stable/freqtrade/persistence/models.py

1449 lines
56 KiB
Python
Raw Normal View History

2018-03-02 15:22:00 +00:00
"""
This module contains the class to persist trades into SQLite
"""
import logging
2021-09-19 23:44:12 +00:00
from datetime import datetime, timedelta, timezone
from decimal import Decimal
from typing import Any, Dict, List, Optional
2017-05-12 17:11:56 +00:00
from sqlalchemy import (Boolean, Column, DateTime, Enum, Float, ForeignKey, Integer, String,
2020-09-28 17:39:41 +00:00
create_engine, desc, func, inspect)
2018-06-07 19:35:57 +00:00
from sqlalchemy.exc import NoSuchModuleError
2021-04-13 15:34:20 +00:00
from sqlalchemy.orm import Query, declarative_base, relationship, scoped_session, sessionmaker
2017-11-09 22:45:22 +00:00
from sqlalchemy.pool import StaticPool
2020-08-13 14:14:28 +00:00
from sqlalchemy.sql.schema import UniqueConstraint
2017-05-12 17:11:56 +00:00
from freqtrade.constants import DATETIME_PRINT_FORMAT, NON_OPEN_EXCHANGE_STATES
from freqtrade.enums import SellType, TradingMode
from freqtrade.exceptions import DependencyException, OperationalException
from freqtrade.leverage import interest
2020-08-13 06:33:46 +00:00
from freqtrade.persistence.migrations import check_migrate
2018-06-07 19:35:57 +00:00
2020-09-28 17:39:41 +00:00
logger = logging.getLogger(__name__)
2019-09-10 07:42:45 +00:00
2018-05-31 19:10:15 +00:00
_DECL_BASE: Any = declarative_base()
2018-06-23 13:27:29 +00:00
_SQL_DOCS_URL = 'http://docs.sqlalchemy.org/en/latest/core/engines.html#database-urls'
2017-05-12 17:11:56 +00:00
2020-10-16 05:39:12 +00:00
def init_db(db_url: str, clean_open_orders: bool = False) -> None:
"""
2021-11-09 18:22:29 +00:00
Initializes this module with the given config,
registers all known command handlers
and starts polling for message updates
:param db_url: Database to use
:param clean_open_orders: Remove open orders from the database.
Useful for dry-run or if all orders have been reset on the exchange.
:return: None
"""
kwargs = {}
2022-02-22 18:39:55 +00:00
if db_url == 'sqlite:///':
raise OperationalException(
f'Bad db-url {db_url}. For in-memory database, please use `sqlite://`.')
if db_url == 'sqlite://':
kwargs.update({
'poolclass': StaticPool,
2021-05-23 06:56:41 +00:00
})
# Take care of thread ownership
if db_url.startswith('sqlite://'):
kwargs.update({
'connect_args': {'check_same_thread': False},
})
2018-06-07 19:35:57 +00:00
try:
2021-04-13 15:34:20 +00:00
engine = create_engine(db_url, future=True, **kwargs)
2018-06-07 19:35:57 +00:00
except NoSuchModuleError:
raise OperationalException(f"Given value for db_url: '{db_url}' "
f"is no valid database URL! (See {_SQL_DOCS_URL})")
2018-06-07 19:35:57 +00:00
2019-10-29 13:26:03 +00:00
# https://docs.sqlalchemy.org/en/13/orm/contextual.html#thread-local-scope
# Scoped sessions proxy requests to the appropriate thread-local session.
# We should use the scoped_session object - not a seperately initialized version
2021-04-13 15:34:20 +00:00
Trade._session = scoped_session(sessionmaker(bind=engine, autoflush=True))
2021-04-05 06:46:12 +00:00
Trade.query = Trade._session.query_property()
Order.query = Trade._session.query_property()
PairLock.query = Trade._session.query_property()
2020-10-17 09:28:34 +00:00
previous_tables = inspect(engine).get_table_names()
2017-11-07 19:13:36 +00:00
_DECL_BASE.metadata.create_all(engine)
check_migrate(engine, decl_base=_DECL_BASE, previous_tables=previous_tables)
# Clean dry_run DB if the db is not in-memory
if clean_open_orders and db_url != 'sqlite://':
clean_dry_run_db()
2020-10-16 05:39:12 +00:00
def cleanup_db() -> None:
"""
Flushes all pending operations to disk.
:return: None
"""
2021-04-15 05:57:52 +00:00
Trade.commit()
def clean_dry_run_db() -> None:
"""
Remove open_order_id from a Dry_run DB
:return: None
"""
for trade in Trade.query.filter(Trade.open_order_id.isnot(None)).all():
# Check we are updating only a dry_run order not a prod one
if 'dry_run' in trade.open_order_id:
trade.open_order_id = None
2021-04-15 05:57:52 +00:00
Trade.commit()
2020-08-13 07:34:53 +00:00
class Order(_DECL_BASE):
"""
Order database model
Keeps a record of all orders placed on the exchange
One to many relationship with Trades:
- One trade can have many orders
- One Order can only be associated with one Trade
Mirrors CCXT Order structure
"""
__tablename__ = 'orders'
2020-08-13 14:14:28 +00:00
# Uniqueness should be ensured over pair, order_id
# its likely that order_id is unique per Pair on some exchanges.
2020-08-13 15:17:52 +00:00
__table_args__ = (UniqueConstraint('ft_pair', 'order_id', name="_order_pair_order_id"),)
2020-08-13 07:34:53 +00:00
id = Column(Integer, primary_key=True)
2020-08-13 15:17:52 +00:00
ft_trade_id = Column(Integer, ForeignKey('trades.id'), index=True)
2020-08-13 07:34:53 +00:00
2020-08-13 17:37:41 +00:00
trade = relationship("Trade", back_populates="orders")
2022-02-10 18:15:55 +00:00
# order_side can only be 'buy', 'sell' or 'stoploss'
ft_order_side: str = Column(String(25), nullable=False)
ft_pair: str = Column(String(25), nullable=False)
2020-08-13 15:17:52 +00:00
ft_is_open = Column(Boolean, nullable=False, default=True, index=True)
2022-02-26 15:10:54 +00:00
order_id: str = Column(String(255), nullable=False, index=True)
status = Column(String(255), nullable=True)
symbol = Column(String(25), nullable=True)
2022-02-10 18:15:55 +00:00
order_type: str = Column(String(50), nullable=True)
side = Column(String(25), nullable=True)
price = Column(Float, nullable=True)
2021-05-21 18:35:39 +00:00
average = Column(Float, nullable=True)
amount = Column(Float, nullable=True)
2020-08-13 07:34:53 +00:00
filled = Column(Float, nullable=True)
remaining = Column(Float, nullable=True)
cost = Column(Float, nullable=True)
order_date = Column(DateTime, nullable=True, default=datetime.utcnow)
2020-08-13 07:34:53 +00:00
order_filled_date = Column(DateTime, nullable=True)
2020-08-13 12:13:58 +00:00
order_update_date = Column(DateTime, nullable=True)
2021-07-05 05:12:07 +00:00
leverage = Column(Float, nullable=True, default=1.0)
2021-07-04 06:11:59 +00:00
ft_fee_base = Column(Float, nullable=True)
2022-01-30 16:47:37 +00:00
@property
2022-02-10 18:15:55 +00:00
def order_date_utc(self) -> datetime:
""" Order-date with UTC timezoneinfo"""
2022-01-30 16:47:37 +00:00
return self.order_date.replace(tzinfo=timezone.utc)
2022-02-10 18:15:55 +00:00
@property
def safe_price(self) -> float:
return self.average or self.price
@property
def safe_filled(self) -> float:
return self.filled or self.amount or 0.0
@property
def safe_fee_base(self) -> float:
return self.ft_fee_base or 0.0
@property
def safe_amount_after_fee(self) -> float:
return self.safe_filled - self.safe_fee_base
2022-02-10 18:15:55 +00:00
2020-08-13 12:13:58 +00:00
def __repr__(self):
2021-07-04 06:11:59 +00:00
2020-08-13 15:17:52 +00:00
return (f'Order(id={self.id}, order_id={self.order_id}, trade_id={self.ft_trade_id}, '
2020-08-24 04:50:43 +00:00
f'side={self.side}, order_type={self.order_type}, status={self.status})')
2020-08-13 07:34:53 +00:00
def update_from_ccxt_object(self, order):
"""
Update Order from ccxt response
Only updates if fields are available from ccxt -
"""
if self.order_id != str(order['id']):
raise DependencyException("Order-id's don't match")
self.status = order.get('status', self.status)
self.symbol = order.get('symbol', self.symbol)
self.order_type = order.get('type', self.order_type)
self.side = order.get('side', self.side)
self.price = order.get('price', self.price)
self.amount = order.get('amount', self.amount)
self.filled = order.get('filled', self.filled)
2021-05-21 18:35:39 +00:00
self.average = order.get('average', self.average)
self.remaining = order.get('remaining', self.remaining)
self.cost = order.get('cost', self.cost)
2022-02-16 18:24:59 +00:00
# TODO-lev: ccxt order objects don't contain leverage.
# Therefore the below will always be 1.0 - which is wrong.
2021-06-20 04:06:51 +00:00
self.leverage = order.get('leverage', self.leverage)
if 'timestamp' in order and order['timestamp'] is not None:
self.order_date = datetime.fromtimestamp(order['timestamp'] / 1000, tz=timezone.utc)
2020-09-06 12:17:45 +00:00
self.ft_is_open = True
if self.status in NON_OPEN_EXCHANGE_STATES:
2020-08-13 15:17:52 +00:00
self.ft_is_open = False
2021-08-12 05:02:36 +00:00
if (order.get('filled', 0.0) or 0.0) > 0:
2021-04-13 09:55:03 +00:00
self.order_filled_date = datetime.now(timezone.utc)
self.order_update_date = datetime.now(timezone.utc)
2020-08-13 15:17:52 +00:00
def to_json(self, entry_side: str) -> Dict[str, Any]:
2022-01-23 11:33:06 +00:00
return {
2022-02-26 15:10:54 +00:00
'pair': self.ft_pair,
'order_id': self.order_id,
'status': self.status,
2022-01-23 11:33:06 +00:00
'amount': self.amount,
'average': round(self.average, 8) if self.average else 0,
'safe_price': self.safe_price,
2022-01-26 07:06:52 +00:00
'cost': self.cost if self.cost else 0,
'filled': self.filled,
'ft_order_side': self.ft_order_side,
2022-02-03 18:11:35 +00:00
'is_open': self.ft_is_open,
2022-01-26 07:06:52 +00:00
'order_date': self.order_date.strftime(DATETIME_PRINT_FORMAT)
if self.order_date else None,
'order_timestamp': int(self.order_date.replace(
tzinfo=timezone.utc).timestamp() * 1000) if self.order_date else None,
2022-01-23 11:33:06 +00:00
'order_filled_date': self.order_filled_date.strftime(DATETIME_PRINT_FORMAT)
2022-01-26 07:06:52 +00:00
if self.order_filled_date else None,
'order_filled_timestamp': int(self.order_filled_date.replace(
tzinfo=timezone.utc).timestamp() * 1000) if self.order_filled_date else None,
'order_type': self.order_type,
'price': self.price,
'ft_is_entry': self.ft_order_side == entry_side,
2022-01-26 07:06:52 +00:00
'remaining': self.remaining,
2022-01-23 11:33:06 +00:00
}
def close_bt_order(self, close_date: datetime):
self.order_filled_date = close_date
self.filled = self.amount
self.status = 'closed'
self.ft_is_open = False
2020-08-13 12:13:58 +00:00
@staticmethod
2020-08-13 13:39:29 +00:00
def update_orders(orders: List['Order'], order: Dict[str, Any]):
2020-08-13 12:13:58 +00:00
"""
2020-08-13 15:18:56 +00:00
Get all non-closed orders - useful when trying to batch-update orders
2020-08-13 12:13:58 +00:00
"""
if not isinstance(order, dict):
logger.warning(f"{order} is not a valid response object.")
return
filtered_orders = [o for o in orders if o.order_id == order.get('id')]
2020-08-13 13:54:36 +00:00
if filtered_orders:
oobj = filtered_orders[0]
oobj.update_from_ccxt_object(order)
2021-04-13 17:52:33 +00:00
Order.query.session.commit()
2020-08-13 13:54:36 +00:00
else:
logger.warning(f"Did not find order for {order}.")
2020-08-13 12:13:58 +00:00
2020-08-13 07:34:53 +00:00
@staticmethod
2020-08-13 14:14:28 +00:00
def parse_from_ccxt_object(order: Dict[str, Any], pair: str, side: str) -> 'Order':
2020-08-13 07:34:53 +00:00
"""
Parse an order from a ccxt object and return a new order Object.
"""
2020-08-13 14:14:28 +00:00
o = Order(order_id=str(order['id']), ft_order_side=side, ft_pair=pair)
o.update_from_ccxt_object(order)
2020-08-13 07:34:53 +00:00
return o
2020-08-13 15:18:56 +00:00
@staticmethod
2020-08-13 17:37:41 +00:00
def get_open_orders() -> List['Order']:
2020-08-13 15:18:56 +00:00
"""
2021-11-09 07:48:25 +00:00
Retrieve open orders from the database
:return: List of open orders
2020-08-13 15:18:56 +00:00
"""
return Order.query.filter(Order.ft_is_open.is_(True)).all()
2020-08-13 07:34:53 +00:00
class LocalTrade():
2018-03-02 15:22:00 +00:00
"""
2020-08-13 07:34:53 +00:00
Trade database model.
Used in backtesting - must be aligned to Trade model!
2017-05-12 17:11:56 +00:00
"""
use_db: bool = False
2020-11-16 19:09:34 +00:00
# Trades container for backtesting
trades: List['LocalTrade'] = []
2021-03-13 09:16:32 +00:00
trades_open: List['LocalTrade'] = []
total_profit: float = 0
id: int = 0
orders: List[Order] = []
exchange: str = ''
pair: str = ''
is_open: bool = True
fee_open: float = 0.0
fee_open_cost: Optional[float] = None
fee_open_currency: str = ''
fee_close: float = 0.0
fee_close_cost: Optional[float] = None
fee_close_currency: str = ''
2021-02-20 19:07:00 +00:00
open_rate: float = 0.0
open_rate_requested: Optional[float] = None
# open_trade_value - calculated via _calc_open_trade_value
2021-02-20 19:07:00 +00:00
open_trade_value: float = 0.0
close_rate: Optional[float] = None
close_rate_requested: Optional[float] = None
close_profit: Optional[float] = None
close_profit_abs: Optional[float] = None
2021-08-06 07:15:18 +00:00
stake_amount: float = 0.0
amount: float = 0.0
amount_requested: Optional[float] = None
open_date: datetime
2022-03-14 03:55:36 +00:00
buy_filled_date: Optional[datetime] = None
close_date: Optional[datetime] = None
open_order_id: Optional[str] = None
2018-06-26 18:49:07 +00:00
# absolute value of the stop loss
stop_loss: float = 0.0
2019-03-28 20:18:26 +00:00
# percentage value of the stop loss
stop_loss_pct: float = 0.0
2018-06-26 18:49:07 +00:00
# absolute value of the initial stop loss
initial_stop_loss: float = 0.0
2019-03-28 20:18:26 +00:00
# percentage value of the initial stop loss
initial_stop_loss_pct: Optional[float] = None
# stoploss order id which is on exchange
stoploss_order_id: Optional[str] = None
# last update time of the stoploss order on exchange
stoploss_last_update: Optional[datetime] = None
# absolute value of the highest reached price
max_rate: float = 0.0
# Lowest price reached
min_rate: float = 0.0
sell_reason: str = ''
sell_order_status: str = ''
strategy: str = ''
2021-11-21 08:51:16 +00:00
enter_tag: Optional[str] = None
timeframe: Optional[int] = None
2017-05-12 17:11:56 +00:00
trading_mode: TradingMode = TradingMode.SPOT
# Leverage trading properties
2022-03-06 18:05:20 +00:00
liquidation_price: Optional[float] = None
is_short: bool = False
2021-07-05 05:12:07 +00:00
leverage: float = 1.0
2021-06-27 09:38:56 +00:00
# Margin trading properties
interest_rate: float = 0.0
2021-06-27 09:38:56 +00:00
# Futures properties
2021-08-26 05:01:07 +00:00
funding_fees: Optional[float] = None
2021-11-21 08:51:16 +00:00
@property
def buy_tag(self) -> Optional[str]:
"""
Compatibility between buy_tag (old) and enter_tag (new)
Consider buy_tag deprecated
"""
return self.enter_tag
2021-07-04 06:11:59 +00:00
@property
def has_no_leverage(self) -> bool:
2021-07-08 06:33:40 +00:00
"""Returns true if this is a non-leverage, non-short trade"""
2021-11-20 07:06:10 +00:00
return ((self.leverage == 1.0 or self.leverage is None) and not self.is_short)
2021-06-27 09:38:56 +00:00
2021-07-04 06:11:59 +00:00
@property
def borrowed(self) -> float:
2021-07-08 06:33:40 +00:00
"""
The amount of currency borrowed from the exchange for leverage trades
If a long trade, the amount is in base currency
If a short trade, the amount is in the other currency being traded
"""
2021-07-04 06:11:59 +00:00
if self.has_no_leverage:
return 0.0
elif not self.is_short:
return (self.amount * self.open_rate) * ((self.leverage-1)/self.leverage)
2021-07-04 06:11:59 +00:00
else:
return self.amount
2021-06-20 04:06:51 +00:00
2022-03-09 13:55:13 +00:00
@property
2022-03-09 15:55:57 +00:00
def buy_filled_date_utc(self):
return self.buy_filled_date.replace(tzinfo=timezone.utc)
2022-03-09 13:55:13 +00:00
@property
def open_date_utc(self):
return self.open_date.replace(tzinfo=timezone.utc)
@property
def close_date_utc(self):
return self.close_date.replace(tzinfo=timezone.utc)
@property
def enter_side(self) -> str:
if self.is_short:
return "sell"
else:
return "buy"
@property
def exit_side(self) -> str:
if self.is_short:
return "buy"
else:
return "sell"
2022-02-22 06:17:12 +00:00
@property
def trade_direction(self) -> str:
if self.is_short:
return "short"
else:
return "long"
2019-12-17 06:02:02 +00:00
def __init__(self, **kwargs):
for key in kwargs:
setattr(self, key, kwargs[key])
self.recalc_open_trade_value()
if self.trading_mode == TradingMode.MARGIN and self.interest_rate is None:
raise OperationalException(
f"{self.trading_mode.value} trading requires param interest_rate on trades")
2019-12-17 06:02:02 +00:00
2017-05-12 17:11:56 +00:00
def __repr__(self):
2020-10-17 09:25:42 +00:00
open_since = self.open_date.strftime(DATETIME_PRINT_FORMAT) if self.is_open else 'closed'
leverage = self.leverage or 1.0
is_short = self.is_short or False
return (
f'Trade(id={self.id}, pair={self.pair}, amount={self.amount:.8f}, '
f'is_short={is_short}, leverage={leverage}, '
f'open_rate={self.open_rate:.8f}, open_since={open_since})'
)
def to_json(self) -> Dict[str, Any]:
2022-01-26 07:06:52 +00:00
filled_orders = self.select_filled_orders()
orders = [order.to_json(self.enter_side) for order in filled_orders]
2022-01-22 06:54:49 +00:00
return {
'trade_id': self.id,
'pair': self.pair,
2020-04-06 09:00:31 +00:00
'is_open': self.is_open,
'exchange': self.exchange,
'amount': round(self.amount, 8),
'amount_requested': round(self.amount_requested, 8) if self.amount_requested else None,
'stake_amount': round(self.stake_amount, 8),
'strategy': self.strategy,
2021-11-21 08:51:16 +00:00
'buy_tag': self.enter_tag,
'enter_tag': self.enter_tag,
2020-06-02 12:56:34 +00:00
'timeframe': self.timeframe,
2020-04-06 09:00:31 +00:00
'fee_open': self.fee_open,
2020-04-30 04:51:42 +00:00
'fee_open_cost': self.fee_open_cost,
'fee_open_currency': self.fee_open_currency,
2020-04-06 09:00:31 +00:00
'fee_close': self.fee_close,
2020-04-30 04:51:42 +00:00
'fee_close_cost': self.fee_close_cost,
'fee_close_currency': self.fee_close_currency,
2020-10-17 18:32:23 +00:00
'open_date': self.open_date.strftime(DATETIME_PRINT_FORMAT),
'open_timestamp': int(self.open_date.replace(tzinfo=timezone.utc).timestamp() * 1000),
'open_rate': self.open_rate,
'open_rate_requested': self.open_rate_requested,
'open_trade_value': round(self.open_trade_value, 8),
2022-03-09 15:55:57 +00:00
'buy_filled_date': self.buy_filled_date.strftime(DATETIME_PRINT_FORMAT),
'buy_filled_timestamp': int(self.buy_filled_date.replace(tzinfo=timezone.utc).timestamp() * 1000),
2020-10-17 18:32:23 +00:00
'close_date': (self.close_date.strftime(DATETIME_PRINT_FORMAT)
2019-05-06 04:55:12 +00:00
if self.close_date else None),
'close_timestamp': int(self.close_date.replace(
tzinfo=timezone.utc).timestamp() * 1000) if self.close_date else None,
'close_rate': self.close_rate,
2020-04-06 09:00:31 +00:00
'close_rate_requested': self.close_rate_requested,
'close_profit': self.close_profit, # Deprecated
'close_profit_pct': round(self.close_profit * 100, 2) if self.close_profit else None,
'close_profit_abs': self.close_profit_abs, # Deprecated
'trade_duration_s': (int((self.close_date_utc - self.open_date_utc).total_seconds())
if self.close_date else None),
'trade_duration': (int((self.close_date_utc - self.open_date_utc).total_seconds() // 60)
2021-01-23 11:43:27 +00:00
if self.close_date else None),
'profit_ratio': self.close_profit,
'profit_pct': round(self.close_profit * 100, 2) if self.close_profit else None,
'profit_abs': self.close_profit_abs,
'sell_reason': self.sell_reason,
'sell_order_status': self.sell_order_status,
2020-06-01 09:05:37 +00:00
'stop_loss_abs': self.stop_loss,
'stop_loss_ratio': self.stop_loss_pct if self.stop_loss_pct else None,
'stop_loss_pct': (self.stop_loss_pct * 100) if self.stop_loss_pct else None,
'stoploss_order_id': self.stoploss_order_id,
2020-10-17 18:32:23 +00:00
'stoploss_last_update': (self.stoploss_last_update.strftime(DATETIME_PRINT_FORMAT)
if self.stoploss_last_update else None),
'stoploss_last_update_timestamp': int(self.stoploss_last_update.replace(
tzinfo=timezone.utc).timestamp() * 1000) if self.stoploss_last_update else None,
2020-06-01 09:05:37 +00:00
'initial_stop_loss_abs': self.initial_stop_loss,
'initial_stop_loss_ratio': (self.initial_stop_loss_pct
if self.initial_stop_loss_pct else None),
2019-05-06 04:55:12 +00:00
'initial_stop_loss_pct': (self.initial_stop_loss_pct * 100
if self.initial_stop_loss_pct else None),
2020-04-06 09:00:31 +00:00
'min_rate': self.min_rate,
'max_rate': self.max_rate,
2021-06-20 04:06:51 +00:00
'leverage': self.leverage,
'interest_rate': self.interest_rate,
2022-03-06 18:05:20 +00:00
'liquidation_price': self.liquidation_price,
'is_short': self.is_short,
'trading_mode': self.trading_mode,
2021-08-26 05:01:07 +00:00
'funding_fees': self.funding_fees,
2020-04-06 09:00:31 +00:00
'open_order_id': self.open_order_id,
'orders': orders,
}
@staticmethod
def reset_trades() -> None:
"""
Resets all trades. Only active for backtesting mode.
"""
LocalTrade.trades = []
2021-03-13 09:16:32 +00:00
LocalTrade.trades_open = []
LocalTrade.total_profit = 0
def adjust_min_max_rates(self, current_price: float, current_price_low: float) -> None:
"""
Adjust the max_rate and min_rate.
"""
self.max_rate = max(current_price, self.max_rate or self.open_rate)
self.min_rate = min(current_price_low, self.min_rate or self.open_rate)
2022-03-06 18:05:20 +00:00
def set_isolated_liq(self, liquidation_price: Optional[float]):
2022-03-06 14:02:01 +00:00
"""
Method you should use to set self.liquidation price.
Assures stop_loss is not passed the liquidation price
"""
2022-03-06 18:05:20 +00:00
if not liquidation_price:
2022-03-06 14:02:01 +00:00
return
2022-03-06 18:05:20 +00:00
self.liquidation_price = liquidation_price
2022-03-06 14:02:01 +00:00
def _set_stop_loss(self, stop_loss: float, percent: float):
"""
Method you should use to set self.stop_loss.
Assures stop_loss is not passed the liquidation price
"""
2022-03-06 18:05:20 +00:00
if self.liquidation_price is not None:
2022-03-06 14:02:01 +00:00
if self.is_short:
2022-03-06 18:05:20 +00:00
sl = min(stop_loss, self.liquidation_price)
2022-03-06 14:02:01 +00:00
else:
2022-03-06 18:05:20 +00:00
sl = max(stop_loss, self.liquidation_price)
2022-03-06 14:02:01 +00:00
else:
sl = stop_loss
if not self.stop_loss:
self.initial_stop_loss = sl
self.stop_loss = sl
self.stop_loss_pct = -1 * abs(percent)
self.stoploss_last_update = datetime.utcnow()
2020-02-02 04:00:40 +00:00
def adjust_stop_loss(self, current_price: float, stoploss: float,
initial: bool = False) -> None:
2019-03-17 12:18:29 +00:00
"""
This adjusts the stop loss to it's most recently observed setting
:param current_price: Current rate the asset is traded
:param stoploss: Stoploss as factor (sample -0.05 -> -5% below current price).
:param initial: Called to initiate stop_loss.
Skips everything if self.stop_loss is already set.
"""
2018-06-27 04:38:49 +00:00
if initial and not (self.stop_loss is None or self.stop_loss == 0):
# Don't modify if called with initial and nothing to do
return
leverage = self.leverage or 1.0
2021-06-27 09:38:56 +00:00
if self.is_short:
new_loss = float(current_price * (1 + abs(stoploss / leverage)))
# If trading with leverage, don't set the stoploss below the liquidation price
2022-03-06 18:05:20 +00:00
if self.liquidation_price:
new_loss = min(self.liquidation_price, new_loss)
2021-06-27 09:38:56 +00:00
else:
new_loss = float(current_price * (1 - abs(stoploss / leverage)))
# If trading with leverage, don't set the stoploss below the liquidation price
2022-03-06 18:05:20 +00:00
if self.liquidation_price:
new_loss = max(self.liquidation_price, new_loss)
2018-06-26 18:49:07 +00:00
# no stop loss assigned yet
if self.initial_stop_loss_pct is None:
2019-09-11 20:32:08 +00:00
logger.debug(f"{self.pair} - Assigning new stoploss...")
self._set_stop_loss(new_loss, stoploss)
2018-06-26 18:49:07 +00:00
self.initial_stop_loss = new_loss
self.initial_stop_loss_pct = -1 * abs(stoploss)
2018-06-26 18:49:07 +00:00
# evaluate if the stop loss needs to be updated
else:
2021-07-08 06:33:40 +00:00
higher_stop = new_loss > self.stop_loss
lower_stop = new_loss < self.stop_loss
# stop losses only walk up, never down!,
# ? But adding more to a leveraged trade would create a lower liquidation price,
# ? decreasing the minimum stoploss
2021-07-08 06:33:40 +00:00
if (higher_stop and not self.is_short) or (lower_stop and self.is_short):
2019-09-11 20:32:08 +00:00
logger.debug(f"{self.pair} - Adjusting stoploss...")
self._set_stop_loss(new_loss, stoploss)
2018-06-26 18:49:07 +00:00
else:
2019-09-11 20:32:08 +00:00
logger.debug(f"{self.pair} - Keeping current stoploss...")
2018-06-26 18:49:07 +00:00
logger.debug(
2019-09-11 23:29:47 +00:00
f"{self.pair} - Stoploss adjusted. current_price={current_price:.8f}, "
f"open_rate={self.open_rate:.8f}, max_rate={self.max_rate or self.open_rate:.8f}, "
2019-09-11 23:29:47 +00:00
f"initial_stop_loss={self.initial_stop_loss:.8f}, "
f"stop_loss={self.stop_loss:.8f}. "
2019-09-10 07:42:45 +00:00
f"Trailing stoploss saved us: "
2019-09-11 23:29:47 +00:00
f"{float(self.stop_loss) - float(self.initial_stop_loss):.8f}.")
2018-06-26 18:49:07 +00:00
2022-02-10 18:18:19 +00:00
def update_trade(self, order: Order) -> None:
2017-06-08 18:01:01 +00:00
"""
Updates this entity with amount and actual open/close rates.
:param order: order retrieved by exchange.fetch_order()
:return: None
2017-06-08 18:01:01 +00:00
"""
# Ignore open and cancelled orders
2022-02-10 18:18:19 +00:00
if order.status == 'open' or order.safe_price is None:
return
2022-02-10 18:15:55 +00:00
logger.info(f'Updating trade (id={self.id}) ...')
2017-12-17 21:07:56 +00:00
2022-02-24 18:56:42 +00:00
if order.ft_order_side == self.enter_side:
# Update open rate and actual amount
2022-02-10 18:15:55 +00:00
self.open_rate = order.safe_price
self.amount = order.safe_amount_after_fee
2022-02-24 18:56:42 +00:00
# if 'leverage' in order:
# TODO-lev: order.leverage is not properly filled on the order object!
# self.leverage = order.leverage
if self.is_open:
payment = "SELL" if self.is_short else "BUY"
2022-02-24 18:56:42 +00:00
logger.info(f'{order.order_type.upper()}_{payment} has been fulfilled for {self}.')
self.open_order_id = None
self.recalc_trade_from_orders()
2022-02-24 18:56:42 +00:00
elif order.ft_order_side == self.exit_side:
if self.is_open:
payment = "BUY" if self.is_short else "SELL"
2022-01-31 10:12:37 +00:00
# * On margin shorts, you buy a little bit more than the amount (amount + interest)
2022-02-24 18:56:42 +00:00
logger.info(f'{order.order_type.upper()}_{payment} has been fulfilled for {self}.')
2022-02-10 18:15:55 +00:00
self.close(order.safe_price)
elif order.ft_order_side == 'stoploss':
2018-11-23 14:17:36 +00:00
self.stoploss_order_id = None
self.close_rate_requested = self.stop_loss
self.sell_reason = SellType.STOPLOSS_ON_EXCHANGE.value
if self.is_open:
2022-02-10 18:15:55 +00:00
logger.info(f'{order.order_type.upper()} is hit for {self}.')
self.close(order.safe_price)
else:
2022-02-10 18:15:55 +00:00
raise ValueError(f'Unknown order type: {order.order_type}')
2021-06-13 09:17:44 +00:00
Trade.commit()
2017-06-08 18:01:01 +00:00
2020-12-07 15:07:00 +00:00
def close(self, rate: float, *, show_msg: bool = True) -> None:
"""
Sets close_rate to the given rate, calculates total profit
and marks trade as closed
"""
self.close_rate = rate
2021-06-20 04:06:51 +00:00
self.close_date = self.close_date or datetime.utcnow()
self.close_profit = self.calc_profit_ratio()
2020-03-22 10:16:09 +00:00
self.close_profit_abs = self.calc_profit()
self.is_open = False
self.sell_order_status = 'closed'
self.open_order_id = None
2020-11-16 19:21:32 +00:00
if show_msg:
logger.info(
'Marking %s as closed as the trade is fulfilled and found no open orders for it.',
self
)
2020-05-01 14:00:42 +00:00
def update_fee(self, fee_cost: float, fee_currency: Optional[str], fee_rate: Optional[float],
2020-05-01 18:34:58 +00:00
side: str) -> None:
2020-05-01 14:00:42 +00:00
"""
Update Fee parameters. Only acts once per side
"""
if self.enter_side == side and self.fee_open_currency is None:
2020-05-01 14:00:42 +00:00
self.fee_open_cost = fee_cost
self.fee_open_currency = fee_currency
if fee_rate is not None:
self.fee_open = fee_rate
# Assume close-fee will fall into the same fee category and take an educated guess
self.fee_close = fee_rate
elif self.exit_side == side and self.fee_close_currency is None:
2020-05-01 14:00:42 +00:00
self.fee_close_cost = fee_cost
self.fee_close_currency = fee_currency
if fee_rate is not None:
self.fee_close = fee_rate
2020-05-01 18:34:58 +00:00
def fee_updated(self, side: str) -> bool:
"""
Verify if this side (buy / sell) has already been updated
"""
if self.enter_side == side:
return self.fee_open_currency is not None
elif self.exit_side == side:
return self.fee_close_currency is not None
2020-05-01 18:02:38 +00:00
else:
return False
2020-08-13 13:39:29 +00:00
def update_order(self, order: Dict) -> None:
Order.update_orders(self.orders, order)
def get_exit_order_count(self) -> int:
"""
Get amount of failed exiting orders
assumes full exits.
"""
2021-11-06 12:10:41 +00:00
return len([o for o in self.orders if o.ft_order_side == 'sell'])
def _calc_open_trade_value(self) -> float:
2017-12-17 21:07:56 +00:00
"""
2019-12-17 06:09:56 +00:00
Calculate the open_rate including open_fee.
2018-11-01 12:05:57 +00:00
:return: Price in of the open trade incl. Fees
2017-12-17 21:07:56 +00:00
"""
open_trade = Decimal(self.amount) * Decimal(self.open_rate)
2021-06-20 04:06:51 +00:00
fees = open_trade * Decimal(self.fee_open)
2021-07-08 06:33:40 +00:00
if self.is_short:
return float(open_trade - fees)
2021-06-20 04:06:51 +00:00
else:
return float(open_trade + fees)
2017-12-17 21:07:56 +00:00
def recalc_open_trade_value(self) -> None:
"""
Recalculate open_trade_value.
Must be called whenever open_rate, fee_open or is_short is changed.
"""
self.open_trade_value = self._calc_open_trade_value()
2021-06-27 09:38:56 +00:00
def calculate_interest(self, interest_rate: Optional[float] = None) -> Decimal:
"""
: param interest_rate: interest_charge for borrowing this coin(optional).
If interest_rate is not set self.interest_rate will be used
"""
2021-07-04 06:11:59 +00:00
2021-06-27 09:38:56 +00:00
zero = Decimal(0.0)
2021-07-04 06:11:59 +00:00
# If nothing was borrowed
2021-10-11 13:48:31 +00:00
if self.has_no_leverage or self.trading_mode != TradingMode.MARGIN:
2021-06-27 09:38:56 +00:00
return zero
open_date = self.open_date.replace(tzinfo=None)
2021-07-06 06:18:03 +00:00
now = (self.close_date or datetime.now(timezone.utc)).replace(tzinfo=None)
2021-06-27 09:38:56 +00:00
sec_per_hour = Decimal(3600)
total_seconds = Decimal((now - open_date).total_seconds())
hours = total_seconds/sec_per_hour or zero
rate = Decimal(interest_rate or self.interest_rate)
2021-06-23 03:09:52 +00:00
borrowed = Decimal(self.borrowed)
2021-07-06 03:48:56 +00:00
2021-08-06 07:15:18 +00:00
return interest(exchange_name=self.exchange, borrowed=borrowed, rate=rate, hours=hours)
2021-06-23 03:09:52 +00:00
def _calc_base_close(self, amount: Decimal, rate: Optional[float] = None,
fee: Optional[float] = None) -> Decimal:
close_trade = Decimal(amount) * Decimal(rate or self.close_rate) # type: ignore
fees = close_trade * Decimal(fee or self.fee_close)
if self.is_short:
return close_trade + fees
else:
return close_trade - fees
def calc_close_trade_value(self, rate: Optional[float] = None,
2021-06-27 09:38:56 +00:00
fee: Optional[float] = None,
interest_rate: Optional[float] = None) -> float:
2017-12-17 21:07:56 +00:00
"""
2018-11-01 12:05:57 +00:00
Calculate the close_rate including fee
2017-12-17 21:07:56 +00:00
:param fee: fee to use on the close rate (optional).
If rate is not set self.fee will be used
2017-12-17 21:07:56 +00:00
:param rate: rate to compare with (optional).
If rate is not set self.close_rate will be used
2021-06-27 09:38:56 +00:00
:param interest_rate: interest_charge for borrowing this coin (optional).
If interest_rate is not set self.interest_rate will be used
2017-12-17 21:07:56 +00:00
:return: Price in BTC of the open trade
"""
if rate is None and not self.close_rate:
return 0.0
amount = Decimal(self.amount)
trading_mode = self.trading_mode or TradingMode.SPOT
if trading_mode == TradingMode.SPOT:
return float(self._calc_base_close(amount, rate, fee))
elif (trading_mode == TradingMode.MARGIN):
total_interest = self.calculate_interest(interest_rate)
if self.is_short:
amount = amount + total_interest
return float(self._calc_base_close(amount, rate, fee))
else:
# Currency already owned for longs, no need to purchase
return float(self._calc_base_close(amount, rate, fee) - total_interest)
elif (trading_mode == TradingMode.FUTURES):
2021-08-26 05:01:07 +00:00
funding_fees = self.funding_fees or 0.0
# Positive funding_fees -> Trade has gained from fees.
# Negative funding_fees -> Trade had to pay the fees.
if self.is_short:
return float(self._calc_base_close(amount, rate, fee)) - funding_fees
else:
return float(self._calc_base_close(amount, rate, fee)) + funding_fees
2021-06-20 04:06:51 +00:00
else:
raise OperationalException(
f"{self.trading_mode.value} trading is not yet available using freqtrade")
2017-12-17 21:07:56 +00:00
2019-09-10 07:42:45 +00:00
def calc_profit(self, rate: Optional[float] = None,
2021-06-27 09:38:56 +00:00
fee: Optional[float] = None,
interest_rate: Optional[float] = None) -> float:
2017-12-17 21:07:56 +00:00
"""
2018-11-01 12:05:57 +00:00
Calculate the absolute profit in stake currency between Close and Open trade
2017-12-17 21:07:56 +00:00
:param fee: fee to use on the close rate (optional).
2021-06-20 04:06:51 +00:00
If fee is not set self.fee will be used
2017-12-17 21:07:56 +00:00
:param rate: close rate to compare with (optional).
If rate is not set self.close_rate will be used
2021-06-27 09:38:56 +00:00
:param interest_rate: interest_charge for borrowing this coin (optional).
If interest_rate is not set self.interest_rate will be used
2018-11-01 12:05:57 +00:00
:return: profit in stake currency as float
2017-12-17 21:07:56 +00:00
"""
close_trade_value = self.calc_close_trade_value(
rate=(rate or self.close_rate),
2021-06-27 09:38:56 +00:00
fee=(fee or self.fee_close),
interest_rate=(interest_rate or self.interest_rate)
2017-12-17 21:07:56 +00:00
)
2021-06-20 04:06:51 +00:00
if self.is_short:
2021-06-20 04:06:51 +00:00
profit = self.open_trade_value - close_trade_value
else:
profit = close_trade_value - self.open_trade_value
2018-06-23 13:27:29 +00:00
return float(f"{profit:.8f}")
2017-12-17 21:07:56 +00:00
def calc_profit_ratio(self, rate: Optional[float] = None,
2021-06-27 09:38:56 +00:00
fee: Optional[float] = None,
interest_rate: Optional[float] = None) -> float:
"""
Calculates the profit as ratio (including fee).
:param rate: rate to compare with (optional).
If rate is not set self.close_rate will be used
2018-03-17 21:12:21 +00:00
:param fee: fee to use on the close rate (optional).
2021-06-27 09:38:56 +00:00
:param interest_rate: interest_charge for borrowing this coin (optional).
If interest_rate is not set self.interest_rate will be used
:return: profit ratio as float
"""
close_trade_value = self.calc_close_trade_value(
rate=(rate or self.close_rate),
2021-06-27 09:38:56 +00:00
fee=(fee or self.fee_close),
interest_rate=(interest_rate or self.interest_rate)
2017-12-17 21:07:56 +00:00
)
2021-07-08 11:37:54 +00:00
short_close_zero = (self.is_short and close_trade_value == 0.0)
long_close_zero = (not self.is_short and self.open_trade_value == 0.0)
leverage = self.leverage or 1.0
2021-07-08 11:37:54 +00:00
if (short_close_zero or long_close_zero):
return 0.0
2021-06-20 04:06:51 +00:00
else:
2021-07-08 11:37:54 +00:00
if self.is_short:
profit_ratio = (1 - (close_trade_value/self.open_trade_value)) * leverage
2021-07-04 06:11:59 +00:00
else:
profit_ratio = ((close_trade_value/self.open_trade_value) - 1) * leverage
2021-07-04 06:11:59 +00:00
2020-02-28 09:36:39 +00:00
return float(f"{profit_ratio:.8f}")
def recalc_trade_from_orders(self):
# We need at least 2 entry orders for averaging amounts and rates.
2022-02-13 14:29:48 +00:00
if len(self.select_filled_orders(self.enter_side)) < 2:
# Just in case, still recalc open trade value
self.recalc_open_trade_value()
return
total_amount = 0.0
total_stake = 0.0
2022-01-23 15:44:16 +00:00
for o in self.orders:
if (o.ft_is_open or
2022-01-29 13:19:30 +00:00
(o.ft_order_side != self.enter_side) or
2022-01-23 15:44:16 +00:00
(o.status not in NON_OPEN_EXCHANGE_STATES)):
continue
tmp_amount = o.safe_amount_after_fee
2022-01-23 16:09:57 +00:00
tmp_price = o.average or o.price
2022-01-23 15:44:16 +00:00
if o.filled is not None:
tmp_amount = o.filled
2022-01-23 16:09:57 +00:00
if tmp_amount > 0.0 and tmp_price is not None:
total_amount += tmp_amount
2022-01-23 15:44:16 +00:00
total_stake += tmp_price * tmp_amount
if total_amount > 0:
2022-02-21 18:27:38 +00:00
# Leverage not updated, as we don't allow changing leverage through DCA at the moment.
self.open_rate = total_stake / total_amount
self.stake_amount = total_stake / (self.leverage or 1.0)
self.amount = total_amount
self.fee_open_cost = self.fee_open * self.stake_amount
self.recalc_open_trade_value()
2021-12-10 21:17:12 +00:00
if self.stop_loss_pct is not None and self.open_rate is not None:
self.adjust_stop_loss(self.open_rate, self.stop_loss_pct)
2021-12-09 18:03:41 +00:00
2022-01-30 16:47:37 +00:00
def select_order_by_order_id(self, order_id: str) -> Optional[Order]:
"""
Finds order object by Order id.
:param order_id: Exchange order id
"""
2022-02-05 09:12:03 +00:00
for o in self.orders:
if o.order_id == order_id:
return o
2022-01-30 16:47:37 +00:00
return None
def select_order(
self, order_side: str = None, is_open: Optional[bool] = None) -> Optional[Order]:
"""
2020-09-11 04:59:07 +00:00
Finds latest order for this orderside and status
:param order_side: ft_order_side of the order (either 'buy', 'sell' or 'stoploss')
:param is_open: Only search for open orders?
2020-09-11 04:59:07 +00:00
:return: latest Order object if it exists, else None
"""
orders = self.orders
if order_side:
orders = [o for o in self.orders if o.ft_order_side == order_side]
if is_open is not None:
orders = [o for o in orders if o.ft_is_open == is_open]
if len(orders) > 0:
return orders[-1]
else:
return None
2022-01-26 07:06:52 +00:00
def select_filled_orders(self, order_side: Optional[str] = None) -> List['Order']:
"""
Finds filled orders for this orderside.
2022-01-26 07:06:52 +00:00
:param order_side: Side of the order (either 'buy', 'sell', or None)
:return: array of Order objects
"""
2022-01-26 07:06:52 +00:00
return [o for o in self.orders if ((o.ft_order_side == order_side) or (order_side is None))
and o.ft_is_open is False and
2022-01-14 18:25:29 +00:00
(o.filled or 0) > 0 and
o.status in NON_OPEN_EXCHANGE_STATES]
2022-02-13 14:10:09 +00:00
@property
def nr_of_successful_entries(self) -> int:
"""
Helper function to count the number of entry orders that have been filled.
:return: int count of entry orders that have been filled for this trade.
"""
return len(self.select_filled_orders(self.enter_side))
@property
def nr_of_successful_exits(self) -> int:
"""
Helper function to count the number of exit orders that have been filled.
:return: int count of exit orders that have been filled for this trade.
"""
return len(self.select_filled_orders(self.exit_side))
2022-01-13 18:31:03 +00:00
@property
def nr_of_successful_buys(self) -> int:
"""
Helper function to count the number of buy orders that have been filled.
2022-02-13 14:10:09 +00:00
WARNING: Please use nr_of_successful_entries for short support.
:return: int count of buy orders that have been filled for this trade.
"""
return len(self.select_filled_orders('buy'))
2022-01-13 18:31:03 +00:00
@property
def nr_of_successful_sells(self) -> int:
"""
Helper function to count the number of sell orders that have been filled.
2022-02-13 14:10:09 +00:00
WARNING: Please use nr_of_successful_exits for short support.
:return: int count of sell orders that have been filled for this trade.
"""
return len(self.select_filled_orders('sell'))
2021-06-27 09:38:56 +00:00
@staticmethod
2020-11-16 19:09:34 +00:00
def get_trades_proxy(*, pair: str = None, is_open: bool = None,
open_date: datetime = None, close_date: datetime = None,
) -> List['LocalTrade']:
2020-11-16 19:09:34 +00:00
"""
Helper function to query Trades.
Returns a List of trades, filtered on the parameters given.
In live mode, converts the filter to a database query and returns all rows
In Backtest mode, uses filters on Trade.trades to get the result.
:return: unsorted List[Trade]
"""
# Offline mode - without database
2021-03-13 09:16:32 +00:00
if is_open is not None:
if is_open:
sel_trades = LocalTrade.trades_open
else:
sel_trades = LocalTrade.trades
else:
# Not used during backtesting, but might be used by a strategy
sel_trades = list(LocalTrade.trades + LocalTrade.trades_open)
2021-03-13 09:16:32 +00:00
if pair:
sel_trades = [trade for trade in sel_trades if trade.pair == pair]
if open_date:
sel_trades = [trade for trade in sel_trades if trade.open_date > open_date]
if close_date:
sel_trades = [trade for trade in sel_trades if trade.close_date
and trade.close_date > close_date]
2021-03-13 09:16:32 +00:00
return sel_trades
2020-11-16 19:09:34 +00:00
2021-06-27 09:38:56 +00:00
@staticmethod
2021-03-13 09:16:32 +00:00
def close_bt_trade(trade):
LocalTrade.trades_open.remove(trade)
LocalTrade.trades.append(trade)
LocalTrade.total_profit += trade.close_profit_abs
2021-06-27 09:38:56 +00:00
@staticmethod
2021-03-13 09:16:32 +00:00
def add_bt_trade(trade):
if trade.is_open:
LocalTrade.trades_open.append(trade)
else:
LocalTrade.trades.append(trade)
2021-06-27 09:38:56 +00:00
@staticmethod
2019-10-29 14:01:10 +00:00
def get_open_trades() -> List[Any]:
"""
Query trades from persistence layer
"""
return Trade.get_trades_proxy(is_open=True)
2019-10-29 10:15:33 +00:00
2021-06-27 09:38:56 +00:00
@staticmethod
def stoploss_reinitialization(desired_stoploss):
"""
Adjust initial Stoploss to desired stoploss for all open trades.
"""
for trade in Trade.get_open_trades():
logger.info("Found open trade: %s", trade)
# skip case if trailing-stop changed the stoploss already.
if (trade.stop_loss == trade.initial_stop_loss
2021-07-21 13:05:35 +00:00
and trade.initial_stop_loss_pct != desired_stoploss):
# Stoploss value got changed
2019-09-10 07:42:45 +00:00
logger.info(f"Stoploss for {trade} needs adjustment...")
# Force reset of stoploss
trade.stop_loss = None
trade.initial_stop_loss_pct = None
trade.adjust_stop_loss(trade.open_rate, desired_stoploss)
2019-09-10 07:42:45 +00:00
logger.info(f"New stoploss: {trade.stop_loss}.")
2020-10-17 09:28:34 +00:00
class Trade(_DECL_BASE, LocalTrade):
"""
Trade database model.
Also handles updating and querying trades
2021-02-27 18:57:42 +00:00
Note: Fields must be aligned with LocalTrade class
"""
__tablename__ = 'trades'
use_db: bool = True
id = Column(Integer, primary_key=True)
orders = relationship("Order", order_by="Order.id", cascade="all, delete-orphan", lazy="joined")
exchange = Column(String(25), nullable=False)
pair = Column(String(25), nullable=False, index=True)
is_open = Column(Boolean, nullable=False, default=True, index=True)
fee_open = Column(Float, nullable=False, default=0.0)
fee_open_cost = Column(Float, nullable=True)
fee_open_currency = Column(String(25), nullable=True)
fee_close = Column(Float, nullable=False, default=0.0)
fee_close_cost = Column(Float, nullable=True)
fee_close_currency = Column(String(25), nullable=True)
open_rate: float = Column(Float)
open_rate_requested = Column(Float)
# open_trade_value - calculated via _calc_open_trade_value
open_trade_value = Column(Float)
close_rate: Optional[float] = Column(Float)
close_rate_requested = Column(Float)
close_profit = Column(Float)
close_profit_abs = Column(Float)
stake_amount = Column(Float, nullable=False)
amount = Column(Float)
amount_requested = Column(Float)
open_date = Column(DateTime, nullable=False, default=datetime.utcnow)
close_date = Column(DateTime)
open_order_id = Column(String(255))
# absolute value of the stop loss
stop_loss = Column(Float, nullable=True, default=0.0)
# percentage value of the stop loss
stop_loss_pct = Column(Float, nullable=True)
# absolute value of the initial stop loss
initial_stop_loss = Column(Float, nullable=True, default=0.0)
# percentage value of the initial stop loss
initial_stop_loss_pct = Column(Float, nullable=True)
# stoploss order id which is on exchange
stoploss_order_id = Column(String(255), nullable=True, index=True)
# last update time of the stoploss order on exchange
stoploss_last_update = Column(DateTime, nullable=True)
# absolute value of the highest reached price
max_rate = Column(Float, nullable=True, default=0.0)
# Lowest price reached
min_rate = Column(Float, nullable=True)
2021-11-14 01:45:41 +00:00
sell_reason = Column(String(100), nullable=True)
sell_order_status = Column(String(100), nullable=True)
strategy = Column(String(100), nullable=True)
2021-11-21 08:51:16 +00:00
enter_tag = Column(String(100), nullable=True)
timeframe = Column(Integer, nullable=True)
trading_mode = Column(Enum(TradingMode), nullable=True)
# Leverage trading properties
2021-07-05 05:12:07 +00:00
leverage = Column(Float, nullable=True, default=1.0)
is_short = Column(Boolean, nullable=False, default=False)
2022-03-06 18:05:20 +00:00
liquidation_price = Column(Float, nullable=True)
# Margin Trading Properties
interest_rate = Column(Float, nullable=False, default=0.0)
2021-06-20 04:19:09 +00:00
# Futures properties
2021-08-26 05:01:07 +00:00
funding_fees = Column(Float, nullable=True, default=None)
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.recalc_open_trade_value()
def delete(self) -> None:
for order in self.orders:
Order.query.session.delete(order)
Trade.query.session.delete(self)
2021-04-15 05:57:52 +00:00
Trade.commit()
2021-06-27 09:38:56 +00:00
@staticmethod
2021-04-15 05:57:52 +00:00
def commit():
2021-04-13 17:52:33 +00:00
Trade.query.session.commit()
2021-06-27 09:38:56 +00:00
@staticmethod
def get_trades_proxy(*, pair: str = None, is_open: bool = None,
open_date: datetime = None, close_date: datetime = None,
) -> List['LocalTrade']:
"""
Helper function to query Trades.j
Returns a List of trades, filtered on the parameters given.
In live mode, converts the filter to a database query and returns all rows
In Backtest mode, uses filters on Trade.trades to get the result.
:return: unsorted List[Trade]
"""
if Trade.use_db:
trade_filter = []
if pair:
trade_filter.append(Trade.pair == pair)
if open_date:
trade_filter.append(Trade.open_date > open_date)
if close_date:
trade_filter.append(Trade.close_date > close_date)
if is_open is not None:
trade_filter.append(Trade.is_open.is_(is_open))
return Trade.get_trades(trade_filter).all()
else:
return LocalTrade.get_trades_proxy(
pair=pair, is_open=is_open,
open_date=open_date,
close_date=close_date
)
2021-06-27 09:38:56 +00:00
@staticmethod
def get_trades(trade_filter=None) -> Query:
"""
Helper function to query Trades using filters.
NOTE: Not supported in Backtesting.
:param trade_filter: Optional filter to apply to trades
Can be either a Filter object, or a List of filters
e.g. `(trade_filter=[Trade.id == trade_id, Trade.is_open.is_(True),])`
e.g. `(trade_filter=Trade.id == trade_id)`
:return: unsorted query object
"""
if not Trade.use_db:
raise NotImplementedError('`Trade.get_trades()` not supported in backtesting mode.')
if trade_filter is not None:
if not isinstance(trade_filter, list):
trade_filter = [trade_filter]
return Trade.query.filter(*trade_filter)
else:
return Trade.query
2021-06-27 09:38:56 +00:00
@staticmethod
def get_open_order_trades() -> List['Trade']:
"""
Returns all open trades
NOTE: Not supported in Backtesting.
"""
return Trade.get_trades(Trade.open_order_id.isnot(None)).all()
2021-06-27 09:38:56 +00:00
@staticmethod
def get_open_trades_without_assigned_fees():
"""
Returns all open trades which don't have open fees set correctly
NOTE: Not supported in Backtesting.
"""
return Trade.get_trades([Trade.fee_open_currency.is_(None),
Trade.orders.any(),
Trade.is_open.is_(True),
]).all()
2021-06-27 09:38:56 +00:00
@staticmethod
2021-06-20 04:19:09 +00:00
def get_closed_trades_without_assigned_fees():
"""
Returns all closed trades which don't have fees set correctly
NOTE: Not supported in Backtesting.
"""
return Trade.get_trades([Trade.fee_close_currency.is_(None),
Trade.orders.any(),
Trade.is_open.is_(False),
]).all()
@staticmethod
def get_total_closed_profit() -> float:
"""
Retrieves total realized profit
"""
if Trade.use_db:
total_profit = Trade.query.with_entities(
func.sum(Trade.close_profit_abs)).filter(Trade.is_open.is_(False)).scalar()
else:
total_profit = sum(
t.close_profit_abs for t in LocalTrade.get_trades_proxy(is_open=False))
return total_profit or 0
@staticmethod
def total_open_trades_stakes() -> float:
"""
Calculates total invested amount in open trades
in stake currency
"""
if Trade.use_db:
total_open_stake_amount = Trade.query.with_entities(
func.sum(Trade.stake_amount)).filter(Trade.is_open.is_(True)).scalar()
else:
total_open_stake_amount = sum(
t.stake_amount for t in LocalTrade.get_trades_proxy(is_open=True))
return total_open_stake_amount or 0
2021-06-27 09:38:56 +00:00
@staticmethod
2021-09-19 23:44:12 +00:00
def get_overall_performance(minutes=None) -> List[Dict[str, Any]]:
"""
Returns List of dicts containing all Trades, including profit and trade count
NOTE: Not supported in Backtesting.
"""
2021-09-19 23:44:12 +00:00
filters = [Trade.is_open.is_(False)]
if minutes:
start_date = datetime.now(timezone.utc) - timedelta(minutes=minutes)
filters.append(Trade.close_date >= start_date)
pair_rates = Trade.query.with_entities(
Trade.pair,
func.sum(Trade.close_profit).label('profit_sum'),
2021-05-15 17:39:46 +00:00
func.sum(Trade.close_profit_abs).label('profit_sum_abs'),
func.count(Trade.pair).label('count')
2021-09-19 23:44:12 +00:00
).filter(*filters)\
.group_by(Trade.pair) \
2021-05-15 17:39:46 +00:00
.order_by(desc('profit_sum_abs')) \
.all()
return [
{
'pair': pair,
2021-10-31 09:42:42 +00:00
'profit_ratio': profit,
'profit': round(profit * 100, 2), # Compatibility mode
'profit_pct': round(profit * 100, 2),
2021-05-15 17:39:46 +00:00
'profit_abs': profit_abs,
'count': count
}
2021-05-15 17:39:46 +00:00
for pair, profit, profit_abs, count in pair_rates
]
@staticmethod
2021-11-21 08:51:16 +00:00
def get_enter_tag_performance(pair: Optional[str]) -> List[Dict[str, Any]]:
"""
Returns List of dicts containing all Trades, based on buy tag performance
Can either be average for all pairs or a specific pair provided
NOTE: Not supported in Backtesting.
"""
filters = [Trade.is_open.is_(False)]
if(pair is not None):
filters.append(Trade.pair == pair)
2021-11-21 08:51:16 +00:00
enter_tag_perf = Trade.query.with_entities(
Trade.enter_tag,
func.sum(Trade.close_profit).label('profit_sum'),
func.sum(Trade.close_profit_abs).label('profit_sum_abs'),
func.count(Trade.pair).label('count')
).filter(*filters)\
2021-11-21 08:51:16 +00:00
.group_by(Trade.enter_tag) \
.order_by(desc('profit_sum_abs')) \
.all()
2021-10-31 09:42:42 +00:00
return [
{
2021-11-21 08:51:16 +00:00
'enter_tag': enter_tag if enter_tag is not None else "Other",
2021-10-31 09:42:42 +00:00
'profit_ratio': profit,
'profit_pct': round(profit * 100, 2),
'profit_abs': profit_abs,
'count': count
}
2021-11-21 08:51:16 +00:00
for enter_tag, profit, profit_abs, count in enter_tag_perf
]
@staticmethod
2021-10-24 13:18:29 +00:00
def get_sell_reason_performance(pair: Optional[str]) -> List[Dict[str, Any]]:
"""
Returns List of dicts containing all Trades, based on sell reason performance
Can either be average for all pairs or a specific pair provided
NOTE: Not supported in Backtesting.
"""
filters = [Trade.is_open.is_(False)]
if(pair is not None):
filters.append(Trade.pair == pair)
sell_tag_perf = Trade.query.with_entities(
Trade.sell_reason,
func.sum(Trade.close_profit).label('profit_sum'),
func.sum(Trade.close_profit_abs).label('profit_sum_abs'),
func.count(Trade.pair).label('count')
).filter(*filters)\
.group_by(Trade.sell_reason) \
.order_by(desc('profit_sum_abs')) \
.all()
2021-10-31 09:42:42 +00:00
return [
{
'sell_reason': sell_reason if sell_reason is not None else "Other",
2021-10-31 09:42:42 +00:00
'profit_ratio': profit,
'profit_pct': round(profit * 100, 2),
'profit_abs': profit_abs,
'count': count
}
for sell_reason, profit, profit_abs, count in sell_tag_perf
]
@staticmethod
2021-10-24 13:18:29 +00:00
def get_mix_tag_performance(pair: Optional[str]) -> List[Dict[str, Any]]:
"""
Returns List of dicts containing all Trades, based on buy_tag + sell_reason performance
Can either be average for all pairs or a specific pair provided
NOTE: Not supported in Backtesting.
"""
filters = [Trade.is_open.is_(False)]
if(pair is not None):
filters.append(Trade.pair == pair)
mix_tag_perf = Trade.query.with_entities(
Trade.id,
2021-11-21 08:51:16 +00:00
Trade.enter_tag,
Trade.sell_reason,
func.sum(Trade.close_profit).label('profit_sum'),
func.sum(Trade.close_profit_abs).label('profit_sum_abs'),
func.count(Trade.pair).label('count')
).filter(*filters)\
.group_by(Trade.id) \
.order_by(desc('profit_sum_abs')) \
.all()
2021-10-20 17:13:34 +00:00
return_list: List[Dict] = []
2021-11-21 08:51:16 +00:00
for id, enter_tag, sell_reason, profit, profit_abs, count in mix_tag_perf:
enter_tag = enter_tag if enter_tag is not None else "Other"
sell_reason = sell_reason if sell_reason is not None else "Other"
2021-11-21 08:51:16 +00:00
if(sell_reason is not None and enter_tag is not None):
mix_tag = enter_tag + " " + sell_reason
i = 0
if not any(item["mix_tag"] == mix_tag for item in return_list):
return_list.append({'mix_tag': mix_tag,
'profit': profit,
2021-11-11 12:55:55 +00:00
'profit_pct': round(profit * 100, 2),
'profit_abs': profit_abs,
'count': count})
else:
while i < len(return_list):
if return_list[i]["mix_tag"] == mix_tag:
return_list[i] = {
'mix_tag': mix_tag,
'profit': profit + return_list[i]["profit"],
2021-11-11 12:55:55 +00:00
'profit_pct': round(profit + return_list[i]["profit"] * 100, 2),
'profit_abs': profit_abs + return_list[i]["profit_abs"],
'count': 1 + return_list[i]["count"]}
i += 1
return return_list
@staticmethod
def get_best_pair(start_date: datetime = datetime.fromtimestamp(0)):
"""
Get best pair with closed trade.
NOTE: Not supported in Backtesting.
:returns: Tuple containing (pair, profit_sum)
"""
best_pair = Trade.query.with_entities(
Trade.pair, func.sum(Trade.close_profit).label('profit_sum')
).filter(Trade.is_open.is_(False) & (Trade.close_date >= start_date)) \
.group_by(Trade.pair) \
.order_by(desc('profit_sum')).first()
return best_pair
2020-10-17 09:28:34 +00:00
class PairLock(_DECL_BASE):
"""
Pair Locks database model.
"""
__tablename__ = 'pairlocks'
2020-10-17 09:28:34 +00:00
id = Column(Integer, primary_key=True)
pair = Column(String(25), nullable=False, index=True)
reason = Column(String(255), nullable=True)
2020-10-17 09:28:34 +00:00
# Time the pair was locked (start time)
lock_time = Column(DateTime, nullable=False)
# Time until the pair is locked (end time)
lock_end_time = Column(DateTime, nullable=False, index=True)
2020-10-17 09:28:34 +00:00
2020-10-17 13:15:35 +00:00
active = Column(Boolean, nullable=False, default=True, index=True)
2020-10-17 09:28:34 +00:00
def __repr__(self):
2020-10-17 09:40:01 +00:00
lock_time = self.lock_time.strftime(DATETIME_PRINT_FORMAT)
lock_end_time = self.lock_end_time.strftime(DATETIME_PRINT_FORMAT)
2020-10-17 09:28:34 +00:00
return (f'PairLock(id={self.id}, pair={self.pair}, lock_time={lock_time}, '
f'lock_end_time={lock_end_time}, reason={self.reason}, active={self.active})')
2020-10-17 09:28:34 +00:00
2021-06-27 09:38:56 +00:00
@staticmethod
2020-10-27 09:08:24 +00:00
def query_pair_locks(pair: Optional[str], now: datetime) -> Query:
2020-10-17 09:28:34 +00:00
"""
2020-10-24 11:55:54 +00:00
Get all currently active locks for this pair
2020-10-17 13:15:35 +00:00
:param pair: Pair to check for. Returns all current locks if pair is empty
:param now: Datetime object (generated via datetime.now(timezone.utc)).
2020-10-17 09:28:34 +00:00
"""
filters = [PairLock.lock_end_time > now,
2020-10-17 13:15:35 +00:00
# Only active locks
PairLock.active.is_(True), ]
if pair:
filters.append(PairLock.pair == pair)
2020-10-17 09:28:34 +00:00
return PairLock.query.filter(
2020-10-17 13:15:35 +00:00
*filters
2020-10-25 09:54:30 +00:00
)
2020-10-17 13:15:35 +00:00
def to_json(self) -> Dict[str, Any]:
return {
2021-03-01 06:51:33 +00:00
'id': self.id,
2020-10-17 13:15:35 +00:00
'pair': self.pair,
2020-10-17 18:32:23 +00:00
'lock_time': self.lock_time.strftime(DATETIME_PRINT_FORMAT),
2020-10-17 15:58:07 +00:00
'lock_timestamp': int(self.lock_time.replace(tzinfo=timezone.utc).timestamp() * 1000),
2020-10-17 18:32:23 +00:00
'lock_end_time': self.lock_end_time.strftime(DATETIME_PRINT_FORMAT),
2020-10-17 15:58:07 +00:00
'lock_end_timestamp': int(self.lock_end_time.replace(tzinfo=timezone.utc
).timestamp() * 1000),
2020-10-17 13:15:35 +00:00
'reason': self.reason,
'active': self.active,
}