80 lines
2.3 KiB
Python
80 lines
2.3 KiB
Python
|
"""
|
||
|
CalmarHyperOptLossDaily
|
||
|
|
||
|
This module defines the alternative HyperOptLoss class which can be used for
|
||
|
Hyperoptimization.
|
||
|
"""
|
||
|
from datetime import datetime
|
||
|
from math import sqrt as msqrt
|
||
|
from typing import Any, Dict
|
||
|
|
||
|
from pandas import DataFrame, date_range
|
||
|
|
||
|
from freqtrade.optimize.hyperopt import IHyperOptLoss
|
||
|
|
||
|
|
||
|
class CalmarHyperOptLossDaily(IHyperOptLoss):
|
||
|
"""
|
||
|
Defines the loss function for hyperopt.
|
||
|
|
||
|
This implementation uses the Calmar Ratio calculation.
|
||
|
"""
|
||
|
|
||
|
@staticmethod
|
||
|
def hyperopt_loss_function(
|
||
|
results: DataFrame,
|
||
|
trade_count: int,
|
||
|
min_date: datetime,
|
||
|
max_date: datetime,
|
||
|
backtest_stats: Dict[str, Any],
|
||
|
*args,
|
||
|
**kwargs
|
||
|
) -> float:
|
||
|
"""
|
||
|
Objective function, returns smaller number for more optimal results.
|
||
|
|
||
|
Uses Calmar Ratio calculation.
|
||
|
"""
|
||
|
resample_freq = "1D"
|
||
|
slippage_per_trade_ratio = 0.0005
|
||
|
days_in_year = 365
|
||
|
|
||
|
# create the index within the min_date and end max_date
|
||
|
t_index = date_range(
|
||
|
start=min_date, end=max_date, freq=resample_freq, normalize=True
|
||
|
)
|
||
|
|
||
|
# apply slippage per trade to profit_total
|
||
|
results.loc[:, "profit_ratio_after_slippage"] = (
|
||
|
results["profit_ratio"] - slippage_per_trade_ratio
|
||
|
)
|
||
|
|
||
|
sum_daily = (
|
||
|
results.resample(resample_freq, on="close_date")
|
||
|
.agg({"profit_ratio_after_slippage": sum})
|
||
|
.reindex(t_index)
|
||
|
.fillna(0)
|
||
|
)
|
||
|
|
||
|
total_profit = sum_daily["profit_ratio_after_slippage"]
|
||
|
expected_returns_mean = total_profit.mean() * 100
|
||
|
|
||
|
# calculate max drawdown
|
||
|
try:
|
||
|
high_val = total_profit.max()
|
||
|
low_val = total_profit.min()
|
||
|
max_drawdown = (high_val - low_val) / high_val
|
||
|
|
||
|
except (ValueError, ZeroDivisionError):
|
||
|
max_drawdown = 0
|
||
|
|
||
|
if max_drawdown != 0:
|
||
|
calmar_ratio = expected_returns_mean / max_drawdown * msqrt(days_in_year)
|
||
|
else:
|
||
|
# Define high (negative) calmar ratio to be clear that this is NOT optimal.
|
||
|
calmar_ratio = -20.0
|
||
|
|
||
|
# print(t_index, sum_daily, total_profit)
|
||
|
# print(expected_returns_mean, max_drawdown, calmar_ratio)
|
||
|
return -calmar_ratio
|