simplify hybrid template

This commit is contained in:
smarmau 2022-08-28 11:29:48 +02:00 committed by robcaulk
parent 6189aa817c
commit 005594c29c

View File

@ -4,6 +4,7 @@ import numpy as np
import pandas as pd
import talib.abstract as ta
from pandas import DataFrame
from technical import qtpylib
from freqtrade.strategy import IntParameter, IStrategy, merge_informative_pair
@ -48,7 +49,7 @@ class FreqaiExampleHybridStrategy(IStrategy):
"indicator_periods_candles": [10, 20]
},
"data_split_parameters": {
"test_size": 0.33,
"test_size": 0,
"random_state": 1
},
"model_training_parameters": {
@ -56,49 +57,44 @@ class FreqaiExampleHybridStrategy(IStrategy):
}
},
Thanks to @smarm and @jooopieeert for developing and sharing the strategy.
Thanks to @smarmau and @johanvulgt for developing and sharing the strategy.
"""
minimal_roi = {"0": 0.1, "30": 0.75, "60": 0.05, "120": 0.025, "240": -1}
minimal_roi = {
"60": 0.01,
"30": 0.02,
"0": 0.04
}
plot_config = {
'main_plot': {
'tema': {},
},
'subplots': {
"MACD": {
'macd': {'color': 'blue'},
'macdsignal': {'color': 'orange'},
},
"RSI": {
'rsi': {'color': 'red'},
},
"Up_or_down": {
'&s-up_or_down': {'color': 'green'},
}
}
}
process_only_new_candles = True
stoploss = -0.1
stoploss = -0.05
use_exit_signal = True
startup_candle_count: int = 300
can_short = True
buy_params = {
"buy_m1": 4,
"buy_m2": 7,
"buy_m3": 1,
"buy_p1": 8,
"buy_p2": 9,
"buy_p3": 8,
}
# Sell hyperspace params:
sell_params = {
"sell_m1": 1,
"sell_m2": 3,
"sell_m3": 6,
"sell_p1": 16,
"sell_p2": 18,
"sell_p3": 18,
}
buy_m1 = IntParameter(1, 7, default=1)
buy_m2 = IntParameter(1, 7, default=3)
buy_m3 = IntParameter(1, 7, default=4)
buy_p1 = IntParameter(7, 21, default=14)
buy_p2 = IntParameter(7, 21, default=10)
buy_p3 = IntParameter(7, 21, default=10)
sell_m1 = IntParameter(1, 7, default=1)
sell_m2 = IntParameter(1, 7, default=3)
sell_m3 = IntParameter(1, 7, default=4)
sell_p1 = IntParameter(7, 21, default=14)
sell_p2 = IntParameter(7, 21, default=10)
sell_p3 = IntParameter(7, 21, default=10)
# Hyperoptable parameters
buy_rsi = IntParameter(low=1, high=50, default=30, space='buy', optimize=True, load=True)
sell_rsi = IntParameter(low=50, high=100, default=70, space='sell', optimize=True, load=True)
short_rsi = IntParameter(low=51, high=100, default=70, space='sell', optimize=True, load=True)
exit_short_rsi = IntParameter(low=1, high=50, default=30, space='buy', optimize=True, load=True)
# FreqAI required function, leave as is or add additional informatives to existing structure.
def informative_pairs(self):
@ -143,7 +139,6 @@ class FreqaiExampleHybridStrategy(IStrategy):
informative[f"%-{coin}adx-period_{t}"] = ta.ADX(informative, window=t)
informative[f"%-{coin}sma-period_{t}"] = ta.SMA(informative, timeperiod=t)
informative[f"%-{coin}ema-period_{t}"] = ta.EMA(informative, timeperiod=t)
informative[f"%-{coin}mfi-period_{t}"] = ta.MFI(informative, timeperiod=t)
informative[f"%-{coin}roc-period_{t}"] = ta.ROC(informative, timeperiod=t)
informative[f"%-{coin}relative_volume-period_{t}"] = (
informative["volume"] / informative["volume"].rolling(t).mean()
@ -183,150 +178,85 @@ class FreqaiExampleHybridStrategy(IStrategy):
# User creates their own custom strat here. Present example is a supertrend
# based strategy.
for multiplier in self.buy_m1.range:
for period in self.buy_p1.range:
dataframe[f"supertrend_1_buy_{multiplier}_{period}"] = self.supertrend(
dataframe, multiplier, period
)["STX"]
for multiplier in self.buy_m2.range:
for period in self.buy_p2.range:
dataframe[f"supertrend_2_buy_{multiplier}_{period}"] = self.supertrend(
dataframe, multiplier, period
)["STX"]
for multiplier in self.buy_m3.range:
for period in self.buy_p3.range:
dataframe[f"supertrend_3_buy_{multiplier}_{period}"] = self.supertrend(
dataframe, multiplier, period
)["STX"]
for multiplier in self.sell_m1.range:
for period in self.sell_p1.range:
dataframe[f"supertrend_1_sell_{multiplier}_{period}"] = self.supertrend(
dataframe, multiplier, period
)["STX"]
for multiplier in self.sell_m2.range:
for period in self.sell_p2.range:
dataframe[f"supertrend_2_sell_{multiplier}_{period}"] = self.supertrend(
dataframe, multiplier, period
)["STX"]
for multiplier in self.sell_m3.range:
for period in self.sell_p3.range:
dataframe[f"supertrend_3_sell_{multiplier}_{period}"] = self.supertrend(
dataframe, multiplier, period
)["STX"]
dataframe = self.freqai.start(dataframe, metadata, self)
# TA indicators to combine with the Freqai targets
# RSI
dataframe['rsi'] = ta.RSI(dataframe)
# Bollinger Bands
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
dataframe['bb_lowerband'] = bollinger['lower']
dataframe['bb_middleband'] = bollinger['mid']
dataframe['bb_upperband'] = bollinger['upper']
dataframe["bb_percent"] = (
(dataframe["close"] - dataframe["bb_lowerband"]) /
(dataframe["bb_upperband"] - dataframe["bb_lowerband"])
)
dataframe["bb_width"] = (
(dataframe["bb_upperband"] - dataframe["bb_lowerband"]) / dataframe["bb_middleband"]
)
# TEMA - Triple Exponential Moving Average
dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9)
return dataframe
def populate_entry_trend(self, df: DataFrame, metadata: dict) -> DataFrame:
# User now can use their custom strat creation in addition to their
# future prediction "up" or "down".
df.loc[
(
# Signal: RSI crosses above 30
(qtpylib.crossed_above(df['rsi'], self.buy_rsi.value)) &
(df['tema'] <= df['bb_middleband']) & # Guard: tema below BB middle
(df['tema'] > df['tema'].shift(1)) & # Guard: tema is raising
(df['volume'] > 0) & # Make sure Volume is not 0
(df['do_predict'] == 1) & # Make sure Freqai is confident in the prediction
# Only enter trade if Freqai thinks the trend is in this direction
(df['&s-up_or_down'] == 'up')
),
'enter_long'] = 1
df.loc[
(df[f"supertrend_1_buy_{self.buy_m1.value}_{self.buy_p1.value}"] == "up") &
(df[f"supertrend_2_buy_{self.buy_m2.value}_{self.buy_p2.value}"] == "up") &
(df[f"supertrend_3_buy_{self.buy_m3.value}_{self.buy_p3.value}"] == "up") &
(df["do_predict"] == 1) &
(df['&s-up_or_down'] == 'up'),
"enter_long",
] = 1
df.loc[
(df[f"supertrend_1_sell_{self.sell_m1.value}_{self.sell_p1.value}"] == "down") &
(df[f"supertrend_2_sell_{self.sell_m2.value}_{self.sell_p2.value}"] == "down") &
(df[f"supertrend_3_sell_{self.sell_m3.value}_{self.sell_p3.value}"] == "down") &
(df["do_predict"] == 1) &
(df['&s-up_or_down'] == 'down'),
"enter_short",
] = 1
(
# Signal: RSI crosses above 70
(qtpylib.crossed_above(df['rsi'], self.short_rsi.value)) &
(df['tema'] > df['bb_middleband']) & # Guard: tema above BB middle
(df['tema'] < df['tema'].shift(1)) & # Guard: tema is falling
(df['volume'] > 0) & # Make sure Volume is not 0
(df['do_predict'] == 1) & # Make sure Freqai is confident in the prediction
# Only enter trade if Freqai thinks the trend is in this direction
(df['&s-up_or_down'] == 'down')
),
'enter_short'] = 1
return df
def populate_exit_trend(self, df: DataFrame, metadata: dict) -> DataFrame:
df.loc[
(df[f"supertrend_2_sell_{self.sell_m2.value}_{self.sell_p2.value}"] == "down"),
"exit_long",
] = 1
(
# Signal: RSI crosses above 70
(qtpylib.crossed_above(df['rsi'], self.sell_rsi.value)) &
(df['tema'] > df['bb_middleband']) & # Guard: tema above BB middle
(df['tema'] < df['tema'].shift(1)) & # Guard: tema is falling
(df['volume'] > 0) # Make sure Volume is not 0
),
'exit_long'] = 1
df.loc[
(df[f"supertrend_2_buy_{self.buy_m2.value}_{self.buy_p2.value}"] == "up"),
"exit_short",
] = 1
(
# Signal: RSI crosses above 30
(qtpylib.crossed_above(df['rsi'], self.exit_short_rsi.value)) &
# Guard: tema below BB middle
(df['tema'] <= df['bb_middleband']) &
(df['tema'] > df['tema'].shift(1)) & # Guard: tema is raising
(df['volume'] > 0) # Make sure Volume is not 0
),
'exit_short'] = 1
return df
def get_ticker_indicator(self):
return int(self.config["timeframe"][:-1])
def confirm_trade_entry(self, pair: str, order_type: str, amount: float,
rate: float, time_in_force: str, current_time, entry_tag, side: str,
**kwargs, ) -> bool:
df, _ = self.dp.get_analyzed_dataframe(pair, self.timeframe)
last_candle = df.iloc[-1].squeeze()
if side == "long":
if rate > (last_candle["close"] * (1 + 0.0025)):
return False
else:
if rate < (last_candle["close"] * (1 - 0.0025)):
return False
return True
"""
Supertrend Indicator; adapted for freqtrade, optimized by the math genius.
from: Perkmeister#2394
"""
def supertrend(self, dataframe: DataFrame, multiplier, period):
df = dataframe.copy()
last_row = dataframe.tail(1).index.item()
df['TR'] = ta.TRANGE(df)
df['ATR'] = ta.SMA(df['TR'], period)
st = 'ST_' + str(period) + '_' + str(multiplier)
stx = 'STX_' + str(period) + '_' + str(multiplier)
# Compute basic upper and lower bands
BASIC_UB = ((df['high'] + df['low']) / 2 + multiplier * df['ATR']).values
BASIC_LB = ((df['high'] + df['low']) / 2 - multiplier * df['ATR']).values
FINAL_UB = np.zeros(last_row + 1)
FINAL_LB = np.zeros(last_row + 1)
ST = np.zeros(last_row + 1)
CLOSE = df['close'].values
# Compute final upper and lower bands
for i in range(period, last_row + 1):
FINAL_UB[i] = (BASIC_UB[i] if BASIC_UB[i] < FINAL_UB[i - 1]
or CLOSE[i - 1] > FINAL_UB[i - 1] else FINAL_UB[i - 1])
FINAL_LB[i] = (BASIC_LB[i] if BASIC_LB[i] > FINAL_LB[i - 1]
or CLOSE[i - 1] < FINAL_LB[i - 1] else FINAL_LB[i - 1])
# Set the Supertrend value
for i in range(period, last_row + 1):
ST[i] = FINAL_UB[i] if ST[i - 1] == FINAL_UB[i - 1] and CLOSE[i] <= FINAL_UB[i] else \
FINAL_LB[i] if ST[i - 1] == FINAL_UB[i - 1] and CLOSE[i] > FINAL_UB[i] else \
FINAL_LB[i] if ST[i - 1] == FINAL_LB[i - 1] and CLOSE[i] >= FINAL_LB[i] else \
FINAL_UB[i] if ST[i - 1] == FINAL_LB[i - 1] and CLOSE[i] < FINAL_LB[i] else 0.00
df_ST = pd.DataFrame(ST, columns=[st])
df = pd.concat([df, df_ST], axis=1)
# Mark the trend direction up/down
df[stx] = np.where((df[st] > 0.00), np.where((df['close'] < df[st]), 'down', 'up'), np.NaN)
df.fillna(0, inplace=True)
return DataFrame(index=df.index, data={
'ST': df[st],
'STX': df[stx]
})