2018-12-13 05:12:10 +00:00
|
|
|
import logging
|
2019-05-25 14:51:52 +00:00
|
|
|
import operator
|
2019-12-27 05:58:50 +00:00
|
|
|
from datetime import datetime, timezone
|
2018-12-15 12:54:35 +00:00
|
|
|
from pathlib import Path
|
2019-12-27 09:25:17 +00:00
|
|
|
from typing import Dict, List, Optional, Tuple
|
2018-12-13 05:12:10 +00:00
|
|
|
|
|
|
|
import arrow
|
2018-12-15 13:28:37 +00:00
|
|
|
from pandas import DataFrame
|
2018-12-13 05:12:10 +00:00
|
|
|
|
2019-07-11 18:23:23 +00:00
|
|
|
from freqtrade.configuration import TimeRange
|
2019-12-27 05:58:50 +00:00
|
|
|
from freqtrade.constants import DEFAULT_DATAFRAME_COLUMNS
|
2020-09-28 17:39:41 +00:00
|
|
|
from freqtrade.data.converter import (clean_ohlcv_dataframe, ohlcv_to_dataframe,
|
|
|
|
trades_remove_duplicates, trades_to_ohlcv)
|
2019-12-28 08:59:47 +00:00
|
|
|
from freqtrade.data.history.idatahandler import IDataHandler, get_datahandler
|
2021-12-03 13:11:24 +00:00
|
|
|
from freqtrade.enums import CandleType
|
2019-12-30 14:02:17 +00:00
|
|
|
from freqtrade.exceptions import OperationalException
|
2019-12-27 09:25:17 +00:00
|
|
|
from freqtrade.exchange import Exchange
|
2020-04-01 18:31:21 +00:00
|
|
|
from freqtrade.misc import format_ms_time
|
2019-04-04 17:56:40 +00:00
|
|
|
|
2020-09-28 17:39:41 +00:00
|
|
|
|
2018-12-13 05:12:10 +00:00
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
2018-12-15 19:31:25 +00:00
|
|
|
def load_pair_history(pair: str,
|
2019-11-02 19:19:13 +00:00
|
|
|
timeframe: str,
|
2019-12-25 14:40:42 +00:00
|
|
|
datadir: Path, *,
|
2019-10-06 15:10:40 +00:00
|
|
|
timerange: Optional[TimeRange] = None,
|
2019-06-09 12:40:45 +00:00
|
|
|
fill_up_missing: bool = True,
|
2019-10-20 12:02:53 +00:00
|
|
|
drop_incomplete: bool = True,
|
|
|
|
startup_candles: int = 0,
|
2019-12-25 15:12:20 +00:00
|
|
|
data_format: str = None,
|
|
|
|
data_handler: IDataHandler = None,
|
2021-12-03 11:23:35 +00:00
|
|
|
candle_type: CandleType = CandleType.SPOT
|
2018-12-16 09:17:11 +00:00
|
|
|
) -> DataFrame:
|
2018-12-15 19:31:25 +00:00
|
|
|
"""
|
2020-03-08 10:35:31 +00:00
|
|
|
Load cached ohlcv history for the given pair.
|
2019-12-17 10:43:42 +00:00
|
|
|
|
2019-06-09 12:40:45 +00:00
|
|
|
:param pair: Pair to load data for
|
2020-03-08 10:35:31 +00:00
|
|
|
:param timeframe: Timeframe (e.g. "5m")
|
2019-06-09 12:40:45 +00:00
|
|
|
:param datadir: Path to the data storage location.
|
2019-12-25 15:12:20 +00:00
|
|
|
:param data_format: Format of the data. Ignored if data_handler is set.
|
2019-06-09 12:40:45 +00:00
|
|
|
:param timerange: Limit data to be loaded to this timerange
|
|
|
|
:param fill_up_missing: Fill missing values with "No action"-candles
|
|
|
|
:param drop_incomplete: Drop last candle assuming it may be incomplete.
|
2019-10-20 12:02:53 +00:00
|
|
|
:param startup_candles: Additional candles to load at the start of the period
|
2019-12-25 14:55:28 +00:00
|
|
|
:param data_handler: Initialized data-handler to use.
|
|
|
|
Will be initialized from data_format if not set
|
2021-12-03 11:23:35 +00:00
|
|
|
:param candle_type: Any of the enum CandleType (must match trading mode!)
|
2019-12-04 05:57:44 +00:00
|
|
|
:return: DataFrame with ohlcv data, or empty DataFrame
|
2018-12-15 19:31:25 +00:00
|
|
|
"""
|
2019-12-25 15:12:20 +00:00
|
|
|
data_handler = get_datahandler(datadir, data_format, data_handler)
|
|
|
|
|
2019-12-25 14:55:28 +00:00
|
|
|
return data_handler.ohlcv_load(pair=pair,
|
|
|
|
timeframe=timeframe,
|
|
|
|
timerange=timerange,
|
|
|
|
fill_missing=fill_up_missing,
|
|
|
|
drop_incomplete=drop_incomplete,
|
|
|
|
startup_candles=startup_candles,
|
2021-11-21 07:43:05 +00:00
|
|
|
candle_type=candle_type
|
2019-12-25 14:55:28 +00:00
|
|
|
)
|
2018-12-15 19:31:25 +00:00
|
|
|
|
|
|
|
|
2019-09-07 19:06:20 +00:00
|
|
|
def load_data(datadir: Path,
|
2019-11-02 19:19:13 +00:00
|
|
|
timeframe: str,
|
2019-12-25 15:12:20 +00:00
|
|
|
pairs: List[str], *,
|
2019-10-06 15:10:40 +00:00
|
|
|
timerange: Optional[TimeRange] = None,
|
2019-05-29 18:10:48 +00:00
|
|
|
fill_up_missing: bool = True,
|
2019-10-20 12:02:53 +00:00
|
|
|
startup_candles: int = 0,
|
2019-12-25 14:55:28 +00:00
|
|
|
fail_without_data: bool = False,
|
|
|
|
data_format: str = 'json',
|
2021-12-03 11:23:35 +00:00
|
|
|
candle_type: CandleType = CandleType.SPOT
|
2019-05-29 18:10:48 +00:00
|
|
|
) -> Dict[str, DataFrame]:
|
2018-12-13 05:12:10 +00:00
|
|
|
"""
|
2020-03-08 10:35:31 +00:00
|
|
|
Load ohlcv history data for a list of pairs.
|
2019-12-17 10:43:42 +00:00
|
|
|
|
2019-10-20 12:02:53 +00:00
|
|
|
:param datadir: Path to the data storage location.
|
2020-03-08 10:35:31 +00:00
|
|
|
:param timeframe: Timeframe (e.g. "5m")
|
2019-10-20 12:02:53 +00:00
|
|
|
:param pairs: List of pairs to load
|
|
|
|
:param timerange: Limit data to be loaded to this timerange
|
|
|
|
:param fill_up_missing: Fill missing values with "No action"-candles
|
|
|
|
:param startup_candles: Additional candles to load at the start of the period
|
2019-10-23 18:13:43 +00:00
|
|
|
:param fail_without_data: Raise OperationalException if no data is found.
|
2019-12-28 13:57:39 +00:00
|
|
|
:param data_format: Data format which should be used. Defaults to json
|
2021-12-03 11:23:35 +00:00
|
|
|
:param candle_type: Any of the enum CandleType (must match trading mode!)
|
2019-10-20 12:02:53 +00:00
|
|
|
:return: dict(<pair>:<Dataframe>)
|
2018-12-13 05:12:10 +00:00
|
|
|
"""
|
2019-05-29 18:25:07 +00:00
|
|
|
result: Dict[str, DataFrame] = {}
|
2019-10-31 05:51:36 +00:00
|
|
|
if startup_candles > 0 and timerange:
|
|
|
|
logger.info(f'Using indicator startup period: {startup_candles} ...')
|
2019-09-20 18:16:49 +00:00
|
|
|
|
2019-12-25 15:12:20 +00:00
|
|
|
data_handler = get_datahandler(datadir, data_format)
|
2019-12-25 14:55:28 +00:00
|
|
|
|
2019-09-20 18:16:49 +00:00
|
|
|
for pair in pairs:
|
2019-11-02 19:19:13 +00:00
|
|
|
hist = load_pair_history(pair=pair, timeframe=timeframe,
|
2019-09-20 18:16:49 +00:00
|
|
|
datadir=datadir, timerange=timerange,
|
2019-10-23 18:13:43 +00:00
|
|
|
fill_up_missing=fill_up_missing,
|
2019-12-25 14:55:28 +00:00
|
|
|
startup_candles=startup_candles,
|
2021-11-21 07:43:05 +00:00
|
|
|
data_handler=data_handler,
|
|
|
|
candle_type=candle_type
|
2019-12-25 14:55:28 +00:00
|
|
|
)
|
2019-12-04 05:57:44 +00:00
|
|
|
if not hist.empty:
|
2019-09-20 18:16:49 +00:00
|
|
|
result[pair] = hist
|
2019-10-23 18:13:43 +00:00
|
|
|
|
|
|
|
if fail_without_data and not result:
|
|
|
|
raise OperationalException("No data found. Terminating.")
|
2018-12-13 05:12:10 +00:00
|
|
|
return result
|
|
|
|
|
|
|
|
|
2019-12-17 10:43:42 +00:00
|
|
|
def refresh_data(datadir: Path,
|
|
|
|
timeframe: str,
|
|
|
|
pairs: List[str],
|
|
|
|
exchange: Exchange,
|
2019-12-25 15:12:20 +00:00
|
|
|
data_format: str = None,
|
2019-12-17 10:43:42 +00:00
|
|
|
timerange: Optional[TimeRange] = None,
|
2021-12-03 11:23:35 +00:00
|
|
|
candle_type: CandleType = CandleType.SPOT
|
2019-12-17 10:43:42 +00:00
|
|
|
) -> None:
|
|
|
|
"""
|
2020-03-08 10:35:31 +00:00
|
|
|
Refresh ohlcv history data for a list of pairs.
|
2019-12-17 10:43:42 +00:00
|
|
|
|
|
|
|
:param datadir: Path to the data storage location.
|
2020-03-08 10:35:31 +00:00
|
|
|
:param timeframe: Timeframe (e.g. "5m")
|
2019-12-17 10:43:42 +00:00
|
|
|
:param pairs: List of pairs to load
|
|
|
|
:param exchange: Exchange object
|
2021-06-25 17:13:31 +00:00
|
|
|
:param data_format: dataformat to use
|
2019-12-17 10:43:42 +00:00
|
|
|
:param timerange: Limit data to be loaded to this timerange
|
2021-12-03 11:23:35 +00:00
|
|
|
:param candle_type: Any of the enum CandleType (must match trading mode!)
|
2019-12-17 10:43:42 +00:00
|
|
|
"""
|
2019-12-25 15:12:20 +00:00
|
|
|
data_handler = get_datahandler(datadir, data_format)
|
2021-08-19 18:34:02 +00:00
|
|
|
for idx, pair in enumerate(pairs):
|
|
|
|
process = f'{idx}/{len(pairs)}'
|
|
|
|
_download_pair_history(pair=pair, process=process,
|
|
|
|
timeframe=timeframe, datadir=datadir,
|
2021-11-21 07:43:05 +00:00
|
|
|
timerange=timerange, exchange=exchange, data_handler=data_handler,
|
|
|
|
candle_type=candle_type)
|
2019-12-17 10:43:42 +00:00
|
|
|
|
|
|
|
|
2021-11-21 06:21:10 +00:00
|
|
|
def _load_cached_data_for_updating(
|
|
|
|
pair: str,
|
|
|
|
timeframe: str,
|
|
|
|
timerange: Optional[TimeRange],
|
|
|
|
data_handler: IDataHandler,
|
2021-12-03 11:23:35 +00:00
|
|
|
candle_type: CandleType = CandleType.SPOT
|
2021-11-21 06:21:10 +00:00
|
|
|
) -> Tuple[DataFrame, Optional[int]]:
|
2018-12-13 05:12:10 +00:00
|
|
|
"""
|
2019-08-15 18:13:19 +00:00
|
|
|
Load cached data to download more data.
|
2019-10-06 15:10:40 +00:00
|
|
|
If timerange is passed in, checks whether data from an before the stored data will be
|
|
|
|
downloaded.
|
|
|
|
If that's the case then what's available should be completely overwritten.
|
2019-12-27 09:12:56 +00:00
|
|
|
Otherwise downloads always start at the end of the available data to avoid data gaps.
|
|
|
|
Note: Only used by download_pair_history().
|
2018-12-13 05:12:10 +00:00
|
|
|
"""
|
2019-12-27 05:58:50 +00:00
|
|
|
start = None
|
|
|
|
if timerange:
|
|
|
|
if timerange.starttype == 'date':
|
|
|
|
start = datetime.fromtimestamp(timerange.startts, tz=timezone.utc)
|
|
|
|
|
|
|
|
# Intentionally don't pass timerange in - since we need to load the full dataset.
|
|
|
|
data = data_handler.ohlcv_load(pair, timeframe=timeframe,
|
|
|
|
timerange=None, fill_missing=False,
|
2021-11-21 07:43:05 +00:00
|
|
|
drop_incomplete=True, warn_no_data=False,
|
|
|
|
candle_type=candle_type)
|
2019-12-27 05:58:50 +00:00
|
|
|
if not data.empty:
|
2019-12-27 06:07:27 +00:00
|
|
|
if start and start < data.iloc[0]['date']:
|
2019-12-27 05:58:50 +00:00
|
|
|
# Earlier data than existing data requested, redownload all
|
2019-12-27 09:11:49 +00:00
|
|
|
data = DataFrame(columns=DEFAULT_DATAFRAME_COLUMNS)
|
|
|
|
else:
|
|
|
|
start = data.iloc[-1]['date']
|
2019-12-27 06:07:27 +00:00
|
|
|
|
2019-12-27 05:58:50 +00:00
|
|
|
start_ms = int(start.timestamp() * 1000) if start else None
|
|
|
|
return data, start_ms
|
|
|
|
|
|
|
|
|
2021-08-19 18:34:02 +00:00
|
|
|
def _download_pair_history(pair: str, *,
|
|
|
|
datadir: Path,
|
2019-12-17 22:06:03 +00:00
|
|
|
exchange: Exchange,
|
2019-12-16 18:57:03 +00:00
|
|
|
timeframe: str = '5m',
|
2021-08-19 18:34:02 +00:00
|
|
|
process: str = '',
|
|
|
|
new_pairs_days: int = 30,
|
|
|
|
data_handler: IDataHandler = None,
|
2021-11-07 06:35:27 +00:00
|
|
|
timerange: Optional[TimeRange] = None,
|
2021-12-03 11:23:35 +00:00
|
|
|
candle_type: CandleType = CandleType.SPOT
|
|
|
|
) -> bool:
|
2018-12-13 05:12:10 +00:00
|
|
|
"""
|
2019-11-13 10:28:26 +00:00
|
|
|
Download latest candles from the exchange for the pair and timeframe passed in parameters
|
2019-11-02 19:19:13 +00:00
|
|
|
The data is downloaded starting from the last correct data that
|
2018-12-13 05:12:10 +00:00
|
|
|
exists in a cache. If timerange starts earlier than the data in the cache,
|
|
|
|
the full data will be redownloaded
|
|
|
|
|
|
|
|
Based on @Rybolov work: https://github.com/rybolov/freqtrade-data
|
2019-05-17 16:05:36 +00:00
|
|
|
|
2018-12-13 05:12:10 +00:00
|
|
|
:param pair: pair to download
|
2020-03-08 10:35:31 +00:00
|
|
|
:param timeframe: Timeframe (e.g "5m")
|
2018-12-13 05:12:10 +00:00
|
|
|
:param timerange: range of time to download
|
2021-12-03 11:23:35 +00:00
|
|
|
:param candle_type: Any of the enum CandleType (must match trading mode!)
|
2018-12-16 13:14:17 +00:00
|
|
|
:return: bool with success state
|
2018-12-13 05:12:10 +00:00
|
|
|
"""
|
2019-12-27 12:46:25 +00:00
|
|
|
data_handler = get_datahandler(datadir, data_handler=data_handler)
|
2019-12-25 15:12:20 +00:00
|
|
|
|
2018-12-16 09:29:53 +00:00
|
|
|
try:
|
2019-05-17 16:05:36 +00:00
|
|
|
logger.info(
|
2021-08-19 18:34:02 +00:00
|
|
|
f'Download history data for pair: "{pair}" ({process}), timeframe: {timeframe} '
|
2019-05-17 16:05:36 +00:00
|
|
|
f'and store in {datadir}.'
|
|
|
|
)
|
2018-12-13 05:12:10 +00:00
|
|
|
|
2019-12-27 05:58:50 +00:00
|
|
|
# data, since_ms = _load_cached_data_for_updating_old(datadir, pair, timeframe, timerange)
|
|
|
|
data, since_ms = _load_cached_data_for_updating(pair, timeframe, timerange,
|
2021-11-21 07:43:05 +00:00
|
|
|
data_handler=data_handler,
|
|
|
|
candle_type=candle_type)
|
2018-12-13 05:12:10 +00:00
|
|
|
|
2019-12-27 05:58:50 +00:00
|
|
|
logger.debug("Current Start: %s",
|
|
|
|
f"{data.iloc[0]['date']:%Y-%m-%d %H:%M:%S}" if not data.empty else 'None')
|
|
|
|
logger.debug("Current End: %s",
|
|
|
|
f"{data.iloc[-1]['date']:%Y-%m-%d %H:%M:%S}" if not data.empty else 'None')
|
2018-12-13 05:12:10 +00:00
|
|
|
|
2018-12-16 09:29:53 +00:00
|
|
|
# Default since_ms to 30 days if nothing is given
|
2019-12-16 19:12:26 +00:00
|
|
|
new_data = exchange.get_historic_ohlcv(pair=pair,
|
|
|
|
timeframe=timeframe,
|
|
|
|
since_ms=since_ms if since_ms else
|
2021-07-05 17:51:14 +00:00
|
|
|
arrow.utcnow().shift(
|
2021-09-07 05:14:40 +00:00
|
|
|
days=-new_pairs_days).int_timestamp * 1000,
|
2021-11-07 06:35:27 +00:00
|
|
|
is_new_pair=data.empty,
|
|
|
|
candle_type=candle_type,
|
2019-12-16 19:12:26 +00:00
|
|
|
)
|
2019-12-27 05:58:50 +00:00
|
|
|
# TODO: Maybe move parsing to exchange class (?)
|
2020-03-08 10:35:31 +00:00
|
|
|
new_dataframe = ohlcv_to_dataframe(new_data, timeframe, pair,
|
2021-11-08 03:37:57 +00:00
|
|
|
fill_missing=False, drop_incomplete=True)
|
2019-12-27 05:58:50 +00:00
|
|
|
if data.empty:
|
|
|
|
data = new_dataframe
|
|
|
|
else:
|
2020-07-25 15:06:58 +00:00
|
|
|
# Run cleaning again to ensure there were no duplicate candles
|
|
|
|
# Especially between existing and new data.
|
|
|
|
data = clean_ohlcv_dataframe(data.append(new_dataframe), timeframe, pair,
|
2021-11-08 03:37:57 +00:00
|
|
|
fill_missing=False, drop_incomplete=False)
|
2018-12-13 05:12:10 +00:00
|
|
|
|
2019-12-27 05:58:50 +00:00
|
|
|
logger.debug("New Start: %s",
|
|
|
|
f"{data.iloc[0]['date']:%Y-%m-%d %H:%M:%S}" if not data.empty else 'None')
|
|
|
|
logger.debug("New End: %s",
|
|
|
|
f"{data.iloc[-1]['date']:%Y-%m-%d %H:%M:%S}" if not data.empty else 'None')
|
2018-12-13 05:12:10 +00:00
|
|
|
|
2021-11-07 06:35:27 +00:00
|
|
|
data_handler.ohlcv_store(pair, timeframe, data=data, candle_type=candle_type)
|
2018-12-16 09:29:53 +00:00
|
|
|
return True
|
2019-05-17 16:05:36 +00:00
|
|
|
|
2020-11-25 06:57:23 +00:00
|
|
|
except Exception:
|
|
|
|
logger.exception(
|
|
|
|
f'Failed to download history data for pair: "{pair}", timeframe: {timeframe}.'
|
2019-05-17 16:05:36 +00:00
|
|
|
)
|
2019-01-31 05:51:03 +00:00
|
|
|
return False
|
2019-05-25 14:51:52 +00:00
|
|
|
|
|
|
|
|
2019-08-25 13:01:27 +00:00
|
|
|
def refresh_backtest_ohlcv_data(exchange: Exchange, pairs: List[str], timeframes: List[str],
|
2019-12-16 18:43:33 +00:00
|
|
|
datadir: Path, timerange: Optional[TimeRange] = None,
|
2021-04-22 07:07:13 +00:00
|
|
|
new_pairs_days: int = 30, erase: bool = False,
|
2021-11-07 06:35:27 +00:00
|
|
|
data_format: str = None,
|
2021-12-03 11:23:35 +00:00
|
|
|
candle_type: CandleType = CandleType.SPOT
|
|
|
|
) -> List[str]:
|
2019-08-25 13:01:27 +00:00
|
|
|
"""
|
|
|
|
Refresh stored ohlcv data for backtesting and hyperopt operations.
|
2019-12-16 18:43:33 +00:00
|
|
|
Used by freqtrade download-data subcommand.
|
|
|
|
:return: List of pairs that are not available.
|
2019-08-25 13:01:27 +00:00
|
|
|
"""
|
|
|
|
pairs_not_available = []
|
2019-12-25 15:12:20 +00:00
|
|
|
data_handler = get_datahandler(datadir, data_format)
|
2021-08-19 18:34:02 +00:00
|
|
|
for idx, pair in enumerate(pairs, start=1):
|
2019-08-25 13:01:27 +00:00
|
|
|
if pair not in exchange.markets:
|
|
|
|
pairs_not_available.append(pair)
|
|
|
|
logger.info(f"Skipping pair {pair}...")
|
|
|
|
continue
|
2019-11-02 19:19:13 +00:00
|
|
|
for timeframe in timeframes:
|
2019-08-25 13:01:27 +00:00
|
|
|
|
2019-12-27 09:49:30 +00:00
|
|
|
if erase:
|
2021-11-07 06:35:27 +00:00
|
|
|
if data_handler.ohlcv_purge(pair, timeframe, candle_type=candle_type):
|
2019-12-27 09:49:30 +00:00
|
|
|
logger.info(
|
|
|
|
f'Deleting existing data for pair {pair}, interval {timeframe}.')
|
2019-08-25 13:01:27 +00:00
|
|
|
|
2019-11-02 19:19:13 +00:00
|
|
|
logger.info(f'Downloading pair {pair}, interval {timeframe}.')
|
2021-08-19 18:34:02 +00:00
|
|
|
process = f'{idx}/{len(pairs)}'
|
|
|
|
_download_pair_history(pair=pair, process=process,
|
|
|
|
datadir=datadir, exchange=exchange,
|
|
|
|
timerange=timerange, data_handler=data_handler,
|
2021-11-07 06:35:27 +00:00
|
|
|
timeframe=str(timeframe), new_pairs_days=new_pairs_days,
|
|
|
|
candle_type=candle_type)
|
2019-08-25 13:01:27 +00:00
|
|
|
return pairs_not_available
|
|
|
|
|
|
|
|
|
2019-12-25 15:34:27 +00:00
|
|
|
def _download_trades_history(exchange: Exchange,
|
|
|
|
pair: str, *,
|
2021-04-22 07:07:13 +00:00
|
|
|
new_pairs_days: int = 30,
|
2019-12-25 15:34:27 +00:00
|
|
|
timerange: Optional[TimeRange] = None,
|
|
|
|
data_handler: IDataHandler
|
|
|
|
) -> bool:
|
2019-08-25 12:30:09 +00:00
|
|
|
"""
|
|
|
|
Download trade history from the exchange.
|
|
|
|
Appends to previously downloaded trades data.
|
|
|
|
"""
|
2019-08-16 08:51:04 +00:00
|
|
|
try:
|
|
|
|
|
2021-05-15 11:15:19 +00:00
|
|
|
until = None
|
|
|
|
if (timerange and timerange.starttype == 'date'):
|
2021-05-15 11:20:36 +00:00
|
|
|
since = timerange.startts * 1000
|
|
|
|
if timerange.stoptype == 'date':
|
|
|
|
until = timerange.stopts * 1000
|
2021-05-15 11:15:19 +00:00
|
|
|
else:
|
2021-07-05 17:51:14 +00:00
|
|
|
since = arrow.utcnow().shift(days=-new_pairs_days).int_timestamp * 1000
|
2019-08-16 08:51:04 +00:00
|
|
|
|
2019-12-25 15:34:27 +00:00
|
|
|
trades = data_handler.trades_load(pair)
|
2019-08-16 08:51:04 +00:00
|
|
|
|
2020-03-31 18:20:10 +00:00
|
|
|
# TradesList columns are defined in constants.DEFAULT_TRADES_COLUMNS
|
|
|
|
# DEFAULT_TRADES_COLUMNS: 0 -> timestamp
|
|
|
|
# DEFAULT_TRADES_COLUMNS: 1 -> id
|
2020-03-31 18:46:42 +00:00
|
|
|
|
2020-06-24 15:40:23 +00:00
|
|
|
if trades and since < trades[0][0]:
|
|
|
|
# since is before the first trade
|
|
|
|
logger.info(f"Start earlier than available data. Redownloading trades for {pair}...")
|
|
|
|
trades = []
|
|
|
|
|
2020-03-31 18:20:10 +00:00
|
|
|
from_id = trades[-1][1] if trades else None
|
2020-03-31 18:46:42 +00:00
|
|
|
if trades and since < trades[-1][0]:
|
|
|
|
# Reset since to the last available point
|
2020-04-01 18:04:36 +00:00
|
|
|
# - 5 seconds (to ensure we're getting all trades)
|
2020-04-01 18:50:00 +00:00
|
|
|
since = trades[-1][0] - (5 * 1000)
|
2020-04-01 18:31:21 +00:00
|
|
|
logger.info(f"Using last trade date -5s - Downloading trades for {pair} "
|
|
|
|
f"since: {format_ms_time(since)}.")
|
2019-08-16 08:51:04 +00:00
|
|
|
|
2020-04-01 18:31:21 +00:00
|
|
|
logger.debug(f"Current Start: {format_ms_time(trades[0][0]) if trades else 'None'}")
|
|
|
|
logger.debug(f"Current End: {format_ms_time(trades[-1][0]) if trades else 'None'}")
|
2020-03-31 18:20:10 +00:00
|
|
|
logger.info(f"Current Amount of trades: {len(trades)}")
|
2019-08-16 08:51:04 +00:00
|
|
|
|
2019-12-16 19:12:26 +00:00
|
|
|
# Default since_ms to 30 days if nothing is given
|
2019-08-25 12:14:31 +00:00
|
|
|
new_trades = exchange.get_historic_trades(pair=pair,
|
2020-04-02 06:20:50 +00:00
|
|
|
since=since,
|
2021-05-15 11:15:19 +00:00
|
|
|
until=until,
|
2019-08-25 12:30:09 +00:00
|
|
|
from_id=from_id,
|
|
|
|
)
|
2019-08-25 12:14:31 +00:00
|
|
|
trades.extend(new_trades[1])
|
2020-04-01 05:58:39 +00:00
|
|
|
# Remove duplicates to make sure we're not storing data we don't need
|
|
|
|
trades = trades_remove_duplicates(trades)
|
2019-12-25 15:34:27 +00:00
|
|
|
data_handler.trades_store(pair, data=trades)
|
2019-08-16 08:51:04 +00:00
|
|
|
|
2020-04-01 18:31:21 +00:00
|
|
|
logger.debug(f"New Start: {format_ms_time(trades[0][0])}")
|
|
|
|
logger.debug(f"New End: {format_ms_time(trades[-1][0])}")
|
2019-08-16 08:51:04 +00:00
|
|
|
logger.info(f"New Amount of trades: {len(trades)}")
|
2019-08-29 10:56:10 +00:00
|
|
|
return True
|
2019-08-16 08:51:04 +00:00
|
|
|
|
2020-11-25 06:57:23 +00:00
|
|
|
except Exception:
|
|
|
|
logger.exception(
|
2019-08-16 08:51:04 +00:00
|
|
|
f'Failed to download historic trades for pair: "{pair}". '
|
|
|
|
)
|
|
|
|
return False
|
|
|
|
|
|
|
|
|
2019-08-29 09:43:14 +00:00
|
|
|
def refresh_backtest_trades_data(exchange: Exchange, pairs: List[str], datadir: Path,
|
2021-04-22 07:07:13 +00:00
|
|
|
timerange: TimeRange, new_pairs_days: int = 30,
|
|
|
|
erase: bool = False, data_format: str = 'jsongz') -> List[str]:
|
2019-08-27 05:13:50 +00:00
|
|
|
"""
|
2019-12-16 18:43:33 +00:00
|
|
|
Refresh stored trades data for backtesting and hyperopt operations.
|
|
|
|
Used by freqtrade download-data subcommand.
|
|
|
|
:return: List of pairs that are not available.
|
2019-08-27 05:13:50 +00:00
|
|
|
"""
|
|
|
|
pairs_not_available = []
|
2019-12-25 15:34:27 +00:00
|
|
|
data_handler = get_datahandler(datadir, data_format=data_format)
|
2019-08-27 05:13:50 +00:00
|
|
|
for pair in pairs:
|
|
|
|
if pair not in exchange.markets:
|
|
|
|
pairs_not_available.append(pair)
|
|
|
|
logger.info(f"Skipping pair {pair}...")
|
|
|
|
continue
|
|
|
|
|
2019-12-26 08:51:03 +00:00
|
|
|
if erase:
|
|
|
|
if data_handler.trades_purge(pair):
|
|
|
|
logger.info(f'Deleting existing data for pair {pair}.')
|
2019-08-27 05:13:50 +00:00
|
|
|
|
|
|
|
logger.info(f'Downloading trades for pair {pair}.')
|
2019-12-26 09:22:38 +00:00
|
|
|
_download_trades_history(exchange=exchange,
|
2019-12-16 18:57:03 +00:00
|
|
|
pair=pair,
|
2021-04-22 07:07:13 +00:00
|
|
|
new_pairs_days=new_pairs_days,
|
2019-12-25 15:34:27 +00:00
|
|
|
timerange=timerange,
|
|
|
|
data_handler=data_handler)
|
2019-08-27 05:13:50 +00:00
|
|
|
return pairs_not_available
|
|
|
|
|
|
|
|
|
2021-11-07 06:35:27 +00:00
|
|
|
def convert_trades_to_ohlcv(
|
|
|
|
pairs: List[str],
|
|
|
|
timeframes: List[str],
|
|
|
|
datadir: Path,
|
|
|
|
timerange: TimeRange,
|
|
|
|
erase: bool = False,
|
|
|
|
data_format_ohlcv: str = 'json',
|
|
|
|
data_format_trades: str = 'jsongz',
|
2021-12-03 11:23:35 +00:00
|
|
|
candle_type: CandleType = CandleType.SPOT
|
2021-11-07 06:35:27 +00:00
|
|
|
) -> None:
|
2019-08-29 09:43:14 +00:00
|
|
|
"""
|
|
|
|
Convert stored trades data to ohlcv data
|
|
|
|
"""
|
2019-12-27 12:46:25 +00:00
|
|
|
data_handler_trades = get_datahandler(datadir, data_format=data_format_trades)
|
|
|
|
data_handler_ohlcv = get_datahandler(datadir, data_format=data_format_ohlcv)
|
2019-12-25 15:34:27 +00:00
|
|
|
|
2019-08-29 09:43:14 +00:00
|
|
|
for pair in pairs:
|
2019-12-25 15:34:27 +00:00
|
|
|
trades = data_handler_trades.trades_load(pair)
|
2019-08-29 09:43:14 +00:00
|
|
|
for timeframe in timeframes:
|
2019-12-26 09:22:38 +00:00
|
|
|
if erase:
|
2021-11-07 06:35:27 +00:00
|
|
|
if data_handler_ohlcv.ohlcv_purge(pair, timeframe, candle_type=candle_type):
|
2019-12-26 09:22:38 +00:00
|
|
|
logger.info(f'Deleting existing data for pair {pair}, interval {timeframe}.')
|
2020-11-21 09:57:19 +00:00
|
|
|
try:
|
|
|
|
ohlcv = trades_to_ohlcv(trades, timeframe)
|
|
|
|
# Store ohlcv
|
2021-11-07 06:35:27 +00:00
|
|
|
data_handler_ohlcv.ohlcv_store(pair, timeframe, data=ohlcv, candle_type=candle_type)
|
2020-11-21 09:57:19 +00:00
|
|
|
except ValueError:
|
|
|
|
logger.exception(f'Could not convert {pair} to OHLCV.')
|
2019-08-29 09:43:14 +00:00
|
|
|
|
|
|
|
|
2021-05-06 17:34:10 +00:00
|
|
|
def get_timerange(data: Dict[str, DataFrame]) -> Tuple[datetime, datetime]:
|
2019-05-25 14:51:52 +00:00
|
|
|
"""
|
2019-12-17 22:06:03 +00:00
|
|
|
Get the maximum common timerange for the given backtest data.
|
|
|
|
|
2019-05-25 14:51:52 +00:00
|
|
|
:param data: dictionary with preprocessed backtesting data
|
|
|
|
:return: tuple containing min_date, max_date
|
|
|
|
"""
|
2019-12-17 22:06:03 +00:00
|
|
|
timeranges = [
|
2021-05-06 17:34:10 +00:00
|
|
|
(frame['date'].min().to_pydatetime(), frame['date'].max().to_pydatetime())
|
2019-05-25 14:51:52 +00:00
|
|
|
for frame in data.values()
|
|
|
|
]
|
2019-12-17 22:06:03 +00:00
|
|
|
return (min(timeranges, key=operator.itemgetter(0))[0],
|
|
|
|
max(timeranges, key=operator.itemgetter(1))[1])
|
2019-05-25 14:51:52 +00:00
|
|
|
|
|
|
|
|
2019-06-15 11:31:27 +00:00
|
|
|
def validate_backtest_data(data: DataFrame, pair: str, min_date: datetime,
|
2019-12-11 06:12:37 +00:00
|
|
|
max_date: datetime, timeframe_min: int) -> bool:
|
2019-05-25 14:51:52 +00:00
|
|
|
"""
|
|
|
|
Validates preprocessed backtesting data for missing values and shows warnings about it that.
|
|
|
|
|
2019-06-15 11:31:27 +00:00
|
|
|
:param data: preprocessed backtesting data (as DataFrame)
|
|
|
|
:param pair: pair used for log output.
|
2019-05-25 14:51:52 +00:00
|
|
|
:param min_date: start-date of the data
|
|
|
|
:param max_date: end-date of the data
|
2020-03-08 10:35:31 +00:00
|
|
|
:param timeframe_min: Timeframe in minutes
|
2019-05-25 14:51:52 +00:00
|
|
|
"""
|
2019-11-02 19:19:13 +00:00
|
|
|
# total difference in minutes / timeframe-minutes
|
2019-12-11 06:12:37 +00:00
|
|
|
expected_frames = int((max_date - min_date).total_seconds() // 60 // timeframe_min)
|
2019-05-25 14:51:52 +00:00
|
|
|
found_missing = False
|
2019-06-15 11:31:27 +00:00
|
|
|
dflen = len(data)
|
|
|
|
if dflen < expected_frames:
|
|
|
|
found_missing = True
|
|
|
|
logger.warning("%s has missing frames: expected %s, got %s, that's %s missing values",
|
|
|
|
pair, expected_frames, dflen, expected_frames - dflen)
|
2019-05-25 14:51:52 +00:00
|
|
|
return found_missing
|