stable/freqtrade/optimize/hyperopt_auto.py

90 lines
3.4 KiB
Python
Raw Normal View History

"""
HyperOptAuto class.
This module implements a convenience auto-hyperopt class, which can be used together with strategies
that implement IHyperStrategy interface.
"""
2021-03-25 08:00:52 +00:00
from contextlib import suppress
from typing import Any, Callable, Dict, List
2021-03-25 08:00:52 +00:00
from pandas import DataFrame
2021-03-27 09:40:48 +00:00
2021-03-25 08:00:52 +00:00
with suppress(ImportError):
from skopt.space import Dimension
from freqtrade.optimize.hyperopt_interface import IHyperOpt
class HyperOptAuto(IHyperOpt):
"""
This class delegates functionality to Strategy(IHyperStrategy) and Strategy.HyperOpt classes.
Most of the time Strategy.HyperOpt class would only implement indicator_space and
sell_indicator_space methods, but other hyperopt methods can be overridden as well.
"""
def buy_strategy_generator(self, params: Dict[str, Any]) -> Callable:
def populate_buy_trend(dataframe: DataFrame, metadata: dict):
for attr_name, attr in self.strategy.enumerate_parameters('buy'):
if attr.optimize:
# noinspection PyProtectedMember
attr._set_value(params[attr_name])
return self.strategy.populate_buy_trend(dataframe, metadata)
return populate_buy_trend
def sell_strategy_generator(self, params: Dict[str, Any]) -> Callable:
def populate_buy_trend(dataframe: DataFrame, metadata: dict):
for attr_name, attr in self.strategy.enumerate_parameters('sell'):
if attr.optimize:
# noinspection PyProtectedMember
attr._set_value(params[attr_name])
return self.strategy.populate_sell_trend(dataframe, metadata)
return populate_buy_trend
def _get_func(self, name) -> Callable:
"""
Return a function defined in Strategy.HyperOpt class, or one defined in super() class.
:param name: function name.
:return: a requested function.
"""
hyperopt_cls = getattr(self.strategy, 'HyperOpt', None)
default_func = getattr(super(), name)
if hyperopt_cls:
return getattr(hyperopt_cls, name, default_func)
else:
return default_func
def _generate_indicator_space(self, category):
for attr_name, attr in self.strategy.enumerate_parameters(category):
if attr.optimize:
yield attr.get_space(attr_name)
def _get_indicator_space(self, category, fallback_method_name):
indicator_space = list(self._generate_indicator_space(category))
if len(indicator_space) > 0:
return indicator_space
else:
return self._get_func(fallback_method_name)()
2021-03-25 08:00:52 +00:00
def indicator_space(self) -> List['Dimension']:
return self._get_indicator_space('buy', 'indicator_space')
2021-03-25 08:00:52 +00:00
def sell_indicator_space(self) -> List['Dimension']:
return self._get_indicator_space('sell', 'sell_indicator_space')
def generate_roi_table(self, params: Dict) -> Dict[int, float]:
return self._get_func('generate_roi_table')(params)
2021-03-25 08:00:52 +00:00
def roi_space(self) -> List['Dimension']:
return self._get_func('roi_space')()
2021-03-25 08:00:52 +00:00
def stoploss_space(self) -> List['Dimension']:
return self._get_func('stoploss_space')()
def generate_trailing_params(self, params: Dict) -> Dict:
return self._get_func('generate_trailing_params')(params)
2021-03-25 08:00:52 +00:00
def trailing_space(self) -> List['Dimension']:
return self._get_func('trailing_space')()