2018-01-12 09:55:49 +00:00
|
|
|
#!/usr/bin/env python3
|
|
|
|
|
|
|
|
import sys
|
|
|
|
import json
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
import freqtrade.optimize as optimize
|
|
|
|
import freqtrade.misc as misc
|
2018-01-23 05:17:54 +00:00
|
|
|
from freqtrade.strategy.strategy import Strategy
|
2018-01-12 09:55:49 +00:00
|
|
|
|
|
|
|
|
2018-01-23 05:20:17 +00:00
|
|
|
def plot_parse_args(args):
|
2018-01-12 09:55:49 +00:00
|
|
|
parser = misc.common_args_parser('Graph utility')
|
2018-01-12 18:18:31 +00:00
|
|
|
# FIX: perhaps delete those backtesting options that are not feasible (shows up in -h)
|
2018-01-12 09:55:49 +00:00
|
|
|
misc.backtesting_options(parser)
|
|
|
|
parser.add_argument(
|
|
|
|
'-p', '--pair',
|
2018-01-23 05:20:17 +00:00
|
|
|
help='Show profits for only this pairs. Pairs are comma-separated.',
|
|
|
|
dest='pair',
|
|
|
|
default=None
|
2018-01-12 09:55:49 +00:00
|
|
|
)
|
|
|
|
return parser.parse_args(args)
|
|
|
|
|
|
|
|
|
2018-01-12 21:15:50 +00:00
|
|
|
# data:: [ pair, profit-%, enter, exit, time, duration]
|
|
|
|
# data:: ['BTC_XMR', 0.00537847, '1511176800', '1511178000', 5057, 1]
|
|
|
|
# FIX: make use of the enter/exit dates to insert the
|
|
|
|
# profit more precisely into the pg array
|
2018-01-12 18:18:31 +00:00
|
|
|
def make_profit_array(data, px, filter_pairs=[]):
|
|
|
|
pg = np.zeros(px)
|
2018-01-12 09:55:49 +00:00
|
|
|
# Go through the trades
|
|
|
|
# and make an total profit
|
|
|
|
# array
|
|
|
|
for trade in data:
|
|
|
|
pair = trade[0]
|
2018-01-12 18:18:31 +00:00
|
|
|
if filter_pairs and pair not in filter_pairs:
|
2018-01-12 09:55:49 +00:00
|
|
|
continue
|
|
|
|
profit = trade[1]
|
2018-01-12 21:15:50 +00:00
|
|
|
tim = trade[4]
|
|
|
|
dur = trade[5]
|
2018-01-12 09:55:49 +00:00
|
|
|
pg[tim+dur-1] += profit
|
|
|
|
|
|
|
|
# rewrite the pg array to go from
|
|
|
|
# total profits at each timeframe
|
|
|
|
# to accumulated profits
|
|
|
|
pa = 0
|
2018-01-23 05:20:17 +00:00
|
|
|
for x in range(0, len(pg)):
|
2018-01-12 09:55:49 +00:00
|
|
|
p = pg[x] # Get current total percent
|
|
|
|
pa += p # Add to the accumulated percent
|
|
|
|
pg[x] = pa # write back to save memory
|
|
|
|
|
|
|
|
return pg
|
|
|
|
|
|
|
|
|
|
|
|
def plot_profit(args) -> None:
|
|
|
|
"""
|
|
|
|
Plots the total profit for all pairs.
|
|
|
|
Note, the profit calculation isn't realistic.
|
|
|
|
But should be somewhat proportional, and therefor useful
|
|
|
|
in helping out to find a good algorithm.
|
|
|
|
"""
|
|
|
|
|
|
|
|
# We need to use the same pairs, same tick_interval
|
|
|
|
# and same timeperiod as used in backtesting
|
|
|
|
# to match the tickerdata against the profits-results
|
|
|
|
|
2018-01-12 18:18:31 +00:00
|
|
|
filter_pairs = args.pair
|
2018-01-12 09:55:49 +00:00
|
|
|
|
|
|
|
config = misc.load_config(args.config)
|
2018-01-23 05:17:54 +00:00
|
|
|
config.update({'strategy': args.strategy})
|
|
|
|
|
|
|
|
# Init strategy
|
|
|
|
strategy = Strategy()
|
|
|
|
strategy.init(config)
|
|
|
|
|
2018-01-12 09:55:49 +00:00
|
|
|
pairs = config['exchange']['pair_whitelist']
|
2018-01-23 05:17:54 +00:00
|
|
|
|
2018-01-12 18:18:31 +00:00
|
|
|
if filter_pairs:
|
|
|
|
filter_pairs = filter_pairs.split(',')
|
|
|
|
pairs = list(set(pairs) & set(filter_pairs))
|
|
|
|
print('Filter, keep pairs %s' % pairs)
|
2018-01-12 09:55:49 +00:00
|
|
|
|
|
|
|
tickers = optimize.load_data(args.datadir, pairs=pairs,
|
2018-01-23 05:17:54 +00:00
|
|
|
ticker_interval=strategy.ticker_interval,
|
2018-01-12 09:55:49 +00:00
|
|
|
refresh_pairs=False)
|
|
|
|
dataframes = optimize.preprocess(tickers)
|
|
|
|
|
|
|
|
# Make an average close price of all the pairs that was involved.
|
|
|
|
# this could be useful to gauge the overall market trend
|
|
|
|
|
|
|
|
# FIX: since the dataframes are of unequal length,
|
|
|
|
# andor has different dates, we need to merge them
|
|
|
|
# But we dont have the date information in the
|
|
|
|
# backtesting results, this is needed to match the dates
|
|
|
|
# For now, assume the dataframes are aligned.
|
2018-01-12 18:18:31 +00:00
|
|
|
max_x = 0
|
|
|
|
for pair, pair_data in dataframes.items():
|
|
|
|
n = len(pair_data['close'])
|
|
|
|
max_x = max(max_x, n)
|
|
|
|
# if max_x != n:
|
|
|
|
# raise Exception('Please rerun script. Input data has different lengths %s'
|
|
|
|
# %('Different pair length: %s <=> %s' %(max_x, n)))
|
2018-01-23 05:20:17 +00:00
|
|
|
print('max_x: %s' % (max_x))
|
2018-01-12 09:55:49 +00:00
|
|
|
|
|
|
|
# We are essentially saying:
|
|
|
|
# array <- sum dataframes[*]['close'] / num_items dataframes
|
|
|
|
# FIX: there should be some onliner numpy/panda for this
|
2018-01-12 18:18:31 +00:00
|
|
|
avgclose = np.zeros(max_x)
|
2018-01-12 09:55:49 +00:00
|
|
|
num = 0
|
|
|
|
for pair, pair_data in dataframes.items():
|
2018-01-12 18:18:31 +00:00
|
|
|
close = pair_data['close']
|
|
|
|
maxprice = max(close) # Normalize price to [0,1]
|
2018-01-23 05:20:17 +00:00
|
|
|
print('Pair %s has length %s' % (pair, len(close)))
|
2018-01-12 18:18:31 +00:00
|
|
|
for x in range(0, len(close)):
|
|
|
|
avgclose[x] += close[x] / maxprice
|
|
|
|
# avgclose += close
|
|
|
|
num += 1
|
2018-01-12 09:55:49 +00:00
|
|
|
avgclose /= num
|
|
|
|
|
|
|
|
# Load the profits results
|
|
|
|
# And make an profits-growth array
|
|
|
|
|
|
|
|
filename = 'backtest-result.json'
|
|
|
|
with open(filename) as file:
|
2018-01-23 05:20:17 +00:00
|
|
|
data = json.load(file)
|
2018-01-12 18:18:31 +00:00
|
|
|
pg = make_profit_array(data, max_x, filter_pairs)
|
2018-01-12 09:55:49 +00:00
|
|
|
|
|
|
|
#
|
|
|
|
# Plot the pairs average close prices, and total profit growth
|
|
|
|
#
|
|
|
|
|
|
|
|
fig, (ax1, ax2, ax3) = plt.subplots(3, sharex=True)
|
|
|
|
fig.suptitle('total profit')
|
|
|
|
ax1.plot(avgclose, label='avgclose')
|
|
|
|
ax2.plot(pg, label='profit')
|
2018-01-12 18:18:31 +00:00
|
|
|
ax1.legend(loc='upper left')
|
|
|
|
ax2.legend(loc='upper left')
|
2018-01-12 09:55:49 +00:00
|
|
|
|
|
|
|
# FIX if we have one line pair in paris
|
|
|
|
# then skip the plotting of the third graph,
|
|
|
|
# or change what we plot
|
|
|
|
# In third graph, we plot each profit separately
|
|
|
|
for pair in pairs:
|
2018-01-12 18:18:31 +00:00
|
|
|
pg = make_profit_array(data, max_x, pair)
|
2018-01-12 09:55:49 +00:00
|
|
|
ax3.plot(pg, label=pair)
|
2018-01-12 18:18:31 +00:00
|
|
|
ax3.legend(loc='upper left')
|
|
|
|
# black background to easier see multiple colors
|
|
|
|
ax3.set_facecolor('black')
|
2018-01-12 09:55:49 +00:00
|
|
|
|
|
|
|
# Fine-tune figure; make subplots close to each other and hide x ticks for
|
|
|
|
# all but bottom plot.
|
|
|
|
fig.subplots_adjust(hspace=0)
|
|
|
|
plt.setp([a.get_xticklabels() for a in fig.axes[:-1]], visible=False)
|
|
|
|
plt.show()
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
args = plot_parse_args(sys.argv[1:])
|
|
|
|
plot_profit(args)
|