139 lines
5.2 KiB
Python
139 lines
5.2 KiB
Python
|
# pragma pylint: disable=missing-docstring, invalid-name, pointless-string-statement
|
||
|
|
||
|
import talib.abstract as ta
|
||
|
from pandas import DataFrame
|
||
|
from typing import Dict, Any, Callable, List
|
||
|
from functools import reduce
|
||
|
|
||
|
import numpy
|
||
|
from skopt.space import Categorical, Dimension, Integer, Real
|
||
|
|
||
|
import freqtrade.vendor.qtpylib.indicators as qtpylib
|
||
|
from freqtrade.optimize.interface import IHyperOpt
|
||
|
|
||
|
class_name = 'SampleHyperOpts'
|
||
|
|
||
|
|
||
|
# This class is a sample. Feel free to customize it.
|
||
|
class SampleHyperOpts(IHyperOpt):
|
||
|
"""
|
||
|
This is a test hyperopt to inspire you.
|
||
|
More information in https://github.com/freqtrade/freqtrade/blob/develop/docs/hyperopt.md
|
||
|
You can:
|
||
|
- Rename the class name (Do not forget to update class_name)
|
||
|
- Add any methods you want to build your hyperopt
|
||
|
- Add any lib you need to build your hyperopt
|
||
|
You must keep:
|
||
|
- the prototype for the methods: populate_indicators, indicator_space, buy_strategy_generator,
|
||
|
roi_space, generate_roi_table, stoploss_space
|
||
|
"""
|
||
|
|
||
|
@staticmethod
|
||
|
def populate_indicators(dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||
|
dataframe['adx'] = ta.ADX(dataframe)
|
||
|
macd = ta.MACD(dataframe)
|
||
|
dataframe['macd'] = macd['macd']
|
||
|
dataframe['macdsignal'] = macd['macdsignal']
|
||
|
dataframe['mfi'] = ta.MFI(dataframe)
|
||
|
dataframe['rsi'] = ta.RSI(dataframe)
|
||
|
stoch_fast = ta.STOCHF(dataframe)
|
||
|
dataframe['fastd'] = stoch_fast['fastd']
|
||
|
dataframe['minus_di'] = ta.MINUS_DI(dataframe)
|
||
|
# Bollinger bands
|
||
|
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
|
||
|
dataframe['bb_lowerband'] = bollinger['lower']
|
||
|
dataframe['sar'] = ta.SAR(dataframe)
|
||
|
return dataframe
|
||
|
|
||
|
def buy_strategy_generator(self, params: Dict[str, Any]) -> Callable:
|
||
|
"""
|
||
|
Define the buy strategy parameters to be used by hyperopt
|
||
|
"""
|
||
|
def populate_buy_trend(dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||
|
"""
|
||
|
Buy strategy Hyperopt will build and use
|
||
|
"""
|
||
|
conditions = []
|
||
|
# GUARDS AND TRENDS
|
||
|
if 'mfi-enabled' in params and params['mfi-enabled']:
|
||
|
conditions.append(dataframe['mfi'] < params['mfi-value'])
|
||
|
if 'fastd-enabled' in params and params['fastd-enabled']:
|
||
|
conditions.append(dataframe['fastd'] < params['fastd-value'])
|
||
|
if 'adx-enabled' in params and params['adx-enabled']:
|
||
|
conditions.append(dataframe['adx'] > params['adx-value'])
|
||
|
if 'rsi-enabled' in params and params['rsi-enabled']:
|
||
|
conditions.append(dataframe['rsi'] < params['rsi-value'])
|
||
|
|
||
|
# TRIGGERS
|
||
|
if params['trigger'] == 'bb_lower':
|
||
|
conditions.append(dataframe['close'] < dataframe['bb_lowerband'])
|
||
|
if params['trigger'] == 'macd_cross_signal':
|
||
|
conditions.append(qtpylib.crossed_above(
|
||
|
dataframe['macd'], dataframe['macdsignal']
|
||
|
))
|
||
|
if params['trigger'] == 'sar_reversal':
|
||
|
conditions.append(qtpylib.crossed_above(
|
||
|
dataframe['close'], dataframe['sar']
|
||
|
))
|
||
|
|
||
|
dataframe.loc[
|
||
|
reduce(lambda x, y: x & y, conditions),
|
||
|
'buy'] = 1
|
||
|
|
||
|
return dataframe
|
||
|
|
||
|
return populate_buy_trend
|
||
|
|
||
|
@staticmethod
|
||
|
def indicator_space() -> List[Dimension]:
|
||
|
"""
|
||
|
Define your Hyperopt space for searching strategy parameters
|
||
|
"""
|
||
|
return [
|
||
|
Integer(10, 25, name='mfi-value'),
|
||
|
Integer(15, 45, name='fastd-value'),
|
||
|
Integer(20, 50, name='adx-value'),
|
||
|
Integer(20, 40, name='rsi-value'),
|
||
|
Categorical([True, False], name='mfi-enabled'),
|
||
|
Categorical([True, False], name='fastd-enabled'),
|
||
|
Categorical([True, False], name='adx-enabled'),
|
||
|
Categorical([True, False], name='rsi-enabled'),
|
||
|
Categorical(['bb_lower', 'macd_cross_signal', 'sar_reversal'], name='trigger')
|
||
|
]
|
||
|
|
||
|
@staticmethod
|
||
|
def generate_roi_table(params: Dict) -> Dict[int, float]:
|
||
|
"""
|
||
|
Generate the ROI table that will be used by Hyperopt
|
||
|
"""
|
||
|
roi_table = {}
|
||
|
roi_table[0] = params['roi_p1'] + params['roi_p2'] + params['roi_p3']
|
||
|
roi_table[params['roi_t3']] = params['roi_p1'] + params['roi_p2']
|
||
|
roi_table[params['roi_t3'] + params['roi_t2']] = params['roi_p1']
|
||
|
roi_table[params['roi_t3'] + params['roi_t2'] + params['roi_t1']] = 0
|
||
|
|
||
|
return roi_table
|
||
|
|
||
|
@staticmethod
|
||
|
def stoploss_space() -> List[Dimension]:
|
||
|
"""
|
||
|
Stoploss Value to search
|
||
|
"""
|
||
|
return [
|
||
|
Real(-0.5, -0.02, name='stoploss'),
|
||
|
]
|
||
|
|
||
|
@staticmethod
|
||
|
def roi_space() -> List[Dimension]:
|
||
|
"""
|
||
|
Values to search for each ROI steps
|
||
|
"""
|
||
|
return [
|
||
|
Integer(10, 120, name='roi_t1'),
|
||
|
Integer(10, 60, name='roi_t2'),
|
||
|
Integer(10, 40, name='roi_t3'),
|
||
|
Real(0.01, 0.04, name='roi_p1'),
|
||
|
Real(0.01, 0.07, name='roi_p2'),
|
||
|
Real(0.01, 0.20, name='roi_p3'),
|
||
|
]
|