2020-03-15 14:17:35 +00:00
|
|
|
import logging
|
2020-06-26 18:08:45 +00:00
|
|
|
from datetime import datetime, timedelta, timezone
|
2020-03-15 14:17:35 +00:00
|
|
|
from pathlib import Path
|
2020-09-25 18:39:00 +00:00
|
|
|
from typing import Any, Dict, List, Union
|
2020-01-02 06:26:43 +00:00
|
|
|
|
2020-06-09 06:00:35 +00:00
|
|
|
from arrow import Arrow
|
2020-07-27 05:20:40 +00:00
|
|
|
from numpy import int64
|
2020-09-28 17:39:41 +00:00
|
|
|
from pandas import DataFrame
|
2020-01-02 06:26:43 +00:00
|
|
|
from tabulate import tabulate
|
|
|
|
|
2021-03-02 15:12:22 +00:00
|
|
|
from freqtrade.constants import DATETIME_PRINT_FORMAT, LAST_BT_RESULT_FN, UNLIMITED_STAKE_AMOUNT
|
2020-12-24 21:17:24 +00:00
|
|
|
from freqtrade.data.btanalysis import (calculate_csum, calculate_market_change,
|
|
|
|
calculate_max_drawdown)
|
2021-02-13 15:05:56 +00:00
|
|
|
from freqtrade.misc import decimals_per_coin, file_dump_json, round_coin_value
|
2020-03-15 14:17:35 +00:00
|
|
|
|
2020-09-28 17:39:41 +00:00
|
|
|
|
2020-03-15 14:17:35 +00:00
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
2020-06-26 05:46:59 +00:00
|
|
|
def store_backtest_stats(recordfilename: Path, stats: Dict[str, DataFrame]) -> None:
|
2020-08-18 14:15:24 +00:00
|
|
|
"""
|
|
|
|
Stores backtest results
|
|
|
|
:param recordfilename: Path object, which can either be a filename or a directory.
|
|
|
|
Filenames will be appended with a timestamp right before the suffix
|
|
|
|
while for diectories, <directory>/backtest-result-<datetime>.json will be used as filename
|
|
|
|
:param stats: Dataframe containing the backtesting statistics
|
|
|
|
"""
|
2020-06-28 07:45:23 +00:00
|
|
|
if recordfilename.is_dir():
|
2020-07-03 18:32:04 +00:00
|
|
|
filename = (recordfilename /
|
|
|
|
f'backtest-result-{datetime.now().strftime("%Y-%m-%d_%H-%M-%S")}.json')
|
2020-06-28 07:45:23 +00:00
|
|
|
else:
|
|
|
|
filename = Path.joinpath(
|
|
|
|
recordfilename.parent,
|
|
|
|
f'{recordfilename.stem}-{datetime.now().strftime("%Y-%m-%d_%H-%M-%S")}'
|
|
|
|
).with_suffix(recordfilename.suffix)
|
2020-06-26 05:46:59 +00:00
|
|
|
file_dump_json(filename, stats)
|
|
|
|
|
2020-06-28 07:45:23 +00:00
|
|
|
latest_filename = Path.joinpath(filename.parent, LAST_BT_RESULT_FN)
|
2020-06-26 05:46:59 +00:00
|
|
|
file_dump_json(latest_filename, {'latest_backtest': str(filename.name)})
|
|
|
|
|
|
|
|
|
2021-02-12 19:32:41 +00:00
|
|
|
def _get_line_floatfmt(stake_currency: str) -> List[str]:
|
2020-05-25 17:18:53 +00:00
|
|
|
"""
|
|
|
|
Generate floatformat (goes in line with _generate_result_line())
|
|
|
|
"""
|
2021-02-12 19:32:41 +00:00
|
|
|
return ['s', 'd', '.2f', '.2f', f'.{decimals_per_coin(stake_currency)}f',
|
|
|
|
'.2f', 'd', 'd', 'd', 'd']
|
2020-05-25 17:18:53 +00:00
|
|
|
|
|
|
|
|
2020-05-25 04:44:51 +00:00
|
|
|
def _get_line_header(first_column: str, stake_currency: str) -> List[str]:
|
2020-01-02 06:26:43 +00:00
|
|
|
"""
|
2020-05-25 04:44:51 +00:00
|
|
|
Generate header lines (goes in line with _generate_result_line())
|
|
|
|
"""
|
|
|
|
return [first_column, 'Buys', 'Avg Profit %', 'Cum Profit %',
|
|
|
|
f'Tot Profit {stake_currency}', 'Tot Profit %', 'Avg Duration',
|
|
|
|
'Wins', 'Draws', 'Losses']
|
|
|
|
|
|
|
|
|
2021-02-13 08:01:05 +00:00
|
|
|
def _generate_result_line(result: DataFrame, starting_balance: int, first_column: str) -> Dict:
|
2020-05-25 17:18:53 +00:00
|
|
|
"""
|
|
|
|
Generate one result dict, with "first_column" as key.
|
|
|
|
"""
|
2021-01-23 12:02:48 +00:00
|
|
|
profit_sum = result['profit_ratio'].sum()
|
2021-02-13 08:01:05 +00:00
|
|
|
# (end-capital - starting capital) / starting capital
|
|
|
|
profit_total = result['profit_abs'].sum() / starting_balance
|
2020-11-28 10:31:28 +00:00
|
|
|
|
2020-05-25 17:18:53 +00:00
|
|
|
return {
|
|
|
|
'key': first_column,
|
2020-06-07 13:30:41 +00:00
|
|
|
'trades': len(result),
|
2021-01-23 12:02:48 +00:00
|
|
|
'profit_mean': result['profit_ratio'].mean() if len(result) > 0 else 0.0,
|
|
|
|
'profit_mean_pct': result['profit_ratio'].mean() * 100.0 if len(result) > 0 else 0.0,
|
2020-11-28 10:31:28 +00:00
|
|
|
'profit_sum': profit_sum,
|
|
|
|
'profit_sum_pct': round(profit_sum * 100.0, 2),
|
2020-06-07 13:30:41 +00:00
|
|
|
'profit_total_abs': result['profit_abs'].sum(),
|
2020-11-28 10:31:28 +00:00
|
|
|
'profit_total': profit_total,
|
|
|
|
'profit_total_pct': round(profit_total * 100.0, 2),
|
2020-05-25 17:18:53 +00:00
|
|
|
'duration_avg': str(timedelta(
|
2020-06-07 13:30:41 +00:00
|
|
|
minutes=round(result['trade_duration'].mean()))
|
2020-05-25 17:18:53 +00:00
|
|
|
) if not result.empty else '0:00',
|
|
|
|
# 'duration_max': str(timedelta(
|
2020-06-07 13:30:41 +00:00
|
|
|
# minutes=round(result['trade_duration'].max()))
|
2020-05-25 17:18:53 +00:00
|
|
|
# ) if not result.empty else '0:00',
|
|
|
|
# 'duration_min': str(timedelta(
|
2020-06-07 13:30:41 +00:00
|
|
|
# minutes=round(result['trade_duration'].min()))
|
2020-05-25 17:18:53 +00:00
|
|
|
# ) if not result.empty else '0:00',
|
2020-06-07 13:30:41 +00:00
|
|
|
'wins': len(result[result['profit_abs'] > 0]),
|
|
|
|
'draws': len(result[result['profit_abs'] == 0]),
|
|
|
|
'losses': len(result[result['profit_abs'] < 0]),
|
2020-05-25 17:18:53 +00:00
|
|
|
}
|
2020-05-25 04:44:51 +00:00
|
|
|
|
|
|
|
|
2021-02-13 08:01:05 +00:00
|
|
|
def generate_pair_metrics(data: Dict[str, Dict], stake_currency: str, starting_balance: int,
|
2020-05-25 17:50:09 +00:00
|
|
|
results: DataFrame, skip_nan: bool = False) -> List[Dict]:
|
2020-05-25 04:44:51 +00:00
|
|
|
"""
|
|
|
|
Generates and returns a list for the given backtest data and the results dataframe
|
2020-01-02 08:37:54 +00:00
|
|
|
:param data: Dict of <pair: dataframe> containing data that was used during backtesting.
|
|
|
|
:param stake_currency: stake-currency - used to correctly name headers
|
2021-02-13 08:01:05 +00:00
|
|
|
:param starting_balance: Starting balance
|
2020-01-02 08:37:54 +00:00
|
|
|
:param results: Dataframe containing the backtest results
|
|
|
|
:param skip_nan: Print "left open" open trades
|
2020-05-25 17:55:02 +00:00
|
|
|
:return: List of Dicts containing the metrics per pair
|
2020-01-02 06:26:43 +00:00
|
|
|
"""
|
|
|
|
|
|
|
|
tabular_data = []
|
2020-05-25 17:18:53 +00:00
|
|
|
|
2020-01-02 06:26:43 +00:00
|
|
|
for pair in data:
|
2020-06-07 13:30:41 +00:00
|
|
|
result = results[results['pair'] == pair]
|
|
|
|
if skip_nan and result['profit_abs'].isnull().all():
|
2020-01-02 06:26:43 +00:00
|
|
|
continue
|
|
|
|
|
2021-02-13 08:01:05 +00:00
|
|
|
tabular_data.append(_generate_result_line(result, starting_balance, pair))
|
2020-01-02 06:26:43 +00:00
|
|
|
|
2021-04-03 22:19:38 +00:00
|
|
|
# Sort by total profit %:
|
|
|
|
tabular_data = sorted(tabular_data, key=lambda k: k['profit_total_abs'], reverse=True)
|
|
|
|
|
2020-01-02 06:26:43 +00:00
|
|
|
# Append Total
|
2021-02-13 08:01:05 +00:00
|
|
|
tabular_data.append(_generate_result_line(results, starting_balance, 'TOTAL'))
|
2020-05-25 17:18:53 +00:00
|
|
|
return tabular_data
|
2020-05-25 04:44:51 +00:00
|
|
|
|
|
|
|
|
2020-05-25 17:55:02 +00:00
|
|
|
def generate_sell_reason_stats(max_open_trades: int, results: DataFrame) -> List[Dict]:
|
2020-01-02 06:28:30 +00:00
|
|
|
"""
|
|
|
|
Generate small table outlining Backtest results
|
2020-03-15 14:04:48 +00:00
|
|
|
:param max_open_trades: Max_open_trades parameter
|
2020-05-25 05:02:24 +00:00
|
|
|
:param results: Dataframe containing the backtest result for one strategy
|
|
|
|
:return: List of Dicts containing the metrics per Sell reason
|
2020-01-02 06:28:30 +00:00
|
|
|
"""
|
|
|
|
tabular_data = []
|
2020-05-25 05:02:24 +00:00
|
|
|
|
2020-01-02 06:28:30 +00:00
|
|
|
for reason, count in results['sell_reason'].value_counts().iteritems():
|
2020-01-09 05:46:39 +00:00
|
|
|
result = results.loc[results['sell_reason'] == reason]
|
2020-05-25 05:02:24 +00:00
|
|
|
|
2021-01-23 12:02:48 +00:00
|
|
|
profit_mean = result['profit_ratio'].mean()
|
|
|
|
profit_sum = result['profit_ratio'].sum()
|
2020-11-28 10:31:28 +00:00
|
|
|
profit_total = profit_sum / max_open_trades
|
2020-05-25 05:02:24 +00:00
|
|
|
|
2020-01-31 03:39:18 +00:00
|
|
|
tabular_data.append(
|
2020-05-25 05:02:24 +00:00
|
|
|
{
|
2021-02-06 09:30:50 +00:00
|
|
|
'sell_reason': reason,
|
2020-05-25 05:02:24 +00:00
|
|
|
'trades': count,
|
|
|
|
'wins': len(result[result['profit_abs'] > 0]),
|
|
|
|
'draws': len(result[result['profit_abs'] == 0]),
|
|
|
|
'losses': len(result[result['profit_abs'] < 0]),
|
|
|
|
'profit_mean': profit_mean,
|
|
|
|
'profit_mean_pct': round(profit_mean * 100, 2),
|
|
|
|
'profit_sum': profit_sum,
|
|
|
|
'profit_sum_pct': round(profit_sum * 100, 2),
|
|
|
|
'profit_total_abs': result['profit_abs'].sum(),
|
2020-11-28 10:31:28 +00:00
|
|
|
'profit_total': profit_total,
|
|
|
|
'profit_total_pct': round(profit_total * 100, 2),
|
2020-05-25 05:02:24 +00:00
|
|
|
}
|
2020-01-31 03:39:18 +00:00
|
|
|
)
|
2020-05-25 05:02:24 +00:00
|
|
|
return tabular_data
|
2020-05-25 04:44:51 +00:00
|
|
|
|
|
|
|
|
2021-04-25 13:34:15 +00:00
|
|
|
def generate_strategy_comparison(all_results: Dict) -> List[Dict]:
|
2020-05-25 04:44:51 +00:00
|
|
|
"""
|
|
|
|
Generate summary per strategy
|
2021-01-23 12:02:48 +00:00
|
|
|
:param all_results: Dict of <Strategyname: DataFrame> containing results for all strategies
|
2020-05-25 17:55:02 +00:00
|
|
|
:return: List of Dicts containing the metrics per Strategy
|
2020-05-25 04:44:51 +00:00
|
|
|
"""
|
|
|
|
|
|
|
|
tabular_data = []
|
|
|
|
for strategy, results in all_results.items():
|
2020-09-25 18:39:00 +00:00
|
|
|
tabular_data.append(_generate_result_line(
|
2021-02-13 08:01:05 +00:00
|
|
|
results['results'], results['config']['dry_run_wallet'], strategy)
|
2020-09-25 18:39:00 +00:00
|
|
|
)
|
2020-05-25 17:18:53 +00:00
|
|
|
return tabular_data
|
2020-05-25 04:44:51 +00:00
|
|
|
|
|
|
|
|
2020-01-09 05:52:34 +00:00
|
|
|
def generate_edge_table(results: dict) -> str:
|
|
|
|
|
2020-05-25 04:44:51 +00:00
|
|
|
floatfmt = ('s', '.10g', '.2f', '.2f', '.2f', '.2f', 'd', 'd', 'd')
|
2020-01-09 05:52:34 +00:00
|
|
|
tabular_data = []
|
2020-02-07 02:51:50 +00:00
|
|
|
headers = ['Pair', 'Stoploss', 'Win Rate', 'Risk Reward Ratio',
|
|
|
|
'Required Risk Reward', 'Expectancy', 'Total Number of Trades',
|
|
|
|
'Average Duration (min)']
|
2020-01-09 05:52:34 +00:00
|
|
|
|
|
|
|
for result in results.items():
|
|
|
|
if result[1].nb_trades > 0:
|
|
|
|
tabular_data.append([
|
|
|
|
result[0],
|
|
|
|
result[1].stoploss,
|
|
|
|
result[1].winrate,
|
|
|
|
result[1].risk_reward_ratio,
|
|
|
|
result[1].required_risk_reward,
|
|
|
|
result[1].expectancy,
|
|
|
|
result[1].nb_trades,
|
|
|
|
round(result[1].avg_trade_duration)
|
|
|
|
])
|
|
|
|
|
|
|
|
# Ignore type as floatfmt does allow tuples but mypy does not know that
|
|
|
|
return tabulate(tabular_data, headers=headers,
|
2020-02-27 12:28:28 +00:00
|
|
|
floatfmt=floatfmt, tablefmt="orgtbl", stralign="right") # type: ignore
|
2020-03-15 14:17:53 +00:00
|
|
|
|
|
|
|
|
2021-04-25 17:28:32 +00:00
|
|
|
def generate_trading_stats(results: DataFrame) -> Dict[str, Any]:
|
|
|
|
""" Generate overall trade statistics """
|
|
|
|
if len(results) == 0:
|
|
|
|
return {
|
|
|
|
'wins': 0,
|
|
|
|
'losses': 0,
|
|
|
|
'draws': 0,
|
|
|
|
'holding_avg': timedelta(),
|
|
|
|
'winner_holding_avg': timedelta(),
|
|
|
|
'loser_holding_avg': timedelta(),
|
|
|
|
}
|
|
|
|
|
|
|
|
winning_trades = results.loc[results['profit_ratio'] > 0]
|
|
|
|
draw_trades = results.loc[results['profit_ratio'] == 0]
|
|
|
|
losing_trades = results.loc[results['profit_ratio'] < 0]
|
|
|
|
|
|
|
|
return {
|
|
|
|
'wins': len(winning_trades),
|
|
|
|
'losses': len(losing_trades),
|
|
|
|
'draws': len(draw_trades),
|
|
|
|
'holding_avg': (timedelta(minutes=round(results['trade_duration'].mean()))
|
|
|
|
if not results.empty else timedelta()),
|
|
|
|
'winner_holding_avg': (timedelta(minutes=round(winning_trades['trade_duration'].mean()))
|
|
|
|
if not winning_trades.empty else timedelta()),
|
|
|
|
'loser_holding_avg': (timedelta(minutes=round(losing_trades['trade_duration'].mean()))
|
|
|
|
if not losing_trades.empty else timedelta()),
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2020-07-03 17:45:45 +00:00
|
|
|
def generate_daily_stats(results: DataFrame) -> Dict[str, Any]:
|
2021-04-25 17:28:32 +00:00
|
|
|
""" Generate daily statistics """
|
2020-08-20 17:51:36 +00:00
|
|
|
if len(results) == 0:
|
|
|
|
return {
|
|
|
|
'backtest_best_day': 0,
|
|
|
|
'backtest_worst_day': 0,
|
2021-03-05 18:21:09 +00:00
|
|
|
'backtest_best_day_abs': 0,
|
|
|
|
'backtest_worst_day_abs': 0,
|
2020-08-20 17:51:36 +00:00
|
|
|
'winning_days': 0,
|
|
|
|
'draw_days': 0,
|
|
|
|
'losing_days': 0,
|
|
|
|
}
|
2021-03-05 18:21:09 +00:00
|
|
|
daily_profit_rel = results.resample('1d', on='close_date')['profit_ratio'].sum()
|
|
|
|
daily_profit = results.resample('1d', on='close_date')['profit_abs'].sum().round(10)
|
|
|
|
worst_rel = min(daily_profit_rel)
|
|
|
|
best_rel = max(daily_profit_rel)
|
2020-07-03 17:45:45 +00:00
|
|
|
worst = min(daily_profit)
|
|
|
|
best = max(daily_profit)
|
|
|
|
winning_days = sum(daily_profit > 0)
|
|
|
|
draw_days = sum(daily_profit == 0)
|
|
|
|
losing_days = sum(daily_profit < 0)
|
|
|
|
|
|
|
|
return {
|
2021-03-05 18:21:09 +00:00
|
|
|
'backtest_best_day': best_rel,
|
|
|
|
'backtest_worst_day': worst_rel,
|
|
|
|
'backtest_best_day_abs': best,
|
|
|
|
'backtest_worst_day_abs': worst,
|
2020-07-03 17:45:45 +00:00
|
|
|
'winning_days': winning_days,
|
|
|
|
'draw_days': draw_days,
|
|
|
|
'losing_days': losing_days,
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2021-04-25 13:44:21 +00:00
|
|
|
def generate_strategy_stats(btdata: Dict[str, DataFrame],
|
|
|
|
strategy: str,
|
|
|
|
content: Dict[str, Any],
|
|
|
|
min_date: Arrow, max_date: Arrow,
|
|
|
|
market_change: float
|
|
|
|
) -> Dict[str, Any]:
|
|
|
|
"""
|
|
|
|
:param btdata: Backtest data
|
|
|
|
:param strategy: Strategy name
|
|
|
|
:param content: Backtest result data in the format:
|
|
|
|
{'results: results, 'config: config}}.
|
|
|
|
:param min_date: Backtest start date
|
|
|
|
:param max_date: Backtest end date
|
|
|
|
:param market_change: float indicating the market change
|
|
|
|
:return: Dictionary containing results per strategy and a stratgy summary.
|
|
|
|
"""
|
|
|
|
results: Dict[str, DataFrame] = content['results']
|
|
|
|
if not isinstance(results, DataFrame):
|
|
|
|
return
|
|
|
|
config = content['config']
|
|
|
|
max_open_trades = min(config['max_open_trades'], len(btdata.keys()))
|
|
|
|
starting_balance = config['dry_run_wallet']
|
|
|
|
stake_currency = config['stake_currency']
|
|
|
|
|
|
|
|
pair_results = generate_pair_metrics(btdata, stake_currency=stake_currency,
|
|
|
|
starting_balance=starting_balance,
|
|
|
|
results=results, skip_nan=False)
|
|
|
|
sell_reason_stats = generate_sell_reason_stats(max_open_trades=max_open_trades,
|
|
|
|
results=results)
|
|
|
|
left_open_results = generate_pair_metrics(btdata, stake_currency=stake_currency,
|
|
|
|
starting_balance=starting_balance,
|
|
|
|
results=results.loc[results['is_open']],
|
|
|
|
skip_nan=True)
|
|
|
|
daily_stats = generate_daily_stats(results)
|
2021-04-25 17:28:32 +00:00
|
|
|
trade_stats = generate_trading_stats(results)
|
2021-04-25 13:44:21 +00:00
|
|
|
best_pair = max([pair for pair in pair_results if pair['key'] != 'TOTAL'],
|
|
|
|
key=lambda x: x['profit_sum']) if len(pair_results) > 1 else None
|
|
|
|
worst_pair = min([pair for pair in pair_results if pair['key'] != 'TOTAL'],
|
|
|
|
key=lambda x: x['profit_sum']) if len(pair_results) > 1 else None
|
|
|
|
results['open_timestamp'] = results['open_date'].astype(int64) // 1e6
|
|
|
|
results['close_timestamp'] = results['close_date'].astype(int64) // 1e6
|
|
|
|
|
|
|
|
backtest_days = (max_date - min_date).days
|
|
|
|
strat_stats = {
|
|
|
|
'trades': results.to_dict(orient='records'),
|
|
|
|
'locks': [lock.to_json() for lock in content['locks']],
|
|
|
|
'best_pair': best_pair,
|
|
|
|
'worst_pair': worst_pair,
|
|
|
|
'results_per_pair': pair_results,
|
|
|
|
'sell_reason_summary': sell_reason_stats,
|
|
|
|
'left_open_trades': left_open_results,
|
|
|
|
'total_trades': len(results),
|
|
|
|
'total_volume': float(results['stake_amount'].sum()),
|
|
|
|
'avg_stake_amount': results['stake_amount'].mean() if len(results) > 0 else 0,
|
|
|
|
'profit_mean': results['profit_ratio'].mean() if len(results) > 0 else 0,
|
2021-04-25 17:28:32 +00:00
|
|
|
'profit_median': results['profit_ratio'].median() if len(results) > 0 else 0,
|
2021-04-25 13:44:21 +00:00
|
|
|
'profit_total': results['profit_abs'].sum() / starting_balance,
|
|
|
|
'profit_total_abs': results['profit_abs'].sum(),
|
|
|
|
'backtest_start': min_date.datetime,
|
|
|
|
'backtest_start_ts': min_date.int_timestamp * 1000,
|
|
|
|
'backtest_end': max_date.datetime,
|
|
|
|
'backtest_end_ts': max_date.int_timestamp * 1000,
|
|
|
|
'backtest_days': backtest_days,
|
|
|
|
|
|
|
|
'backtest_run_start_ts': content['backtest_start_time'],
|
|
|
|
'backtest_run_end_ts': content['backtest_end_time'],
|
|
|
|
|
|
|
|
'trades_per_day': round(len(results) / backtest_days, 2) if backtest_days > 0 else 0,
|
|
|
|
'market_change': market_change,
|
|
|
|
'pairlist': list(btdata.keys()),
|
|
|
|
'stake_amount': config['stake_amount'],
|
|
|
|
'stake_currency': config['stake_currency'],
|
|
|
|
'stake_currency_decimals': decimals_per_coin(config['stake_currency']),
|
|
|
|
'starting_balance': starting_balance,
|
|
|
|
'dry_run_wallet': starting_balance,
|
|
|
|
'final_balance': content['final_balance'],
|
|
|
|
'max_open_trades': max_open_trades,
|
|
|
|
'max_open_trades_setting': (config['max_open_trades']
|
|
|
|
if config['max_open_trades'] != float('inf') else -1),
|
|
|
|
'timeframe': config['timeframe'],
|
|
|
|
'timerange': config.get('timerange', ''),
|
|
|
|
'enable_protections': config.get('enable_protections', False),
|
|
|
|
'strategy_name': strategy,
|
|
|
|
# Parameters relevant for backtesting
|
|
|
|
'stoploss': config['stoploss'],
|
|
|
|
'trailing_stop': config.get('trailing_stop', False),
|
|
|
|
'trailing_stop_positive': config.get('trailing_stop_positive'),
|
|
|
|
'trailing_stop_positive_offset': config.get('trailing_stop_positive_offset', 0.0),
|
|
|
|
'trailing_only_offset_is_reached': config.get('trailing_only_offset_is_reached', False),
|
|
|
|
'use_custom_stoploss': config.get('use_custom_stoploss', False),
|
|
|
|
'minimal_roi': config['minimal_roi'],
|
|
|
|
'use_sell_signal': config['ask_strategy']['use_sell_signal'],
|
|
|
|
'sell_profit_only': config['ask_strategy']['sell_profit_only'],
|
|
|
|
'sell_profit_offset': config['ask_strategy']['sell_profit_offset'],
|
|
|
|
'ignore_roi_if_buy_signal': config['ask_strategy']['ignore_roi_if_buy_signal'],
|
|
|
|
**daily_stats,
|
2021-04-25 17:28:32 +00:00
|
|
|
**trade_stats
|
2021-04-25 13:44:21 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
try:
|
|
|
|
max_drawdown, _, _, _, _ = calculate_max_drawdown(
|
|
|
|
results, value_col='profit_ratio')
|
|
|
|
drawdown_abs, drawdown_start, drawdown_end, high_val, low_val = calculate_max_drawdown(
|
|
|
|
results, value_col='profit_abs')
|
|
|
|
strat_stats.update({
|
|
|
|
'max_drawdown': max_drawdown,
|
|
|
|
'max_drawdown_abs': drawdown_abs,
|
|
|
|
'drawdown_start': drawdown_start,
|
|
|
|
'drawdown_start_ts': drawdown_start.timestamp() * 1000,
|
|
|
|
'drawdown_end': drawdown_end,
|
|
|
|
'drawdown_end_ts': drawdown_end.timestamp() * 1000,
|
|
|
|
|
|
|
|
'max_drawdown_low': low_val,
|
|
|
|
'max_drawdown_high': high_val,
|
|
|
|
})
|
|
|
|
|
|
|
|
csum_min, csum_max = calculate_csum(results, starting_balance)
|
|
|
|
strat_stats.update({
|
|
|
|
'csum_min': csum_min,
|
|
|
|
'csum_max': csum_max
|
|
|
|
})
|
|
|
|
|
|
|
|
except ValueError:
|
|
|
|
strat_stats.update({
|
|
|
|
'max_drawdown': 0.0,
|
|
|
|
'max_drawdown_abs': 0.0,
|
|
|
|
'max_drawdown_low': 0.0,
|
|
|
|
'max_drawdown_high': 0.0,
|
|
|
|
'drawdown_start': datetime(1970, 1, 1, tzinfo=timezone.utc),
|
|
|
|
'drawdown_start_ts': 0,
|
|
|
|
'drawdown_end': datetime(1970, 1, 1, tzinfo=timezone.utc),
|
|
|
|
'drawdown_end_ts': 0,
|
|
|
|
'csum_min': 0,
|
|
|
|
'csum_max': 0
|
|
|
|
})
|
|
|
|
|
|
|
|
return strat_stats
|
|
|
|
|
|
|
|
|
2020-09-25 18:39:00 +00:00
|
|
|
def generate_backtest_stats(btdata: Dict[str, DataFrame],
|
|
|
|
all_results: Dict[str, Dict[str, Union[DataFrame, Dict]]],
|
2020-06-09 06:00:35 +00:00
|
|
|
min_date: Arrow, max_date: Arrow
|
|
|
|
) -> Dict[str, Any]:
|
2020-06-07 12:32:01 +00:00
|
|
|
"""
|
|
|
|
:param btdata: Backtest data
|
2020-09-25 18:39:00 +00:00
|
|
|
:param all_results: backtest result - dictionary in the form:
|
|
|
|
{ Strategy: {'results: results, 'config: config}}.
|
2020-06-09 06:00:35 +00:00
|
|
|
:param min_date: Backtest start date
|
|
|
|
:param max_date: Backtest end date
|
2021-04-25 13:44:21 +00:00
|
|
|
:return: Dictionary containing results per strategy and a stratgy summary.
|
2020-06-07 12:32:01 +00:00
|
|
|
"""
|
2020-06-01 07:24:27 +00:00
|
|
|
result: Dict[str, Any] = {'strategy': {}}
|
2020-06-25 18:39:55 +00:00
|
|
|
market_change = calculate_market_change(btdata, 'close')
|
|
|
|
|
2020-09-25 18:39:00 +00:00
|
|
|
for strategy, content in all_results.items():
|
2021-04-25 13:44:21 +00:00
|
|
|
strat_stats = generate_strategy_stats(btdata, strategy, content,
|
|
|
|
min_date, max_date, market_change=market_change)
|
2020-06-01 07:23:24 +00:00
|
|
|
result['strategy'][strategy] = strat_stats
|
|
|
|
|
2021-04-25 13:34:15 +00:00
|
|
|
strategy_results = generate_strategy_comparison(all_results=all_results)
|
2020-06-01 07:23:24 +00:00
|
|
|
|
|
|
|
result['strategy_comparison'] = strategy_results
|
|
|
|
|
|
|
|
return result
|
|
|
|
|
|
|
|
|
2020-06-07 09:29:14 +00:00
|
|
|
###
|
|
|
|
# Start output section
|
|
|
|
###
|
|
|
|
|
2020-06-07 09:35:02 +00:00
|
|
|
def text_table_bt_results(pair_results: List[Dict[str, Any]], stake_currency: str) -> str:
|
2020-06-07 09:29:14 +00:00
|
|
|
"""
|
|
|
|
Generates and returns a text table for the given backtest data and the results dataframe
|
|
|
|
:param pair_results: List of Dictionaries - one entry per pair + final TOTAL row
|
|
|
|
:param stake_currency: stake-currency - used to correctly name headers
|
|
|
|
:return: pretty printed table with tabulate as string
|
|
|
|
"""
|
|
|
|
|
|
|
|
headers = _get_line_header('Pair', stake_currency)
|
2021-02-12 19:32:41 +00:00
|
|
|
floatfmt = _get_line_floatfmt(stake_currency)
|
2020-06-07 09:29:14 +00:00
|
|
|
output = [[
|
|
|
|
t['key'], t['trades'], t['profit_mean_pct'], t['profit_sum_pct'], t['profit_total_abs'],
|
|
|
|
t['profit_total_pct'], t['duration_avg'], t['wins'], t['draws'], t['losses']
|
|
|
|
] for t in pair_results]
|
|
|
|
# Ignore type as floatfmt does allow tuples but mypy does not know that
|
|
|
|
return tabulate(output, headers=headers,
|
|
|
|
floatfmt=floatfmt, tablefmt="orgtbl", stralign="right")
|
|
|
|
|
|
|
|
|
2020-06-07 09:31:33 +00:00
|
|
|
def text_table_sell_reason(sell_reason_stats: List[Dict[str, Any]], stake_currency: str) -> str:
|
2020-06-07 09:29:14 +00:00
|
|
|
"""
|
|
|
|
Generate small table outlining Backtest results
|
|
|
|
:param sell_reason_stats: Sell reason metrics
|
|
|
|
:param stake_currency: Stakecurrency used
|
|
|
|
:return: pretty printed table with tabulate as string
|
|
|
|
"""
|
|
|
|
headers = [
|
|
|
|
'Sell Reason',
|
|
|
|
'Sells',
|
|
|
|
'Wins',
|
|
|
|
'Draws',
|
|
|
|
'Losses',
|
|
|
|
'Avg Profit %',
|
|
|
|
'Cum Profit %',
|
|
|
|
f'Tot Profit {stake_currency}',
|
|
|
|
'Tot Profit %',
|
|
|
|
]
|
|
|
|
|
|
|
|
output = [[
|
|
|
|
t['sell_reason'], t['trades'], t['wins'], t['draws'], t['losses'],
|
2021-02-13 15:05:56 +00:00
|
|
|
t['profit_mean_pct'], t['profit_sum_pct'],
|
|
|
|
round_coin_value(t['profit_total_abs'], stake_currency, False),
|
|
|
|
t['profit_total_pct'],
|
2020-06-07 09:29:14 +00:00
|
|
|
] for t in sell_reason_stats]
|
|
|
|
return tabulate(output, headers=headers, tablefmt="orgtbl", stralign="right")
|
|
|
|
|
|
|
|
|
2020-06-07 09:31:33 +00:00
|
|
|
def text_table_strategy(strategy_results, stake_currency: str) -> str:
|
2020-06-07 09:29:14 +00:00
|
|
|
"""
|
|
|
|
Generate summary table per strategy
|
|
|
|
:param stake_currency: stake-currency - used to correctly name headers
|
|
|
|
:param max_open_trades: Maximum allowed open trades used for backtest
|
2021-01-23 12:02:48 +00:00
|
|
|
:param all_results: Dict of <Strategyname: DataFrame> containing results for all strategies
|
2020-06-07 09:29:14 +00:00
|
|
|
:return: pretty printed table with tabulate as string
|
|
|
|
"""
|
2021-02-12 19:32:41 +00:00
|
|
|
floatfmt = _get_line_floatfmt(stake_currency)
|
2020-06-07 09:29:14 +00:00
|
|
|
headers = _get_line_header('Strategy', stake_currency)
|
|
|
|
|
|
|
|
output = [[
|
|
|
|
t['key'], t['trades'], t['profit_mean_pct'], t['profit_sum_pct'], t['profit_total_abs'],
|
|
|
|
t['profit_total_pct'], t['duration_avg'], t['wins'], t['draws'], t['losses']
|
|
|
|
] for t in strategy_results]
|
|
|
|
# Ignore type as floatfmt does allow tuples but mypy does not know that
|
|
|
|
return tabulate(output, headers=headers,
|
|
|
|
floatfmt=floatfmt, tablefmt="orgtbl", stralign="right")
|
|
|
|
|
|
|
|
|
2020-06-26 07:22:50 +00:00
|
|
|
def text_table_add_metrics(strat_results: Dict) -> str:
|
|
|
|
if len(strat_results['trades']) > 0:
|
2021-01-23 12:02:48 +00:00
|
|
|
best_trade = max(strat_results['trades'], key=lambda x: x['profit_ratio'])
|
|
|
|
worst_trade = min(strat_results['trades'], key=lambda x: x['profit_ratio'])
|
2020-06-08 04:38:29 +00:00
|
|
|
metrics = [
|
2020-07-14 17:34:01 +00:00
|
|
|
('Backtesting from', strat_results['backtest_start'].strftime(DATETIME_PRINT_FORMAT)),
|
|
|
|
('Backtesting to', strat_results['backtest_end'].strftime(DATETIME_PRINT_FORMAT)),
|
2020-11-24 05:57:11 +00:00
|
|
|
('Max open trades', strat_results['max_open_trades']),
|
|
|
|
('', ''), # Empty line to improve readability
|
2020-06-26 07:22:50 +00:00
|
|
|
('Total trades', strat_results['total_trades']),
|
2021-02-17 19:19:03 +00:00
|
|
|
('Starting balance', round_coin_value(strat_results['starting_balance'],
|
2021-02-13 08:01:05 +00:00
|
|
|
strat_results['stake_currency'])),
|
2021-02-17 19:19:03 +00:00
|
|
|
('Final balance', round_coin_value(strat_results['final_balance'],
|
|
|
|
strat_results['stake_currency'])),
|
2021-02-13 08:01:05 +00:00
|
|
|
('Absolute profit ', round_coin_value(strat_results['profit_total_abs'],
|
|
|
|
strat_results['stake_currency'])),
|
2021-02-17 19:19:03 +00:00
|
|
|
('Total profit %', f"{round(strat_results['profit_total'] * 100, 2)}%"),
|
2020-06-26 07:22:50 +00:00
|
|
|
('Trades per day', strat_results['trades_per_day']),
|
2021-02-17 19:19:03 +00:00
|
|
|
('Avg. stake amount', round_coin_value(strat_results['avg_stake_amount'],
|
|
|
|
strat_results['stake_currency'])),
|
2021-02-14 12:08:49 +00:00
|
|
|
('Total trade volume', round_coin_value(strat_results['total_volume'],
|
|
|
|
strat_results['stake_currency'])),
|
|
|
|
|
2020-11-28 15:56:08 +00:00
|
|
|
('', ''), # Empty line to improve readability
|
2020-11-28 16:52:29 +00:00
|
|
|
('Best Pair', f"{strat_results['best_pair']['key']} "
|
2020-11-28 15:56:08 +00:00
|
|
|
f"{round(strat_results['best_pair']['profit_sum_pct'], 2)}%"),
|
2020-11-28 16:52:29 +00:00
|
|
|
('Worst Pair', f"{strat_results['worst_pair']['key']} "
|
2020-11-28 15:56:08 +00:00
|
|
|
f"{round(strat_results['worst_pair']['profit_sum_pct'], 2)}%"),
|
2021-01-23 12:02:48 +00:00
|
|
|
('Best trade', f"{best_trade['pair']} {round(best_trade['profit_ratio'] * 100, 2)}%"),
|
2020-11-28 16:52:29 +00:00
|
|
|
('Worst trade', f"{worst_trade['pair']} "
|
2021-01-23 12:02:48 +00:00
|
|
|
f"{round(worst_trade['profit_ratio'] * 100, 2)}%"),
|
2020-11-28 16:45:56 +00:00
|
|
|
|
2021-03-05 18:21:09 +00:00
|
|
|
('Best day', round_coin_value(strat_results['backtest_best_day_abs'],
|
|
|
|
strat_results['stake_currency'])),
|
|
|
|
('Worst day', round_coin_value(strat_results['backtest_worst_day_abs'],
|
|
|
|
strat_results['stake_currency'])),
|
2020-07-03 17:45:45 +00:00
|
|
|
('Days win/draw/lose', f"{strat_results['winning_days']} / "
|
|
|
|
f"{strat_results['draw_days']} / {strat_results['losing_days']}"),
|
2020-07-03 17:58:02 +00:00
|
|
|
('Avg. Duration Winners', f"{strat_results['winner_holding_avg']}"),
|
|
|
|
('Avg. Duration Loser', f"{strat_results['loser_holding_avg']}"),
|
2020-06-09 06:00:35 +00:00
|
|
|
('', ''), # Empty line to improve readability
|
2020-12-24 21:17:24 +00:00
|
|
|
|
2021-02-17 19:19:03 +00:00
|
|
|
('Min balance', round_coin_value(strat_results['csum_min'],
|
2021-02-20 19:21:30 +00:00
|
|
|
strat_results['stake_currency'])),
|
2021-02-17 19:19:03 +00:00
|
|
|
('Max balance', round_coin_value(strat_results['csum_max'],
|
2021-02-20 19:21:30 +00:00
|
|
|
strat_results['stake_currency'])),
|
2020-12-24 21:17:24 +00:00
|
|
|
|
2021-02-17 19:19:03 +00:00
|
|
|
('Drawdown', f"{round(strat_results['max_drawdown'] * 100, 2)}%"),
|
|
|
|
('Drawdown', round_coin_value(strat_results['max_drawdown_abs'],
|
|
|
|
strat_results['stake_currency'])),
|
|
|
|
('Drawdown high', round_coin_value(strat_results['max_drawdown_high'],
|
|
|
|
strat_results['stake_currency'])),
|
|
|
|
('Drawdown low', round_coin_value(strat_results['max_drawdown_low'],
|
2021-02-14 18:30:17 +00:00
|
|
|
strat_results['stake_currency'])),
|
2020-06-26 07:22:50 +00:00
|
|
|
('Drawdown Start', strat_results['drawdown_start'].strftime(DATETIME_PRINT_FORMAT)),
|
|
|
|
('Drawdown End', strat_results['drawdown_end'].strftime(DATETIME_PRINT_FORMAT)),
|
|
|
|
('Market change', f"{round(strat_results['market_change'] * 100, 2)}%"),
|
2020-06-08 04:38:29 +00:00
|
|
|
]
|
|
|
|
|
|
|
|
return tabulate(metrics, headers=["Metric", "Value"], tablefmt="orgtbl")
|
|
|
|
else:
|
2021-02-16 19:39:50 +00:00
|
|
|
start_balance = round_coin_value(strat_results['starting_balance'],
|
|
|
|
strat_results['stake_currency'])
|
2021-03-02 15:12:22 +00:00
|
|
|
stake_amount = round_coin_value(
|
|
|
|
strat_results['stake_amount'], strat_results['stake_currency']
|
|
|
|
) if strat_results['stake_amount'] != UNLIMITED_STAKE_AMOUNT else 'unlimited'
|
|
|
|
|
2021-02-16 19:39:50 +00:00
|
|
|
message = ("No trades made. "
|
|
|
|
f"Your starting balance was {start_balance}, "
|
|
|
|
f"and your stake was {stake_amount}."
|
|
|
|
)
|
|
|
|
return message
|
2020-06-08 04:37:30 +00:00
|
|
|
|
|
|
|
|
2020-06-01 07:23:24 +00:00
|
|
|
def show_backtest_results(config: Dict, backtest_stats: Dict):
|
|
|
|
stake_currency = config['stake_currency']
|
|
|
|
|
|
|
|
for strategy, results in backtest_stats['strategy'].items():
|
|
|
|
|
2020-05-25 18:22:22 +00:00
|
|
|
# Print results
|
|
|
|
print(f"Result for strategy {strategy}")
|
2020-06-07 09:35:02 +00:00
|
|
|
table = text_table_bt_results(results['results_per_pair'], stake_currency=stake_currency)
|
2020-03-15 14:17:53 +00:00
|
|
|
if isinstance(table, str):
|
|
|
|
print(' BACKTESTING REPORT '.center(len(table.splitlines()[0]), '='))
|
|
|
|
print(table)
|
|
|
|
|
2020-06-07 09:31:33 +00:00
|
|
|
table = text_table_sell_reason(sell_reason_stats=results['sell_reason_summary'],
|
|
|
|
stake_currency=stake_currency)
|
2020-06-26 04:47:04 +00:00
|
|
|
if isinstance(table, str) and len(table) > 0:
|
2020-03-15 14:17:53 +00:00
|
|
|
print(' SELL REASON STATS '.center(len(table.splitlines()[0]), '='))
|
|
|
|
print(table)
|
|
|
|
|
2020-06-07 09:35:02 +00:00
|
|
|
table = text_table_bt_results(results['left_open_trades'], stake_currency=stake_currency)
|
2020-06-26 04:47:04 +00:00
|
|
|
if isinstance(table, str) and len(table) > 0:
|
2020-03-15 14:17:53 +00:00
|
|
|
print(' LEFT OPEN TRADES REPORT '.center(len(table.splitlines()[0]), '='))
|
|
|
|
print(table)
|
2020-06-08 04:37:30 +00:00
|
|
|
|
|
|
|
table = text_table_add_metrics(results)
|
2020-06-26 04:47:04 +00:00
|
|
|
if isinstance(table, str) and len(table) > 0:
|
2020-06-08 04:37:30 +00:00
|
|
|
print(' SUMMARY METRICS '.center(len(table.splitlines()[0]), '='))
|
|
|
|
print(table)
|
|
|
|
|
2020-06-26 04:47:04 +00:00
|
|
|
if isinstance(table, str) and len(table) > 0:
|
2020-03-15 14:17:53 +00:00
|
|
|
print('=' * len(table.splitlines()[0]))
|
|
|
|
print()
|
2020-05-25 04:44:51 +00:00
|
|
|
|
2020-06-01 07:23:24 +00:00
|
|
|
if len(backtest_stats['strategy']) > 1:
|
2020-03-15 14:17:53 +00:00
|
|
|
# Print Strategy summary table
|
2020-05-25 17:55:02 +00:00
|
|
|
|
2020-06-07 09:31:33 +00:00
|
|
|
table = text_table_strategy(backtest_stats['strategy_comparison'], stake_currency)
|
2020-03-15 14:17:53 +00:00
|
|
|
print(' STRATEGY SUMMARY '.center(len(table.splitlines()[0]), '='))
|
|
|
|
print(table)
|
|
|
|
print('=' * len(table.splitlines()[0]))
|
|
|
|
print('\nFor more details, please look at the detail tables above')
|