remove unused indicators from default_strategy

This commit is contained in:
Matthias 2019-09-13 19:49:34 +02:00
parent 5e654620b7
commit 0135784589

View File

@ -4,7 +4,6 @@ import talib.abstract as ta
from pandas import DataFrame from pandas import DataFrame
import freqtrade.vendor.qtpylib.indicators as qtpylib import freqtrade.vendor.qtpylib.indicators as qtpylib
from freqtrade.indicator_helpers import fishers_inverse
from freqtrade.strategy.interface import IStrategy from freqtrade.strategy.interface import IStrategy
@ -75,7 +74,8 @@ class DefaultStrategy(IStrategy):
dataframe['adx'] = ta.ADX(dataframe) dataframe['adx'] = ta.ADX(dataframe)
# Awesome oscillator # Awesome oscillator
dataframe['ao'] = qtpylib.awesome_oscillator(dataframe) # dataframe['ao'] = qtpylib.awesome_oscillator(dataframe)
""" """
# Commodity Channel Index: values Oversold:<-100, Overbought:>100 # Commodity Channel Index: values Oversold:<-100, Overbought:>100
dataframe['cci'] = ta.CCI(dataframe) dataframe['cci'] = ta.CCI(dataframe)
@ -87,16 +87,15 @@ class DefaultStrategy(IStrategy):
dataframe['macdhist'] = macd['macdhist'] dataframe['macdhist'] = macd['macdhist']
# MFI # MFI
dataframe['mfi'] = ta.MFI(dataframe) # dataframe['mfi'] = ta.MFI(dataframe)
# Minus Directional Indicator / Movement # Minus Directional Indicator / Movement
dataframe['minus_dm'] = ta.MINUS_DM(dataframe) # dataframe['minus_dm'] = ta.MINUS_DM(dataframe)
dataframe['minus_di'] = ta.MINUS_DI(dataframe) dataframe['minus_di'] = ta.MINUS_DI(dataframe)
# Plus Directional Indicator / Movement # Plus Directional Indicator / Movement
dataframe['plus_dm'] = ta.PLUS_DM(dataframe) # dataframe['plus_dm'] = ta.PLUS_DM(dataframe)
dataframe['plus_di'] = ta.PLUS_DI(dataframe) dataframe['plus_di'] = ta.PLUS_DI(dataframe)
dataframe['minus_di'] = ta.MINUS_DI(dataframe)
""" """
# ROC # ROC
@ -106,15 +105,15 @@ class DefaultStrategy(IStrategy):
dataframe['rsi'] = ta.RSI(dataframe) dataframe['rsi'] = ta.RSI(dataframe)
# Inverse Fisher transform on RSI, values [-1.0, 1.0] (https://goo.gl/2JGGoy) # Inverse Fisher transform on RSI, values [-1.0, 1.0] (https://goo.gl/2JGGoy)
dataframe['fisher_rsi'] = fishers_inverse(dataframe['rsi']) # dataframe['fisher_rsi'] = fishers_inverse(dataframe['rsi'])
# Inverse Fisher transform on RSI normalized, value [0.0, 100.0] (https://goo.gl/2JGGoy) # Inverse Fisher transform on RSI normalized, value [0.0, 100.0] (https://goo.gl/2JGGoy)
dataframe['fisher_rsi_norma'] = 50 * (dataframe['fisher_rsi'] + 1) # dataframe['fisher_rsi_norma'] = 50 * (dataframe['fisher_rsi'] + 1)
# Stoch # Stoch
stoch = ta.STOCH(dataframe) # stoch = ta.STOCH(dataframe)
dataframe['slowd'] = stoch['slowd'] # dataframe['slowd'] = stoch['slowd']
dataframe['slowk'] = stoch['slowk'] # dataframe['slowk'] = stoch['slowk']
# Stoch fast # Stoch fast
stoch_fast = ta.STOCHF(dataframe) stoch_fast = ta.STOCHF(dataframe)
@ -134,37 +133,39 @@ class DefaultStrategy(IStrategy):
# Because ta.BBANDS implementation is broken with small numbers, it actually # Because ta.BBANDS implementation is broken with small numbers, it actually
# returns middle band for all the three bands. Switch to qtpylib.bollinger_bands # returns middle band for all the three bands. Switch to qtpylib.bollinger_bands
# and use middle band instead. # and use middle band instead.
dataframe['blower'] = ta.BBANDS(dataframe, nbdevup=2, nbdevdn=2)['lowerband'] # dataframe['blower'] = ta.BBANDS(dataframe, nbdevup=2, nbdevdn=2)['lowerband']
# Bollinger bands # Bollinger bands
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2) bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
dataframe['bb_lowerband'] = bollinger['lower'] dataframe['bb_lowerband'] = bollinger['lower']
dataframe['bb_middleband'] = bollinger['mid'] dataframe['bb_middleband'] = bollinger['mid']
dataframe['bb_upperband'] = bollinger['upper'] dataframe['bb_upperband'] = bollinger['upper']
"""
# EMA - Exponential Moving Average # EMA - Exponential Moving Average
dataframe['ema3'] = ta.EMA(dataframe, timeperiod=3) dataframe['ema3'] = ta.EMA(dataframe, timeperiod=3)
dataframe['ema5'] = ta.EMA(dataframe, timeperiod=5) dataframe['ema5'] = ta.EMA(dataframe, timeperiod=5)
dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10)
dataframe['ema50'] = ta.EMA(dataframe, timeperiod=50) dataframe['ema50'] = ta.EMA(dataframe, timeperiod=50)
dataframe['ema100'] = ta.EMA(dataframe, timeperiod=100) dataframe['ema100'] = ta.EMA(dataframe, timeperiod=100)
"""
dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10)
# SAR Parabol # SAR Parabol
dataframe['sar'] = ta.SAR(dataframe) # dataframe['sar'] = ta.SAR(dataframe)
# SMA - Simple Moving Average # SMA - Simple Moving Average
dataframe['sma'] = ta.SMA(dataframe, timeperiod=40) dataframe['sma'] = ta.SMA(dataframe, timeperiod=40)
# TEMA - Triple Exponential Moving Average # TEMA - Triple Exponential Moving Average
dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9) # dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9)
"""
# Cycle Indicator # Cycle Indicator
# ------------------------------------ # ------------------------------------
# Hilbert Transform Indicator - SineWave # Hilbert Transform Indicator - SineWave
hilbert = ta.HT_SINE(dataframe) hilbert = ta.HT_SINE(dataframe)
dataframe['htsine'] = hilbert['sine'] dataframe['htsine'] = hilbert['sine']
dataframe['htleadsine'] = hilbert['leadsine'] dataframe['htleadsine'] = hilbert['leadsine']
"""
# Pattern Recognition - Bullish candlestick patterns # Pattern Recognition - Bullish candlestick patterns
# ------------------------------------ # ------------------------------------
""" """
@ -216,6 +217,7 @@ class DefaultStrategy(IStrategy):
dataframe['CDL3INSIDE'] = ta.CDL3INSIDE(dataframe) # values [0, -100, 100] dataframe['CDL3INSIDE'] = ta.CDL3INSIDE(dataframe) # values [0, -100, 100]
""" """
"""
# Chart type # Chart type
# ------------------------------------ # ------------------------------------
# Heikinashi stategy # Heikinashi stategy
@ -224,7 +226,7 @@ class DefaultStrategy(IStrategy):
dataframe['ha_close'] = heikinashi['close'] dataframe['ha_close'] = heikinashi['close']
dataframe['ha_high'] = heikinashi['high'] dataframe['ha_high'] = heikinashi['high']
dataframe['ha_low'] = heikinashi['low'] dataframe['ha_low'] = heikinashi['low']
"""
return dataframe return dataframe
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame: def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame: