stable/freqtrade/commands/hyperopt_commands.py

272 lines
10 KiB
Python
Raw Normal View History

import logging
from operator import itemgetter
from typing import Any, Dict, List
from colorama import init as colorama_init
from freqtrade.configuration import setup_utils_configuration
from freqtrade.data.btanalysis import get_latest_hyperopt_file
2021-06-08 19:20:35 +00:00
from freqtrade.enums import RunMode
from freqtrade.exceptions import OperationalException
from freqtrade.optimize.optimize_reports import show_backtest_result
2020-09-28 17:39:41 +00:00
logger = logging.getLogger(__name__)
2020-08-11 18:37:01 +00:00
def start_hyperopt_list(args: Dict[str, Any]) -> None:
"""
List hyperopt epochs previously evaluated
"""
from freqtrade.optimize.hyperopt_tools import HyperoptTools
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
print_colorized = config.get('print_colorized', False)
print_json = config.get('print_json', False)
export_csv = config.get('export_csv', None)
no_details = config.get('hyperopt_list_no_details', False)
no_header = False
filteroptions = {
'only_best': config.get('hyperopt_list_best', False),
'only_profitable': config.get('hyperopt_list_profitable', False),
'filter_min_trades': config.get('hyperopt_list_min_trades', 0),
'filter_max_trades': config.get('hyperopt_list_max_trades', 0),
'filter_min_avg_time': config.get('hyperopt_list_min_avg_time', None),
'filter_max_avg_time': config.get('hyperopt_list_max_avg_time', None),
'filter_min_avg_profit': config.get('hyperopt_list_min_avg_profit', None),
'filter_max_avg_profit': config.get('hyperopt_list_max_avg_profit', None),
'filter_min_total_profit': config.get('hyperopt_list_min_total_profit', None),
2020-03-22 01:22:06 +00:00
'filter_max_total_profit': config.get('hyperopt_list_max_total_profit', None),
'filter_min_objective': config.get('hyperopt_list_min_objective', None),
2020-03-27 02:01:51 +00:00
'filter_max_objective': config.get('hyperopt_list_max_objective', None),
}
2020-02-08 23:16:11 +00:00
results_file = get_latest_hyperopt_file(
config['user_data_dir'] / 'hyperopt_results',
config.get('hyperoptexportfilename'))
# Previous evaluations
epochs = HyperoptTools.load_previous_results(results_file)
2020-04-28 20:14:02 +00:00
total_epochs = len(epochs)
2020-08-11 18:37:01 +00:00
epochs = hyperopt_filter_epochs(epochs, filteroptions)
if print_colorized:
colorama_init(autoreset=True)
2020-03-05 18:43:43 +00:00
if not export_csv:
try:
print(HyperoptTools.get_result_table(config, epochs, total_epochs,
not filteroptions['only_best'],
print_colorized, 0))
2020-03-05 18:43:43 +00:00
except KeyboardInterrupt:
print('User interrupted..')
2020-04-28 20:14:02 +00:00
if epochs and not no_details:
sorted_epochs = sorted(epochs, key=itemgetter('loss'))
results = sorted_epochs[0]
HyperoptTools.print_epoch_details(results, total_epochs, print_json, no_header)
2020-03-05 18:43:43 +00:00
2020-04-28 20:14:02 +00:00
if epochs and export_csv:
HyperoptTools.export_csv_file(
2020-04-28 20:14:02 +00:00
config, epochs, total_epochs, not filteroptions['only_best'], export_csv
)
def start_hyperopt_show(args: Dict[str, Any]) -> None:
"""
Show details of a hyperopt epoch previously evaluated
"""
from freqtrade.optimize.hyperopt_tools import HyperoptTools
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
print_json = config.get('print_json', False)
no_header = config.get('hyperopt_show_no_header', False)
results_file = get_latest_hyperopt_file(
config['user_data_dir'] / 'hyperopt_results',
config.get('hyperoptexportfilename'))
n = config.get('hyperopt_show_index', -1)
filteroptions = {
'only_best': config.get('hyperopt_list_best', False),
'only_profitable': config.get('hyperopt_list_profitable', False),
'filter_min_trades': config.get('hyperopt_list_min_trades', 0),
'filter_max_trades': config.get('hyperopt_list_max_trades', 0),
'filter_min_avg_time': config.get('hyperopt_list_min_avg_time', None),
'filter_max_avg_time': config.get('hyperopt_list_max_avg_time', None),
'filter_min_avg_profit': config.get('hyperopt_list_min_avg_profit', None),
'filter_max_avg_profit': config.get('hyperopt_list_max_avg_profit', None),
'filter_min_total_profit': config.get('hyperopt_list_min_total_profit', None),
2020-03-22 01:22:06 +00:00
'filter_max_total_profit': config.get('hyperopt_list_max_total_profit', None),
'filter_min_objective': config.get('hyperopt_list_min_objective', None),
'filter_max_objective': config.get('hyperopt_list_max_objective', None)
}
# Previous evaluations
epochs = HyperoptTools.load_previous_results(results_file)
2020-04-28 20:14:02 +00:00
total_epochs = len(epochs)
2020-08-11 18:37:01 +00:00
epochs = hyperopt_filter_epochs(epochs, filteroptions)
2020-04-28 20:14:02 +00:00
filtered_epochs = len(epochs)
2020-04-28 20:14:02 +00:00
if n > filtered_epochs:
raise OperationalException(
2020-04-28 20:14:02 +00:00
f"The index of the epoch to show should be less than {filtered_epochs + 1}.")
if n < -filtered_epochs:
raise OperationalException(
2020-04-28 20:14:02 +00:00
f"The index of the epoch to show should be greater than {-filtered_epochs - 1}.")
# Translate epoch index from human-readable format to pythonic
if n > 0:
n -= 1
2020-04-28 20:14:02 +00:00
if epochs:
val = epochs[n]
metrics = val['results_metrics']
if 'strategy_name' in metrics:
show_backtest_result(metrics['strategy_name'], metrics,
metrics['stake_currency'])
HyperoptTools.print_epoch_details(val, total_epochs, print_json, no_header,
header_str="Epoch details")
2020-08-11 18:37:01 +00:00
def hyperopt_filter_epochs(epochs: List, filteroptions: dict) -> List:
"""
Filter our items from the list of hyperopt results
TODO: after 2021.5 remove all "legacy" mode queries.
"""
if filteroptions['only_best']:
2020-04-28 20:14:02 +00:00
epochs = [x for x in epochs if x['is_best']]
if filteroptions['only_profitable']:
epochs = [x for x in epochs if x['results_metrics'].get(
'profit', x['results_metrics'].get('profit_total', 0)) > 0]
2020-08-11 18:37:01 +00:00
epochs = _hyperopt_filter_epochs_trade_count(epochs, filteroptions)
epochs = _hyperopt_filter_epochs_duration(epochs, filteroptions)
epochs = _hyperopt_filter_epochs_profit(epochs, filteroptions)
epochs = _hyperopt_filter_epochs_objective(epochs, filteroptions)
2020-08-12 08:39:53 +00:00
logger.info(f"{len(epochs)} " +
("best " if filteroptions['only_best'] else "") +
("profitable " if filteroptions['only_profitable'] else "") +
"epochs found.")
2020-08-11 18:37:01 +00:00
return epochs
def _hyperopt_filter_epochs_trade(epochs: List, trade_count: int):
"""
Filter epochs with trade-counts > trades
"""
return [
x for x in epochs
if x['results_metrics'].get(
'trade_count', x['results_metrics'].get('total_trades', 0)
) > trade_count
]
2020-08-11 18:37:01 +00:00
def _hyperopt_filter_epochs_trade_count(epochs: List, filteroptions: dict) -> List:
if filteroptions['filter_min_trades'] > 0:
epochs = _hyperopt_filter_epochs_trade(epochs, filteroptions['filter_min_trades'])
if filteroptions['filter_max_trades'] > 0:
2020-04-28 20:14:02 +00:00
epochs = [
x for x in epochs
if x['results_metrics'].get(
'trade_count', x['results_metrics'].get('total_trades')
) < filteroptions['filter_max_trades']
2020-03-01 23:14:01 +00:00
]
2020-08-11 18:37:01 +00:00
return epochs
def _hyperopt_filter_epochs_duration(epochs: List, filteroptions: dict) -> List:
def get_duration_value(x):
# Duration in minutes ...
if 'duration' in x['results_metrics']:
return x['results_metrics']['duration']
else:
# New mode
if 'holding_avg_s' in x['results_metrics']:
avg = x['results_metrics']['holding_avg_s']
return avg // 60
raise OperationalException(
"Holding-average not available. Please omit the filter on average time, "
"or rerun hyperopt with this version")
if filteroptions['filter_min_avg_time'] is not None:
epochs = _hyperopt_filter_epochs_trade(epochs, 0)
2020-04-28 20:14:02 +00:00
epochs = [
x for x in epochs
if get_duration_value(x) > filteroptions['filter_min_avg_time']
2020-03-01 23:14:01 +00:00
]
if filteroptions['filter_max_avg_time'] is not None:
epochs = _hyperopt_filter_epochs_trade(epochs, 0)
2020-04-28 20:14:02 +00:00
epochs = [
x for x in epochs
if get_duration_value(x) < filteroptions['filter_max_avg_time']
2020-03-01 23:14:01 +00:00
]
2020-08-11 18:37:01 +00:00
return epochs
def _hyperopt_filter_epochs_profit(epochs: List, filteroptions: dict) -> List:
if filteroptions['filter_min_avg_profit'] is not None:
epochs = _hyperopt_filter_epochs_trade(epochs, 0)
2020-04-28 20:14:02 +00:00
epochs = [
x for x in epochs
if x['results_metrics'].get(
'avg_profit', x['results_metrics'].get('profit_mean', 0) * 100
) > filteroptions['filter_min_avg_profit']
2020-03-01 23:14:01 +00:00
]
if filteroptions['filter_max_avg_profit'] is not None:
epochs = _hyperopt_filter_epochs_trade(epochs, 0)
2020-04-28 20:14:02 +00:00
epochs = [
x for x in epochs
if x['results_metrics'].get(
'avg_profit', x['results_metrics'].get('profit_mean', 0) * 100
) < filteroptions['filter_max_avg_profit']
2020-03-01 23:14:01 +00:00
]
if filteroptions['filter_min_total_profit'] is not None:
epochs = _hyperopt_filter_epochs_trade(epochs, 0)
2020-04-28 20:14:02 +00:00
epochs = [
x for x in epochs
if x['results_metrics'].get(
'profit', x['results_metrics'].get('profit_total_abs', 0)
) > filteroptions['filter_min_total_profit']
2020-03-01 23:14:01 +00:00
]
if filteroptions['filter_max_total_profit'] is not None:
epochs = _hyperopt_filter_epochs_trade(epochs, 0)
2020-04-28 20:14:02 +00:00
epochs = [
x for x in epochs
if x['results_metrics'].get(
'profit', x['results_metrics'].get('profit_total_abs', 0)
) < filteroptions['filter_max_total_profit']
2020-03-01 23:14:01 +00:00
]
2020-08-11 18:37:01 +00:00
return epochs
def _hyperopt_filter_epochs_objective(epochs: List, filteroptions: dict) -> List:
2020-03-22 01:22:06 +00:00
if filteroptions['filter_min_objective'] is not None:
epochs = _hyperopt_filter_epochs_trade(epochs, 0)
2020-08-12 08:39:53 +00:00
epochs = [x for x in epochs if x['loss'] < filteroptions['filter_min_objective']]
2020-03-22 01:22:06 +00:00
if filteroptions['filter_max_objective'] is not None:
epochs = _hyperopt_filter_epochs_trade(epochs, 0)
2020-02-08 23:16:11 +00:00
2020-08-12 08:39:53 +00:00
epochs = [x for x in epochs if x['loss'] > filteroptions['filter_max_objective']]
2020-04-28 20:14:02 +00:00
return epochs