Merge branch 'develop' into pr/stash86/7810
This commit is contained in:
@@ -20,8 +20,8 @@ from freqtrade.persistence import LocalTrade, Trade, init_db
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Newest format
|
||||
BT_DATA_COLUMNS = ['pair', 'stake_amount', 'amount', 'open_date', 'close_date',
|
||||
'open_rate', 'close_rate',
|
||||
BT_DATA_COLUMNS = ['pair', 'stake_amount', 'max_stake_amount', 'amount',
|
||||
'open_date', 'close_date', 'open_rate', 'close_rate',
|
||||
'fee_open', 'fee_close', 'trade_duration',
|
||||
'profit_ratio', 'profit_abs', 'exit_reason',
|
||||
'initial_stop_loss_abs', 'initial_stop_loss_ratio', 'stop_loss_abs',
|
||||
@@ -241,6 +241,33 @@ def find_existing_backtest_stats(dirname: Union[Path, str], run_ids: Dict[str, s
|
||||
return results
|
||||
|
||||
|
||||
def _load_backtest_data_df_compatibility(df: pd.DataFrame) -> pd.DataFrame:
|
||||
"""
|
||||
Compatibility support for older backtest data.
|
||||
"""
|
||||
df['open_date'] = pd.to_datetime(df['open_date'],
|
||||
utc=True,
|
||||
infer_datetime_format=True
|
||||
)
|
||||
df['close_date'] = pd.to_datetime(df['close_date'],
|
||||
utc=True,
|
||||
infer_datetime_format=True
|
||||
)
|
||||
# Compatibility support for pre short Columns
|
||||
if 'is_short' not in df.columns:
|
||||
df['is_short'] = False
|
||||
if 'leverage' not in df.columns:
|
||||
df['leverage'] = 1.0
|
||||
if 'enter_tag' not in df.columns:
|
||||
df['enter_tag'] = df['buy_tag']
|
||||
df = df.drop(['buy_tag'], axis=1)
|
||||
if 'max_stake_amount' not in df.columns:
|
||||
df['max_stake_amount'] = df['stake_amount']
|
||||
if 'orders' not in df.columns:
|
||||
df['orders'] = None
|
||||
return df
|
||||
|
||||
|
||||
def load_backtest_data(filename: Union[Path, str], strategy: Optional[str] = None) -> pd.DataFrame:
|
||||
"""
|
||||
Load backtest data file.
|
||||
@@ -269,24 +296,7 @@ def load_backtest_data(filename: Union[Path, str], strategy: Optional[str] = Non
|
||||
data = data['strategy'][strategy]['trades']
|
||||
df = pd.DataFrame(data)
|
||||
if not df.empty:
|
||||
df['open_date'] = pd.to_datetime(df['open_date'],
|
||||
utc=True,
|
||||
infer_datetime_format=True
|
||||
)
|
||||
df['close_date'] = pd.to_datetime(df['close_date'],
|
||||
utc=True,
|
||||
infer_datetime_format=True
|
||||
)
|
||||
# Compatibility support for pre short Columns
|
||||
if 'is_short' not in df.columns:
|
||||
df['is_short'] = 0
|
||||
if 'leverage' not in df.columns:
|
||||
df['leverage'] = 1.0
|
||||
if 'enter_tag' not in df.columns:
|
||||
df['enter_tag'] = df['buy_tag']
|
||||
df = df.drop(['buy_tag'], axis=1)
|
||||
if 'orders' not in df.columns:
|
||||
df['orders'] = None
|
||||
df = _load_backtest_data_df_compatibility(df)
|
||||
|
||||
else:
|
||||
# old format - only with lists.
|
||||
|
@@ -9,14 +9,16 @@ from collections import deque
|
||||
from datetime import datetime, timezone
|
||||
from typing import Any, Dict, List, Optional, Tuple
|
||||
|
||||
from pandas import DataFrame
|
||||
from pandas import DataFrame, to_timedelta
|
||||
|
||||
from freqtrade.configuration import TimeRange
|
||||
from freqtrade.constants import Config, ListPairsWithTimeframes, PairWithTimeframe
|
||||
from freqtrade.constants import (FULL_DATAFRAME_THRESHOLD, Config, ListPairsWithTimeframes,
|
||||
PairWithTimeframe)
|
||||
from freqtrade.data.history import load_pair_history
|
||||
from freqtrade.enums import CandleType, RPCMessageType, RunMode
|
||||
from freqtrade.exceptions import ExchangeError, OperationalException
|
||||
from freqtrade.exchange import Exchange, timeframe_to_seconds
|
||||
from freqtrade.misc import append_candles_to_dataframe
|
||||
from freqtrade.rpc import RPCManager
|
||||
from freqtrade.util import PeriodicCache
|
||||
|
||||
@@ -104,13 +106,15 @@ class DataProvider:
|
||||
def _emit_df(
|
||||
self,
|
||||
pair_key: PairWithTimeframe,
|
||||
dataframe: DataFrame
|
||||
dataframe: DataFrame,
|
||||
new_candle: bool
|
||||
) -> None:
|
||||
"""
|
||||
Send this dataframe as an ANALYZED_DF message to RPC
|
||||
|
||||
:param pair_key: PairWithTimeframe tuple
|
||||
:param data: Tuple containing the DataFrame and the datetime it was cached
|
||||
:param dataframe: Dataframe to emit
|
||||
:param new_candle: This is a new candle
|
||||
"""
|
||||
if self.__rpc:
|
||||
self.__rpc.send_msg(
|
||||
@@ -118,13 +122,18 @@ class DataProvider:
|
||||
'type': RPCMessageType.ANALYZED_DF,
|
||||
'data': {
|
||||
'key': pair_key,
|
||||
'df': dataframe,
|
||||
'df': dataframe.tail(1),
|
||||
'la': datetime.now(timezone.utc)
|
||||
}
|
||||
}
|
||||
)
|
||||
if new_candle:
|
||||
self.__rpc.send_msg({
|
||||
'type': RPCMessageType.NEW_CANDLE,
|
||||
'data': pair_key,
|
||||
})
|
||||
|
||||
def _add_external_df(
|
||||
def _replace_external_df(
|
||||
self,
|
||||
pair: str,
|
||||
dataframe: DataFrame,
|
||||
@@ -150,6 +159,85 @@ class DataProvider:
|
||||
self.__producer_pairs_df[producer_name][pair_key] = (dataframe, _last_analyzed)
|
||||
logger.debug(f"External DataFrame for {pair_key} from {producer_name} added.")
|
||||
|
||||
def _add_external_df(
|
||||
self,
|
||||
pair: str,
|
||||
dataframe: DataFrame,
|
||||
last_analyzed: datetime,
|
||||
timeframe: str,
|
||||
candle_type: CandleType,
|
||||
producer_name: str = "default"
|
||||
) -> Tuple[bool, int]:
|
||||
"""
|
||||
Append a candle to the existing external dataframe. The incoming dataframe
|
||||
must have at least 1 candle.
|
||||
|
||||
:param pair: pair to get the data for
|
||||
:param timeframe: Timeframe to get data for
|
||||
:param candle_type: Any of the enum CandleType (must match trading mode!)
|
||||
:returns: False if the candle could not be appended, or the int number of missing candles.
|
||||
"""
|
||||
pair_key = (pair, timeframe, candle_type)
|
||||
|
||||
if dataframe.empty:
|
||||
# The incoming dataframe must have at least 1 candle
|
||||
return (False, 0)
|
||||
|
||||
if len(dataframe) >= FULL_DATAFRAME_THRESHOLD:
|
||||
# This is likely a full dataframe
|
||||
# Add the dataframe to the dataprovider
|
||||
self._replace_external_df(
|
||||
pair,
|
||||
dataframe,
|
||||
last_analyzed=last_analyzed,
|
||||
timeframe=timeframe,
|
||||
candle_type=candle_type,
|
||||
producer_name=producer_name
|
||||
)
|
||||
return (True, 0)
|
||||
|
||||
if (producer_name not in self.__producer_pairs_df
|
||||
or pair_key not in self.__producer_pairs_df[producer_name]):
|
||||
# We don't have data from this producer yet,
|
||||
# or we don't have data for this pair_key
|
||||
# return False and 1000 for the full df
|
||||
return (False, 1000)
|
||||
|
||||
existing_df, _ = self.__producer_pairs_df[producer_name][pair_key]
|
||||
|
||||
# CHECK FOR MISSING CANDLES
|
||||
timeframe_delta = to_timedelta(timeframe) # Convert the timeframe to a timedelta for pandas
|
||||
local_last = existing_df.iloc[-1]['date'] # We want the last date from our copy
|
||||
incoming_first = dataframe.iloc[0]['date'] # We want the first date from the incoming
|
||||
|
||||
# Remove existing candles that are newer than the incoming first candle
|
||||
existing_df1 = existing_df[existing_df['date'] < incoming_first]
|
||||
|
||||
candle_difference = (incoming_first - local_last) / timeframe_delta
|
||||
|
||||
# If the difference divided by the timeframe is 1, then this
|
||||
# is the candle we want and the incoming data isn't missing any.
|
||||
# If the candle_difference is more than 1, that means
|
||||
# we missed some candles between our data and the incoming
|
||||
# so return False and candle_difference.
|
||||
if candle_difference > 1:
|
||||
return (False, candle_difference)
|
||||
if existing_df1.empty:
|
||||
appended_df = dataframe
|
||||
else:
|
||||
appended_df = append_candles_to_dataframe(existing_df1, dataframe)
|
||||
|
||||
# Everything is good, we appended
|
||||
self._replace_external_df(
|
||||
pair,
|
||||
appended_df,
|
||||
last_analyzed=last_analyzed,
|
||||
timeframe=timeframe,
|
||||
candle_type=candle_type,
|
||||
producer_name=producer_name
|
||||
)
|
||||
return (True, 0)
|
||||
|
||||
def get_producer_df(
|
||||
self,
|
||||
pair: str,
|
||||
|
@@ -1,11 +1,12 @@
|
||||
import logging
|
||||
from pathlib import Path
|
||||
from typing import List, Optional
|
||||
|
||||
import joblib
|
||||
import pandas as pd
|
||||
from tabulate import tabulate
|
||||
|
||||
from freqtrade.configuration import TimeRange
|
||||
from freqtrade.constants import Config
|
||||
from freqtrade.data.btanalysis import (get_latest_backtest_filename, load_backtest_data,
|
||||
load_backtest_stats)
|
||||
from freqtrade.exceptions import OperationalException
|
||||
@@ -152,37 +153,55 @@ def _do_group_table_output(bigdf, glist):
|
||||
logger.warning("Invalid group mask specified.")
|
||||
|
||||
|
||||
def _print_results(analysed_trades, stratname, analysis_groups,
|
||||
enter_reason_list, exit_reason_list,
|
||||
indicator_list, columns=None):
|
||||
if columns is None:
|
||||
columns = ['pair', 'open_date', 'close_date', 'profit_abs', 'enter_reason', 'exit_reason']
|
||||
def _select_rows_within_dates(df, timerange=None, df_date_col: str = 'date'):
|
||||
if timerange:
|
||||
if timerange.starttype == 'date':
|
||||
df = df.loc[(df[df_date_col] >= timerange.startdt)]
|
||||
if timerange.stoptype == 'date':
|
||||
df = df.loc[(df[df_date_col] < timerange.stopdt)]
|
||||
return df
|
||||
|
||||
bigdf = pd.DataFrame()
|
||||
|
||||
def _select_rows_by_tags(df, enter_reason_list, exit_reason_list):
|
||||
if enter_reason_list and "all" not in enter_reason_list:
|
||||
df = df.loc[(df['enter_reason'].isin(enter_reason_list))]
|
||||
|
||||
if exit_reason_list and "all" not in exit_reason_list:
|
||||
df = df.loc[(df['exit_reason'].isin(exit_reason_list))]
|
||||
return df
|
||||
|
||||
|
||||
def prepare_results(analysed_trades, stratname,
|
||||
enter_reason_list, exit_reason_list,
|
||||
timerange=None):
|
||||
res_df = pd.DataFrame()
|
||||
for pair, trades in analysed_trades[stratname].items():
|
||||
bigdf = pd.concat([bigdf, trades], ignore_index=True)
|
||||
res_df = pd.concat([res_df, trades], ignore_index=True)
|
||||
|
||||
if bigdf.shape[0] > 0 and ('enter_reason' in bigdf.columns):
|
||||
res_df = _select_rows_within_dates(res_df, timerange)
|
||||
|
||||
if res_df is not None and res_df.shape[0] > 0 and ('enter_reason' in res_df.columns):
|
||||
res_df = _select_rows_by_tags(res_df, enter_reason_list, exit_reason_list)
|
||||
|
||||
return res_df
|
||||
|
||||
|
||||
def print_results(res_df, analysis_groups, indicator_list):
|
||||
if res_df.shape[0] > 0:
|
||||
if analysis_groups:
|
||||
_do_group_table_output(bigdf, analysis_groups)
|
||||
|
||||
if enter_reason_list and "all" not in enter_reason_list:
|
||||
bigdf = bigdf.loc[(bigdf['enter_reason'].isin(enter_reason_list))]
|
||||
|
||||
if exit_reason_list and "all" not in exit_reason_list:
|
||||
bigdf = bigdf.loc[(bigdf['exit_reason'].isin(exit_reason_list))]
|
||||
_do_group_table_output(res_df, analysis_groups)
|
||||
|
||||
if "all" in indicator_list:
|
||||
print(bigdf)
|
||||
print(res_df)
|
||||
elif indicator_list is not None:
|
||||
available_inds = []
|
||||
for ind in indicator_list:
|
||||
if ind in bigdf:
|
||||
if ind in res_df:
|
||||
available_inds.append(ind)
|
||||
ilist = ["pair", "enter_reason", "exit_reason"] + available_inds
|
||||
_print_table(bigdf[ilist], sortcols=['exit_reason'], show_index=False)
|
||||
_print_table(res_df[ilist], sortcols=['exit_reason'], show_index=False)
|
||||
else:
|
||||
print("\\_ No trades to show")
|
||||
print("\\No trades to show")
|
||||
|
||||
|
||||
def _print_table(df, sortcols=None, show_index=False):
|
||||
@@ -201,27 +220,34 @@ def _print_table(df, sortcols=None, show_index=False):
|
||||
)
|
||||
|
||||
|
||||
def process_entry_exit_reasons(backtest_dir: Path,
|
||||
pairlist: List[str],
|
||||
analysis_groups: Optional[List[str]] = ["0", "1", "2"],
|
||||
enter_reason_list: Optional[List[str]] = ["all"],
|
||||
exit_reason_list: Optional[List[str]] = ["all"],
|
||||
indicator_list: Optional[List[str]] = []):
|
||||
def process_entry_exit_reasons(config: Config):
|
||||
try:
|
||||
backtest_stats = load_backtest_stats(backtest_dir)
|
||||
analysis_groups = config.get('analysis_groups', [])
|
||||
enter_reason_list = config.get('enter_reason_list', ["all"])
|
||||
exit_reason_list = config.get('exit_reason_list', ["all"])
|
||||
indicator_list = config.get('indicator_list', [])
|
||||
|
||||
timerange = TimeRange.parse_timerange(None if config.get(
|
||||
'timerange') is None else str(config.get('timerange')))
|
||||
|
||||
backtest_stats = load_backtest_stats(config['exportfilename'])
|
||||
|
||||
for strategy_name, results in backtest_stats['strategy'].items():
|
||||
trades = load_backtest_data(backtest_dir, strategy_name)
|
||||
trades = load_backtest_data(config['exportfilename'], strategy_name)
|
||||
|
||||
if not trades.empty:
|
||||
signal_candles = _load_signal_candles(backtest_dir)
|
||||
analysed_trades_dict = _process_candles_and_indicators(pairlist, strategy_name,
|
||||
trades, signal_candles)
|
||||
_print_results(analysed_trades_dict,
|
||||
strategy_name,
|
||||
analysis_groups,
|
||||
enter_reason_list,
|
||||
exit_reason_list,
|
||||
indicator_list)
|
||||
signal_candles = _load_signal_candles(config['exportfilename'])
|
||||
analysed_trades_dict = _process_candles_and_indicators(
|
||||
config['exchange']['pair_whitelist'], strategy_name,
|
||||
trades, signal_candles)
|
||||
|
||||
res_df = prepare_results(analysed_trades_dict, strategy_name,
|
||||
enter_reason_list, exit_reason_list,
|
||||
timerange=timerange)
|
||||
|
||||
print_results(res_df,
|
||||
analysis_groups,
|
||||
indicator_list)
|
||||
|
||||
except ValueError as e:
|
||||
raise OperationalException(e) from e
|
||||
|
Reference in New Issue
Block a user