tests.conftest import log_has
spot, margin, futures = TradingMode.SPOT, TradingMode.MARGIN, TradingMode.FUTURES
def test_init_create_session(default_conf):
# Check if init create a session
init_db(default_conf['db_url'])
assert hasattr(Trade, '_session')
assert 'scoped_session' in type(Trade._session).__name__
def test_init_custom_db_url(default_conf, tmpdir):
# Update path to a value other than default, but still in-memory
filename = f"{tmpdir}/freqtrade2_test.sqlite"
assert not Path(filename).is_file()
default_conf.update({'db_url': f'sqlite:///{filename}'})
init_db(default_conf['db_url'])
assert Path(filename).is_file()
r = Trade._session.execute(text("PRAGMA journal_mode"))
assert r.first() == ('wal',)
def test_init_invalid_db_url():
# Update path to a value other than default, but still in-memory
with pytest.raises(OperationalException, match=r'.*no valid database URL*'):
init_db('unknown:///some.url')
with pytest.raises(OperationalException, match=r'Bad db-url.*For in-memory database, pl.*'):
init_db('sqlite:///')
def test_init_prod_db(default_conf, mocker):
default_conf.update({'dry_run': False})
default_conf.update({'db_url': DEFAULT_DB_PROD_URL})
create_engine_mock = mocker.patch('freqtrade.persistence.models.create_engine', MagicMock())
init_db(default_conf['db_url'])
assert create_engine_mock.call_count == 1
assert create_engine_mock.mock_calls[0][1][0] == 'sqlite:///tradesv3.sqlite'
def test_init_dryrun_db(default_conf, tmpdir):
filename = f"{tmpdir}/freqtrade2_prod.sqlite"
assert not Path(filename).is_file()
default_conf.update({
'dry_run': True,
'db_url': f'sqlite:///{filename}'
})
init_db(default_conf['db_url'])
assert Path(filename).is_file()
def test_migrate_new(mocker, default_conf, fee, caplog):
"""
Test Database migration (starting with new pairformat)
"""
caplog.set_level(logging.DEBUG)
amount = 103.223
# Always create all columns apart from the last!
create_table_old = """CREATE TABLE IF NOT EXISTS "trades" (
id INTEGER NOT NULL,
exchange VARCHAR NOT NULL,
pair VARCHAR NOT NULL,
is_open BOOLEAN NOT NULL,
fee FLOAT NOT NULL,
open_rate FLOAT,
close_rate FLOAT,
close_profit FLOAT,
stake_amount FLOAT NOT NULL,
amount FLOAT,
open_date DATETIME NOT NULL,
close_date DATETIME,
open_order_id VARCHAR,
stop_loss FLOAT,
initial_stop_loss FLOAT,
max_rate FLOAT,
sell_reason VARCHAR,
strategy VARCHAR,
ticker_interval INTEGER,
stoploss_order_id VARCHAR,
PRIMARY KEY (id),
CHECK (is_open IN (0, 1))
);"""
create_table_order = """CREATE TABLE orders (
id INTEGER NOT NULL,
ft_trade_id INTEGER,
ft_order_side VARCHAR(25) NOT NULL,
ft_pair VARCHAR(25) NOT NULL,
ft_is_open BOOLEAN NOT NULL,
order_id VARCHAR(255) NOT NULL,
status VARCHAR(255),
symbol VARCHAR(25),
order_type VARCHAR(50),
side VARCHAR(25),
price FLOAT,
amount FLOAT,
filled FLOAT,
remaining FLOAT,
cost FLOAT,
order_date DATETIME,
order_filled_date DATETIME,
order_update_date DATETIME,
PRIMARY KEY (id)
);"""
insert_table_old = """INSERT INTO trades (exchange, pair, is_open, fee,
open_rate, stake_amount, amount, open_date,
stop_loss, initial_stop_loss, max_rate, ticker_interval,
open_order_id, stoploss_order_id)
VALUES ('binance', 'ETC/BTC', 1, {fee},
0.00258580, {stake}, {amount},
'2019-11-28 12:44:24.000000',
0.0, 0.0, 0.0, '5m',
'buy_order', 'dry_stop_order_id222')
""".format(fee=fee.return_value,
stake=default_conf.get("stake_amount"),
amount=amount
)
insert_orders = f"""
insert into orders (
ft_trade_id,
ft_order_side,
ft_pair,
ft_is_open,
order_id,
status,
symbol,
order_type,
side,
price,
amount,
filled,
remaining,
cost)
values (
1,
'buy',
'ETC/BTC',
0,
'dry_buy_order',
'closed',
'ETC/BTC',
'limit',
'buy',
0.00258580,
{amount},
{amount},
0,
{amount * 0.00258580}
),
(
1,
'buy',
'ETC/BTC',
1,
'dry_buy_order22',
'canceled',
'ETC/BTC',
'limit',
'buy',
0.00258580,
{amount},
{amount},
0,
{amount * 0.00258580}
),
(
1,
'stoploss',
'ETC/BTC',
1,
'dry_stop_order_id11X',
'canceled',
'ETC/BTC',
'limit',
'sell',
0.00258580,
{amount},
{amount},
0,
{amount * 0.00258580}
),
(
1,
'stoploss',
'ETC/BTC',
1,
'dry_stop_order_id222',
'open',
'ETC/BTC',
'limit',
'sell',
0.00258580,
{amount},
{amount},
0,
{amount * 0.00258580}
)
"""
engine = create_engine('sqlite://')
mocker.patch('freqtrade.persistence.models.create_engine', lambda *args, **kwargs: engine)
# Create table using the old format
with engine.begin() as connection:
connection.execute(text(create_table_old))
connection.execute(text(create_table_order))
connection.execute(text("create index ix_trades_is_open on trades(is_open)"))
connection.execute(text("create index ix_trades_pair on trades(pair)"))
connection.execute(text(insert_table_old))
connection.execute(text(insert_orders))
# fake previous backup
connection.execute(text("create table trades_bak as select * from trades"))
connection.execute(text("create table trades_bak1 as select * from trades"))
# Run init to test migration
init_db(default_conf['db_url'])
assert len(Trade.query.filter(Trade.id == 1).all()) == 1
trade = Trade.query.filter(Trade.id == 1).first()
assert trade.fee_open == fee.return_value
assert trade.fee_close == fee.return_value
assert trade.open_rate_requested is None
assert trade.close_rate_requested is None
assert trade.is_open == 1
assert trade.amount == amount
assert trade.amount_requested == amount
assert trade.stake_amount == default_conf.get("stake_amount")
assert trade.pair == "ETC/BTC"
assert trade.exchange == "binance"
assert trade.max_rate == 0.0
assert trade.min_rate is None
assert trade.stop_loss == 0.0
assert trade.initial_stop_loss == 0.0
assert trade.exit_reason is None
assert trade.strategy is None
assert trade.timeframe == '5m'
assert trade.stoploss_order_id == 'dry_stop_order_id222'
assert trade.stoploss_last_update is None
assert log_has("trying trades_bak1", caplog)
assert log_has("trying trades_bak2", caplog)
assert log_has("Running database migration for trades - backup: trades_bak2, orders_bak0",
caplog)
assert log_has("Database migration finished.", caplog)
assert pytest.approx(trade.open_trade_value) == trade._calc_open_trade_value(
trade.amount, trade.open_rate)
assert trade.close_profit_abs is None
assert trade.stake_amount == trade.max_stake_amount
orders = trade.orders
assert len(orders) == 4
assert orders[0].order_id == 'dry_buy_order'
assert orders[0].ft_order_side == 'buy'
assert orders[-1].order_id == 'dry_stop_order_id222'
assert orders[-1].ft_order_side == 'stoploss'
assert orders[-1].ft_is_open is True
assert orders[1].order_id == 'dry_buy_order22'
assert orders[1].ft_order_side == 'buy'
assert orders[1].ft_is_open is False
assert orders[2].order_id == 'dry_stop_order_id11X'
assert orders[2].ft_order_side == 'stoploss'
assert orders[2].ft_is_open is False
def test_migrate_too_old(mocker, default_conf, fee, caplog):
"""
Test Database migration (starting with new pairformat)
"""
caplog.set_level(logging.DEBUG)
amount = 103.223
create_table_old = """CREATE TABLE IF NOT EXISTS "trades" (
id INTEGER NOT NULL,
exchange VARCHAR NOT NULL,
pair VARCHAR NOT NULL,
is_open BOOLEAN NOT NULL,
fee_open FLOAT NOT NULL,
fee_close FLOAT NOT NULL,
open_rate FLOAT,
close_rate FLOAT,
close_profit FLOAT,
stake_amount FLOAT NOT NULL,
amount FLOAT,
open_date DATETIME NOT NULL,
close_date DATETIME,
open_order_id VARCHAR,
PRIMARY KEY (id),
CHECK (is_open IN (0, 1))
);"""
insert_table_old = """INSERT INTO trades (exchange, pair, is_open, fee_open, fee_close,
open_rate, stake_amount, amount, open_date)
VALUES ('binance', 'ETC/BTC', 1, {fee}, {fee},
0.00258580, {stake}, {amount},
'2019-11-28 12:44:24.000000')
""".format(fee=fee.return_value,
stake=default_conf.get("stake_amount"),
amount=amount
)
engine = create_engine('sqlite://')
mocker.patch('freqtrade.persistence.models.create_engine', lambda *args, **kwargs: engine)
# Create table using the old format
with engine.begin() as connection:
connection.execute(text(create_table_old))
connection.execute(text(insert_table_old))
# Run init to test migration
with pytest.raises(OperationalException, match=r'Your database seems to be very old'):
init_db(default_conf['db_url'])
def test_migrate_get_last_sequence_ids():
engine = MagicMock()
engine.begin = MagicMock()
engine.name = 'postgresql'
get_last_sequence_ids(engine, 'trades_bak', 'orders_bak')
assert engine.begin.call_count == 2
engine.reset_mock()
engine.begin.reset_mock()
engine.name = 'somethingelse'
get_last_sequence_ids(engine, 'trades_bak', 'orders_bak')
assert engine.begin.call_count == 0
def test_migrate_set_sequence_ids():
engine = MagicMock()
engine.begin = MagicMock()
engine.name = 'postgresql'
set_sequence_ids(engine, 22, 55, 5)
assert engine.begin.call_count == 1
engine.reset_mock()
engine.begin.reset_mock()
engine.name = 'somethingelse'
set_sequence_ids(engine, 22, 55, 6)
assert engine.begin.call_count == 0
def test_migrate_pairlocks(mocker, default_conf, fee, caplog):
"""
Test Database migration (starting with new pairformat)
"""
caplog.set_level(logging.DEBUG)
# Always create all columns apart from the last!
create_table_old = """CREATE TABLE pairlocks (
id INTEGER NOT NULL,
pair VARCHAR(25) NOT NULL,
reason VARCHAR(255),
lock_time DATETIME NOT NULL,
lock_end_time DATETIME NOT NULL,
active BOOLEAN NOT NULL,
PRIMARY KEY (id)
)
"""
create_index1 = "CREATE INDEX ix_pairlocks_pair ON pairlocks (pair)"
create_index2 = "CREATE INDEX ix_pairlocks_lock_end_time ON pairlocks (lock_end_time)"
create_index3 = "CREATE INDEX ix_pairlocks_active ON pairlocks (active)"
insert_table_old = """INSERT INTO pairlocks (
id, pair, reason, lock_time, lock_end_time, active)
VALUES (1, 'ETH/BTC', 'Auto lock', '2021-07-12 18:41:03', '2021-07-11 18:45:00', 1)
"""
insert_table_old2 = """INSERT INTO pairlocks (
id, pair, reason, lock_time, lock_end_time, active)
VALUES (2, '*', 'Lock all', '2021-07-12 18:41:03', '2021-07-12 19:00:00', 1)
"""
engine = create_engine('sqlite://')
mocker.patch('freqtrade.persistence.models.create_engine', lambda *args, **kwargs: engine)
# Create table using the old format
with engine.begin() as connection:
connection.execute(text(create_table_old))
connection.execute(text(insert_table_old))
connection.execute(text(insert_table_old2))
connection.execute(text(create_index1))
connection.execute(text(create_index2))
connection.execute(text(create_index3))
init_db(default_conf['db_url'])
assert len(PairLock.query.all()) == 2
assert len(PairLock.query.filter(PairLock.pair == '*').all()) == 1
pairlocks = PairLock.query.filter(PairLock.pair == 'ETH/BTC').all()
assert len(pairlocks) == 1
pairlocks[0].pair == 'ETH/BTC'
pairlocks[0].side == '*'

View File

@ -1,78 +1,20 @@
# pragma pylint: disable=missing-docstring, C0103 # pragma pylint: disable=missing-docstring, C0103
import logging
from datetime import datetime, timedelta, timezone from datetime import datetime, timedelta, timezone
from pathlib import Path
from types import FunctionType from types import FunctionType
from unittest.mock import MagicMock
import arrow import arrow
import pytest import pytest
from sqlalchemy import create_engine, text
from freqtrade.constants import DATETIME_PRINT_FORMAT, DEFAULT_DB_PROD_URL from freqtrade.constants import DATETIME_PRINT_FORMAT
from freqtrade.enums import TradingMode from freqtrade.enums import TradingMode
from freqtrade.exceptions import DependencyException, OperationalException from freqtrade.exceptions import DependencyException
from freqtrade.persistence import LocalTrade, Order, Trade, init_db from freqtrade.persistence import LocalTrade, Order, Trade, init_db
from freqtrade.persistence.migrations import get_last_sequence_ids, set_sequence_ids
from freqtrade.persistence.models import PairLock
from tests.conftest import create_mock_trades, create_mock_trades_with_leverage, log_has, log_has_re from tests.conftest import create_mock_trades, create_mock_trades_with_leverage, log_has, log_has_re
spot, margin, futures = TradingMode.SPOT, TradingMode.MARGIN, TradingMode.FUTURES spot, margin, futures = TradingMode.SPOT, TradingMode.MARGIN, TradingMode.FUTURES
def test_init_create_session(default_conf):
# Check if init create a session
init_db(default_conf['db_url'])
assert hasattr(Trade, '_session')
assert 'scoped_session' in type(Trade._session).__name__
def test_init_custom_db_url(default_conf, tmpdir):
# Update path to a value other than default, but still in-memory
filename = f"{tmpdir}/freqtrade2_test.sqlite"
assert not Path(filename).is_file()
default_conf.update({'db_url': f'sqlite:///{filename}'})
init_db(default_conf['db_url'])
assert Path(filename).is_file()
r = Trade._session.execute(text("PRAGMA journal_mode"))
assert r.first() == ('wal',)
def test_init_invalid_db_url():
# Update path to a value other than default, but still in-memory
with pytest.raises(OperationalException, match=r'.*no valid database URL*'):
init_db('unknown:///some.url')
with pytest.raises(OperationalException, match=r'Bad db-url.*For in-memory database, pl.*'):
init_db('sqlite:///')
def test_init_prod_db(default_conf, mocker):
default_conf.update({'dry_run': False})
default_conf.update({'db_url': DEFAULT_DB_PROD_URL})
create_engine_mock = mocker.patch('freqtrade.persistence.models.create_engine', MagicMock())
init_db(default_conf['db_url'])
assert create_engine_mock.call_count == 1
assert create_engine_mock.mock_calls[0][1][0] == 'sqlite:///tradesv3.sqlite'
def test_init_dryrun_db(default_conf, tmpdir):
filename = f"{tmpdir}/freqtrade2_prod.sqlite"
assert not Path(filename).is_file()
default_conf.update({
'dry_run': True,
'db_url': f'sqlite:///{filename}'
})
init_db(default_conf['db_url'])
assert Path(filename).is_file()
@pytest.mark.parametrize('is_short', [False, True]) @pytest.mark.parametrize('is_short', [False, True])
@pytest.mark.usefixtures("init_persistence") @pytest.mark.usefixtures("init_persistence")
def test_enter_exit_side(fee, is_short): def test_enter_exit_side(fee, is_short):
@ -316,8 +258,7 @@ def test_interest(fee, exchange, is_short, lev, minutes, rate, interest,
(True, 3.0, 30.0, margin), (True, 3.0, 30.0, margin),
]) ])
@pytest.mark.usefixtures("init_persistence") @pytest.mark.usefixtures("init_persistence")
def test_borrowed(limit_buy_order_usdt, limit_sell_order_usdt, fee, def test_borrowed(fee, is_short, lev, borrowed, trading_mode):
caplog, is_short, lev, borrowed, trading_mode):
""" """
10 minute limit trade on Binance/Kraken at 1x, 3x leverage 10 minute limit trade on Binance/Kraken at 1x, 3x leverage
fee: 0.25% quote fee: 0.25% quote
@ -1204,347 +1145,6 @@ def test_calc_profit(
trade.open_rate)) == round(profit_ratio, 8) trade.open_rate)) == round(profit_ratio, 8)
def test_migrate_new(mocker, default_conf, fee, caplog):
"""
Test Database migration (starting with new pairformat)
"""
caplog.set_level(logging.DEBUG)
amount = 103.223
# Always create all columns apart from the last!
create_table_old = """CREATE TABLE IF NOT EXISTS "trades" (
id INTEGER NOT NULL,
exchange VARCHAR NOT NULL,
pair VARCHAR NOT NULL,
is_open BOOLEAN NOT NULL,
fee FLOAT NOT NULL,
open_rate FLOAT,
close_rate FLOAT,
close_profit FLOAT,
stake_amount FLOAT NOT NULL,
amount FLOAT,
open_date DATETIME NOT NULL,
close_date DATETIME,
open_order_id VARCHAR,
stop_loss FLOAT,
initial_stop_loss FLOAT,
max_rate FLOAT,
sell_reason VARCHAR,
strategy VARCHAR,
ticker_interval INTEGER,
stoploss_order_id VARCHAR,
PRIMARY KEY (id),
CHECK (is_open IN (0, 1))
);"""
create_table_order = """CREATE TABLE orders (
id INTEGER NOT NULL,
ft_trade_id INTEGER,
ft_order_side VARCHAR(25) NOT NULL,
ft_pair VARCHAR(25) NOT NULL,
ft_is_open BOOLEAN NOT NULL,
order_id VARCHAR(255) NOT NULL,
status VARCHAR(255),
symbol VARCHAR(25),
order_type VARCHAR(50),
side VARCHAR(25),
price FLOAT,
amount FLOAT,
filled FLOAT,
remaining FLOAT,
cost FLOAT,
order_date DATETIME,
order_filled_date DATETIME,
order_update_date DATETIME,
PRIMARY KEY (id)
);"""
insert_table_old = """INSERT INTO trades (exchange, pair, is_open, fee,
open_rate, stake_amount, amount, open_date,
stop_loss, initial_stop_loss, max_rate, ticker_interval,
open_order_id, stoploss_order_id)
VALUES ('binance', 'ETC/BTC', 1, {fee},
0.00258580, {stake}, {amount},
'2019-11-28 12:44:24.000000',
0.0, 0.0, 0.0, '5m',
'buy_order', 'dry_stop_order_id222')
""".format(fee=fee.return_value,
stake=default_conf.get("stake_amount"),
amount=amount
)
insert_orders = f"""
insert into orders (
ft_trade_id,
ft_order_side,
ft_pair,
ft_is_open,
order_id,
status,
symbol,
order_type,
side,
price,
amount,
filled,
remaining,
cost)
values (
1,
'buy',
'ETC/BTC',
0,
'dry_buy_order',
'closed',
'ETC/BTC',
'limit',
'buy',
0.00258580,
{amount},
{amount},
0,
{amount * 0.00258580}
),
(
1,
'buy',
'ETC/BTC',
1,
'dry_buy_order22',
'canceled',
'ETC/BTC',
'limit',
'buy',
0.00258580,
{amount},
{amount},
0,
{amount * 0.00258580}
),
(
1,
'stoploss',
'ETC/BTC',
1,
'dry_stop_order_id11X',
'canceled',
'ETC/BTC',
'limit',
'sell',
0.00258580,
{amount},
{amount},
0,
{amount * 0.00258580}
),
(
1,
'stoploss',
'ETC/BTC',
1,
'dry_stop_order_id222',
'open',
'ETC/BTC',
'limit',
'sell',
0.00258580,
{amount},
{amount},
0,
{amount * 0.00258580}
)
"""
engine = create_engine('sqlite://')
mocker.patch('freqtrade.persistence.models.create_engine', lambda *args, **kwargs: engine)
# Create table using the old format
with engine.begin() as connection:
connection.execute(text(create_table_old))
connection.execute(text(create_table_order))
connection.execute(text("create index ix_trades_is_open on trades(is_open)"))
connection.execute(text("create index ix_trades_pair on trades(pair)"))
connection.execute(text(insert_table_old))
connection.execute(text(insert_orders))
# fake previous backup
connection.execute(text("create table trades_bak as select * from trades"))
connection.execute(text("create table trades_bak1 as select * from trades"))
# Run init to test migration
init_db(default_conf['db_url'])
assert len(Trade.query.filter(Trade.id == 1).all()) == 1
trade = Trade.query.filter(Trade.id == 1).first()
assert trade.fee_open == fee.return_value
assert trade.fee_close == fee.return_value
assert trade.open_rate_requested is None
assert trade.close_rate_requested is None
assert trade.is_open == 1
assert trade.amount == amount
assert trade.amount_requested == amount
assert trade.stake_amount == default_conf.get("stake_amount")
assert trade.pair == "ETC/BTC"
assert trade.exchange == "binance"
assert trade.max_rate == 0.0
assert trade.min_rate is None
assert trade.stop_loss == 0.0
assert trade.initial_stop_loss == 0.0
assert trade.exit_reason is None
assert trade.strategy is None
assert trade.timeframe == '5m'
assert trade.stoploss_order_id == 'dry_stop_order_id222'
assert trade.stoploss_last_update is None
assert log_has("trying trades_bak1", caplog)
assert log_has("trying trades_bak2", caplog)
assert log_has("Running database migration for trades - backup: trades_bak2, orders_bak0",
caplog)
assert log_has("Database migration finished.", caplog)
assert pytest.approx(trade.open_trade_value) == trade._calc_open_trade_value(
trade.amount, trade.open_rate)
assert trade.close_profit_abs is None
orders = trade.orders
assert len(orders) == 4
assert orders[0].order_id == 'dry_buy_order'
assert orders[0].ft_order_side == 'buy'
assert orders[-1].order_id == 'dry_stop_order_id222'
assert orders[-1].ft_order_side == 'stoploss'
assert orders[-1].ft_is_open is True
assert orders[1].order_id == 'dry_buy_order22'
assert orders[1].ft_order_side == 'buy'
assert orders[1].ft_is_open is False
assert orders[2].order_id == 'dry_stop_order_id11X'
assert orders[2].ft_order_side == 'stoploss'
assert orders[2].ft_is_open is False
def test_migrate_too_old(mocker, default_conf, fee, caplog):
"""
Test Database migration (starting with new pairformat)
"""
caplog.set_level(logging.DEBUG)
amount = 103.223
create_table_old = """CREATE TABLE IF NOT EXISTS "trades" (
id INTEGER NOT NULL,
exchange VARCHAR NOT NULL,
pair VARCHAR NOT NULL,
is_open BOOLEAN NOT NULL,
fee_open FLOAT NOT NULL,
fee_close FLOAT NOT NULL,
open_rate FLOAT,
close_rate FLOAT,
close_profit FLOAT,
stake_amount FLOAT NOT NULL,
amount FLOAT,
open_date DATETIME NOT NULL,
close_date DATETIME,
open_order_id VARCHAR,
PRIMARY KEY (id),
CHECK (is_open IN (0, 1))
);"""
insert_table_old = """INSERT INTO trades (exchange, pair, is_open, fee_open, fee_close,
open_rate, stake_amount, amount, open_date)
VALUES ('binance', 'ETC/BTC', 1, {fee}, {fee},
0.00258580, {stake}, {amount},
'2019-11-28 12:44:24.000000')
""".format(fee=fee.return_value,
stake=default_conf.get("stake_amount"),
amount=amount
)
engine = create_engine('sqlite://')
mocker.patch('freqtrade.persistence.models.create_engine', lambda *args, **kwargs: engine)
# Create table using the old format
with engine.begin() as connection:
connection.execute(text(create_table_old))
connection.execute(text(insert_table_old))
# Run init to test migration
with pytest.raises(OperationalException, match=r'Your database seems to be very old'):
init_db(default_conf['db_url'])
def test_migrate_get_last_sequence_ids():
engine = MagicMock()
engine.begin = MagicMock()
engine.name = 'postgresql'
get_last_sequence_ids(engine, 'trades_bak', 'orders_bak')
assert engine.begin.call_count == 2
engine.reset_mock()
engine.begin.reset_mock()
engine.name = 'somethingelse'
get_last_sequence_ids(engine, 'trades_bak', 'orders_bak')
assert engine.begin.call_count == 0
def test_migrate_set_sequence_ids():
engine = MagicMock()
engine.begin = MagicMock()
engine.name = 'postgresql'
set_sequence_ids(engine, 22, 55, 5)
assert engine.begin.call_count == 1
engine.reset_mock()
engine.begin.reset_mock()
engine.name = 'somethingelse'
set_sequence_ids(engine, 22, 55, 6)
assert engine.begin.call_count == 0
def test_migrate_pairlocks(mocker, default_conf, fee, caplog):
"""
Test Database migration (starting with new pairformat)
"""
caplog.set_level(logging.DEBUG)
# Always create all columns apart from the last!
create_table_old = """CREATE TABLE pairlocks (
id INTEGER NOT NULL,
pair VARCHAR(25) NOT NULL,
reason VARCHAR(255),
lock_time DATETIME NOT NULL,
lock_end_time DATETIME NOT NULL,
active BOOLEAN NOT NULL,
PRIMARY KEY (id)
)
"""
create_index1 = "CREATE INDEX ix_pairlocks_pair ON pairlocks (pair)"
create_index2 = "CREATE INDEX ix_pairlocks_lock_end_time ON pairlocks (lock_end_time)"
create_index3 = "CREATE INDEX ix_pairlocks_active ON pairlocks (active)"
insert_table_old = """INSERT INTO pairlocks (
id, pair, reason, lock_time, lock_end_time, active)
VALUES (1, 'ETH/BTC', 'Auto lock', '2021-07-12 18:41:03', '2021-07-11 18:45:00', 1)
"""
insert_table_old2 = """INSERT INTO pairlocks (
id, pair, reason, lock_time, lock_end_time, active)
VALUES (2, '*', 'Lock all', '2021-07-12 18:41:03', '2021-07-12 19:00:00', 1)
"""
engine = create_engine('sqlite://')
mocker.patch('freqtrade.persistence.models.create_engine', lambda *args, **kwargs: engine)
# Create table using the old format
with engine.begin() as connection:
connection.execute(text(create_table_old))
connection.execute(text(insert_table_old))
connection.execute(text(insert_table_old2))
connection.execute(text(create_index1))
connection.execute(text(create_index2))
connection.execute(text(create_index3))
init_db(default_conf['db_url'])
assert len(PairLock.query.all()) == 2
assert len(PairLock.query.filter(PairLock.pair == '*').all()) == 1
pairlocks = PairLock.query.filter(PairLock.pair == 'ETH/BTC').all()
assert len(pairlocks) == 1
pairlocks[0].pair == 'ETH/BTC'
pairlocks[0].side == '*'
def test_adjust_stop_loss(fee): def test_adjust_stop_loss(fee):
trade = Trade( trade = Trade(
pair='ADA/USDT', pair='ADA/USDT',
@ -1758,6 +1358,7 @@ def test_to_json(fee):
'amount': 123.0, 'amount': 123.0,
'amount_requested': 123.0, 'amount_requested': 123.0,
'stake_amount': 0.001, 'stake_amount': 0.001,
'max_stake_amount': None,
'trade_duration': None, 'trade_duration': None,
'trade_duration_s': None, 'trade_duration_s': None,
'realized_profit': 0.0, 'realized_profit': 0.0,
@ -1767,7 +1368,6 @@ def test_to_json(fee):
'profit_ratio': None, 'profit_ratio': None,
'profit_pct': None, 'profit_pct': None,
'profit_abs': None, 'profit_abs': None,
'sell_reason': None,
'exit_reason': None, 'exit_reason': None,
'exit_order_status': None, 'exit_order_status': None,
'stop_loss_abs': None, 'stop_loss_abs': None,
@ -1782,7 +1382,6 @@ def test_to_json(fee):
'min_rate': None, 'min_rate': None,
'max_rate': None, 'max_rate': None,
'strategy': None, 'strategy': None,
'buy_tag': None,
'enter_tag': None, 'enter_tag': None,
'timeframe': None, 'timeframe': None,
'exchange': 'binance', 'exchange': 'binance',
@ -1826,6 +1425,7 @@ def test_to_json(fee):
'amount': 100.0, 'amount': 100.0,
'amount_requested': 101.0, 'amount_requested': 101.0,
'stake_amount': 0.001, 'stake_amount': 0.001,
'max_stake_amount': None,
'trade_duration': 60, 'trade_duration': 60,
'trade_duration_s': 3600, 'trade_duration_s': 3600,
'stop_loss_abs': None, 'stop_loss_abs': None,
@ -1857,11 +1457,9 @@ def test_to_json(fee):
'open_order_id': None, 'open_order_id': None,
'open_rate_requested': None, 'open_rate_requested': None,
'open_trade_value': 12.33075, 'open_trade_value': 12.33075,
'sell_reason': None,
'exit_reason': None, 'exit_reason': None,
'exit_order_status': None, 'exit_order_status': None,
'strategy': None, 'strategy': None,
'buy_tag': 'buys_signal_001',
'enter_tag': 'buys_signal_001', 'enter_tag': 'buys_signal_001',
'timeframe': None, 'timeframe': None,
'exchange': 'binance', 'exchange': 'binance',

Some files were not shown because too many files have changed in this diff Show More