2017-11-18 07:34:32 +00:00
|
|
|
"""
|
|
|
|
Functions to analyze ticker data with indicators and produce buy and sell signals
|
|
|
|
"""
|
2017-10-06 10:22:04 +00:00
|
|
|
import logging
|
2017-05-24 19:52:41 +00:00
|
|
|
from datetime import timedelta
|
2017-11-20 21:26:32 +00:00
|
|
|
from enum import Enum
|
2018-01-10 07:51:36 +00:00
|
|
|
from typing import Dict, List
|
2017-10-06 10:22:04 +00:00
|
|
|
|
2017-08-27 14:12:28 +00:00
|
|
|
import arrow
|
2017-10-29 08:16:53 +00:00
|
|
|
from pandas import DataFrame, to_datetime
|
2017-09-01 18:40:12 +00:00
|
|
|
|
2018-01-10 07:51:36 +00:00
|
|
|
from freqtrade.exchange import get_ticker_history
|
2018-01-15 08:35:11 +00:00
|
|
|
from freqtrade.strategy.strategy import Strategy
|
2017-05-24 19:52:41 +00:00
|
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
2017-11-25 02:28:52 +00:00
|
|
|
|
2017-11-14 17:06:03 +00:00
|
|
|
class SignalType(Enum):
|
2017-11-18 07:34:32 +00:00
|
|
|
""" Enum to distinguish between buy and sell signals """
|
2017-11-14 17:06:03 +00:00
|
|
|
BUY = "buy"
|
|
|
|
SELL = "sell"
|
|
|
|
|
2017-05-24 19:52:41 +00:00
|
|
|
|
2017-10-29 07:36:03 +00:00
|
|
|
def parse_ticker_dataframe(ticker: list) -> DataFrame:
|
2017-09-09 09:26:33 +00:00
|
|
|
"""
|
2017-10-31 23:12:18 +00:00
|
|
|
Analyses the trend for the given ticker history
|
|
|
|
:param ticker: See exchange.get_ticker_history
|
2017-09-09 09:26:33 +00:00
|
|
|
:return: DataFrame
|
|
|
|
"""
|
2017-11-07 19:13:36 +00:00
|
|
|
columns = {'C': 'close', 'V': 'volume', 'O': 'open', 'H': 'high', 'L': 'low', 'T': 'date'}
|
|
|
|
frame = DataFrame(ticker) \
|
|
|
|
.rename(columns=columns)
|
2018-01-20 14:03:12 +00:00
|
|
|
if 'BV' in frame:
|
|
|
|
frame.drop('BV', 1, inplace=True)
|
2017-11-07 19:13:36 +00:00
|
|
|
frame['date'] = to_datetime(frame['date'], utc=True, infer_datetime_format=True)
|
|
|
|
frame.sort_values('date', inplace=True)
|
|
|
|
return frame
|
2017-09-09 10:02:47 +00:00
|
|
|
|
2017-10-06 10:22:04 +00:00
|
|
|
|
2018-01-30 14:03:38 +00:00
|
|
|
def populate_indicators(dataframe: DataFrame, pair: str) -> DataFrame:
|
2017-09-09 10:02:47 +00:00
|
|
|
"""
|
|
|
|
Adds several different TA indicators to the given DataFrame
|
2018-01-06 09:11:01 +00:00
|
|
|
|
|
|
|
Performance Note: For the best performance be frugal on the number of indicators
|
|
|
|
you are using. Let uncomment only the indicator you are using in your strategies
|
|
|
|
or your hyperopt configuration, otherwise you will waste your memory and CPU usage.
|
2017-09-09 10:02:47 +00:00
|
|
|
"""
|
2018-01-15 08:35:11 +00:00
|
|
|
strategy = Strategy()
|
2018-01-30 14:03:38 +00:00
|
|
|
return strategy.populate_indicators(dataframe=dataframe, pair=pair)
|
2017-05-24 19:52:41 +00:00
|
|
|
|
|
|
|
|
2018-01-30 14:03:38 +00:00
|
|
|
def populate_buy_trend(dataframe: DataFrame, pair: str) -> DataFrame:
|
2017-05-24 19:52:41 +00:00
|
|
|
"""
|
2017-11-14 18:28:31 +00:00
|
|
|
Based on TA indicators, populates the buy signal for the given dataframe
|
2017-09-02 08:56:56 +00:00
|
|
|
:param dataframe: DataFrame
|
2017-09-09 13:32:53 +00:00
|
|
|
:return: DataFrame with buy column
|
2017-05-24 23:11:35 +00:00
|
|
|
"""
|
2018-01-15 08:35:11 +00:00
|
|
|
strategy = Strategy()
|
2018-01-30 14:03:38 +00:00
|
|
|
return strategy.populate_buy_trend(dataframe=dataframe, pair=pair)
|
2017-05-24 19:52:41 +00:00
|
|
|
|
2017-11-21 21:33:34 +00:00
|
|
|
|
2018-01-30 14:03:38 +00:00
|
|
|
def populate_sell_trend(dataframe: DataFrame, pair: str) -> DataFrame:
|
2017-11-14 18:28:31 +00:00
|
|
|
"""
|
|
|
|
Based on TA indicators, populates the sell signal for the given dataframe
|
|
|
|
:param dataframe: DataFrame
|
|
|
|
:return: DataFrame with buy column
|
|
|
|
"""
|
2018-01-15 08:35:11 +00:00
|
|
|
strategy = Strategy()
|
2018-01-30 14:03:38 +00:00
|
|
|
return strategy.populate_sell_trend(dataframe=dataframe, pair=pair)
|
2017-11-14 18:28:31 +00:00
|
|
|
|
2017-05-24 19:52:41 +00:00
|
|
|
|
2018-01-30 14:03:38 +00:00
|
|
|
def analyze_ticker(ticker_history: List[Dict], pair: str) -> DataFrame:
|
2017-09-09 13:32:53 +00:00
|
|
|
"""
|
2017-11-24 22:58:35 +00:00
|
|
|
Parses the given ticker history and returns a populated DataFrame
|
2017-09-09 13:32:53 +00:00
|
|
|
add several TA indicators and buy signal to it
|
|
|
|
:return DataFrame with ticker data and indicator data
|
|
|
|
"""
|
2017-11-24 22:58:35 +00:00
|
|
|
dataframe = parse_ticker_dataframe(ticker_history)
|
2018-01-30 14:03:38 +00:00
|
|
|
dataframe = populate_indicators(dataframe, pair)
|
|
|
|
dataframe = populate_buy_trend(dataframe, pair)
|
|
|
|
dataframe = populate_sell_trend(dataframe, pair)
|
2017-09-09 10:16:14 +00:00
|
|
|
return dataframe
|
|
|
|
|
2017-10-06 10:22:04 +00:00
|
|
|
|
2018-01-20 20:24:28 +00:00
|
|
|
# FIX: Maybe return False, if an error has occured,
|
|
|
|
# Otherwise we might mask an error as an non-signal-scenario
|
2018-01-20 18:25:47 +00:00
|
|
|
def get_signal(pair: str, interval: int) -> (bool, bool):
|
2017-05-24 19:52:41 +00:00
|
|
|
"""
|
2017-11-14 17:06:03 +00:00
|
|
|
Calculates current signal based several technical analysis indicators
|
2017-05-24 19:52:41 +00:00
|
|
|
:param pair: pair in format BTC_ANT or BTC-ANT
|
2018-01-20 20:24:28 +00:00
|
|
|
:return: (Buy, Sell) A bool-tuple indicating buy/sell signal
|
2017-05-24 19:52:41 +00:00
|
|
|
"""
|
2018-01-12 16:02:35 +00:00
|
|
|
ticker_hist = get_ticker_history(pair, interval)
|
2017-11-24 22:58:35 +00:00
|
|
|
if not ticker_hist:
|
|
|
|
logger.warning('Empty ticker history for pair %s', pair)
|
2018-01-20 20:24:28 +00:00
|
|
|
return (False, False) # return False ?
|
2017-11-24 22:58:35 +00:00
|
|
|
|
2017-11-21 19:37:29 +00:00
|
|
|
try:
|
2018-01-30 14:03:38 +00:00
|
|
|
dataframe = analyze_ticker(ticker_hist, pair)
|
2017-11-21 19:37:29 +00:00
|
|
|
except ValueError as ex:
|
|
|
|
logger.warning('Unable to analyze ticker for pair %s: %s', pair, str(ex))
|
2018-01-20 20:24:28 +00:00
|
|
|
return (False, False) # return False ?
|
2018-01-05 06:15:46 +00:00
|
|
|
except Exception as ex:
|
|
|
|
logger.exception('Unexpected error when analyzing ticker for pair %s: %s', pair, str(ex))
|
2018-01-20 20:24:28 +00:00
|
|
|
return (False, False) # return False ?
|
2017-11-21 19:37:29 +00:00
|
|
|
|
2017-09-27 22:43:32 +00:00
|
|
|
if dataframe.empty:
|
2018-01-10 06:40:40 +00:00
|
|
|
logger.warning('Empty dataframe for pair %s', pair)
|
2018-01-20 20:24:28 +00:00
|
|
|
return (False, False) # return False ?
|
2017-09-27 22:43:32 +00:00
|
|
|
|
2017-05-24 19:52:41 +00:00
|
|
|
latest = dataframe.iloc[-1]
|
2017-05-24 23:11:35 +00:00
|
|
|
|
|
|
|
# Check if dataframe is out of date
|
|
|
|
signal_date = arrow.get(latest['date'])
|
2018-01-28 13:40:02 +00:00
|
|
|
if signal_date < arrow.now() - timedelta(minutes=(interval + 5)):
|
2018-01-10 06:40:40 +00:00
|
|
|
logger.warning('Too old dataframe for pair %s', pair)
|
2018-01-20 20:24:28 +00:00
|
|
|
return (False, False) # return False ?
|
2017-05-24 23:11:35 +00:00
|
|
|
|
2018-01-16 20:18:43 +00:00
|
|
|
(buy, sell) = latest[SignalType.BUY.value] == 1, latest[SignalType.SELL.value] == 1
|
|
|
|
logger.debug('trigger: %s (pair=%s) buy=%s sell=%s', latest['date'], pair, str(buy), str(sell))
|
2018-01-16 19:22:15 +00:00
|
|
|
return (buy, sell)
|