2022-12-04 12:54:30 +00:00
|
|
|
from enum import Enum
|
|
|
|
from typing import Any, Dict, Type, Union
|
|
|
|
|
|
|
|
from stable_baselines3.common.callbacks import BaseCallback
|
|
|
|
from stable_baselines3.common.logger import HParam
|
|
|
|
|
2022-12-04 13:10:33 +00:00
|
|
|
from freqtrade.freqai.RL.BaseEnvironment import BaseActions, BaseEnvironment
|
2022-12-04 12:54:30 +00:00
|
|
|
|
|
|
|
|
|
|
|
class TensorboardCallback(BaseCallback):
|
|
|
|
"""
|
|
|
|
Custom callback for plotting additional values in tensorboard and
|
|
|
|
episodic summary reports.
|
|
|
|
"""
|
|
|
|
def __init__(self, verbose=1, actions: Type[Enum] = BaseActions):
|
|
|
|
super(TensorboardCallback, self).__init__(verbose)
|
|
|
|
self.model: Any = None
|
|
|
|
self.logger = None # type: Any
|
2022-12-04 13:10:33 +00:00
|
|
|
self.training_env: BaseEnvironment = None # type: ignore
|
2022-12-04 12:54:30 +00:00
|
|
|
self.actions: Type[Enum] = actions
|
|
|
|
|
|
|
|
def _on_training_start(self) -> None:
|
|
|
|
hparam_dict = {
|
|
|
|
"algorithm": self.model.__class__.__name__,
|
|
|
|
"learning_rate": self.model.learning_rate,
|
|
|
|
# "gamma": self.model.gamma,
|
|
|
|
# "gae_lambda": self.model.gae_lambda,
|
|
|
|
# "batch_size": self.model.batch_size,
|
|
|
|
# "n_steps": self.model.n_steps,
|
|
|
|
}
|
|
|
|
metric_dict: Dict[str, Union[float, int]] = {
|
|
|
|
"eval/mean_reward": 0,
|
|
|
|
"rollout/ep_rew_mean": 0,
|
|
|
|
"rollout/ep_len_mean": 0,
|
|
|
|
"train/value_loss": 0,
|
|
|
|
"train/explained_variance": 0,
|
|
|
|
}
|
|
|
|
self.logger.record(
|
|
|
|
"hparams",
|
|
|
|
HParam(hparam_dict, metric_dict),
|
|
|
|
exclude=("stdout", "log", "json", "csv"),
|
|
|
|
)
|
|
|
|
|
|
|
|
def _on_step(self) -> bool:
|
2022-12-05 19:22:54 +00:00
|
|
|
custom_info = self.training_env.get_attr("custom_info")[0]
|
2022-12-04 12:54:30 +00:00
|
|
|
self.logger.record("_state/position", self.locals["infos"][0]["position"])
|
|
|
|
self.logger.record("_state/trade_duration", self.locals["infos"][0]["trade_duration"])
|
|
|
|
self.logger.record("_state/current_profit_pct", self.locals["infos"]
|
|
|
|
[0]["current_profit_pct"])
|
|
|
|
self.logger.record("_reward/total_profit", self.locals["infos"][0]["total_profit"])
|
|
|
|
self.logger.record("_reward/total_reward", self.locals["infos"][0]["total_reward"])
|
|
|
|
self.logger.record_mean("_reward/mean_trade_duration", self.locals["infos"]
|
|
|
|
[0]["trade_duration"])
|
|
|
|
self.logger.record("_actions/action", self.locals["infos"][0]["action"])
|
|
|
|
self.logger.record("_actions/_Invalid", custom_info["Invalid"])
|
|
|
|
self.logger.record("_actions/_Unknown", custom_info["Unknown"])
|
|
|
|
self.logger.record("_actions/Hold", custom_info["Hold"])
|
|
|
|
for action in self.actions:
|
|
|
|
self.logger.record(f"_actions/{action.name}", custom_info[action.name])
|
|
|
|
return True
|