2022-08-06 15:51:21 +00:00
|
|
|
import logging
|
|
|
|
from typing import Any, Dict
|
|
|
|
|
|
|
|
from lightgbm import LGBMClassifier
|
|
|
|
|
2022-09-06 18:30:37 +00:00
|
|
|
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
2022-09-07 16:58:55 +00:00
|
|
|
from freqtrade.freqai.prediction_models.BaseClassifierModel import BaseClassifierModel
|
|
|
|
|
2022-08-06 15:51:21 +00:00
|
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
2022-08-13 18:07:31 +00:00
|
|
|
class LightGBMClassifier(BaseClassifierModel):
|
2022-08-06 15:51:21 +00:00
|
|
|
"""
|
|
|
|
User created prediction model. The class needs to override three necessary
|
|
|
|
functions, predict(), train(), fit(). The class inherits ModelHandler which
|
|
|
|
has its own DataHandler where data is held, saved, loaded, and managed.
|
|
|
|
"""
|
|
|
|
|
2022-09-07 16:58:55 +00:00
|
|
|
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
|
2022-08-06 15:51:21 +00:00
|
|
|
"""
|
|
|
|
User sets up the training and test data to fit their desired model here
|
|
|
|
:params:
|
|
|
|
:data_dictionary: the dictionary constructed by DataHandler to hold
|
|
|
|
all the training and test data/labels.
|
|
|
|
"""
|
|
|
|
|
|
|
|
if self.freqai_info.get('data_split_parameters', {}).get('test_size', 0.1) == 0:
|
|
|
|
eval_set = None
|
2022-08-16 09:41:53 +00:00
|
|
|
test_weights = None
|
2022-08-06 15:51:21 +00:00
|
|
|
else:
|
2022-08-16 09:41:53 +00:00
|
|
|
eval_set = (data_dictionary["test_features"].to_numpy(),
|
|
|
|
data_dictionary["test_labels"].to_numpy()[:, 0])
|
|
|
|
test_weights = data_dictionary["test_weights"]
|
|
|
|
X = data_dictionary["train_features"].to_numpy()
|
|
|
|
y = data_dictionary["train_labels"].to_numpy()[:, 0]
|
|
|
|
train_weights = data_dictionary["train_weights"]
|
2022-08-06 15:51:21 +00:00
|
|
|
|
2022-09-07 16:58:55 +00:00
|
|
|
init_model = self.get_init_model(dk.pair)
|
2022-09-06 18:30:37 +00:00
|
|
|
|
2022-08-06 15:51:21 +00:00
|
|
|
model = LGBMClassifier(**self.model_training_parameters)
|
|
|
|
|
2022-08-16 09:41:53 +00:00
|
|
|
model.fit(X=X, y=y, eval_set=eval_set, sample_weight=train_weights,
|
2022-09-06 18:30:37 +00:00
|
|
|
eval_sample_weight=[test_weights], init_model=init_model)
|
2022-08-06 15:51:21 +00:00
|
|
|
|
|
|
|
return model
|